

RECENT DEVELOPMENTS IN THE FIELD OF SCINTILLATORS FOR RADIATION DETECTORS

E. Auffray, CERN, EP-CMX

120 years of inorganic scintillators

A wide range of applications using scintillators

High Energy Physic

Medical applications

Oil well logging

security

Inorganic scintillators in HEP

Inorganic scintillators in PET imaging

A large variety of future detectors with different requirements

M.T. Lucchini, Scint2022 conference

A large variety of proposals with inorganic scintillators

E. Auffray, TIPP2023, 06/09/2023

Fast timing ever increasing request

In HEP :

High rate @ high luminosity accelerators; >140 collision events per bunch crossing at High Luminosity-LHC;

 \rightarrow Pileup mitigation via TOF requires TOF resolution < 50 ps.

Particle identification

In medical imaging

In Positron Emission Tomograph: Time of flight PET

- \rightarrow Better image quality for same acquisition time
- \rightarrow Faster exam
- \rightarrow Simplify reconstruction
- ightarrow Help for limited field of view

In Computed tomograph: TOF CT

- \rightarrow Reduce scattered photons contribution
- => Need to push the limits of time resolution of detectors

State of the art time resolution with minimun ionising particles (mips)

Single LSO:Ce,Ca crystals

A. Benaglia, et al., NIM A (2016), 830, 30-35

CMS Barrel timing layer for HL-LHC

State of the art time resolution with PET size crystal at 511keV

FBK NUV-HD 4x4mm², 40x40µm² SPAD + LSO:Ce:Ca

S. Gundacker et al., Phys. Med. Biol. (2019) 64 055012

TOF PET SIEMENS: BIOGRAPH VISION

3.2mm section LSO crystals **CTR 215ps**

> 100% coverage

Webpage SIEMENS:, https://static.healthcare.siemens.com/

New challenge in PET time resolution towards 10ps

Time resolution1ns500ps250ps100ps10psSpatial resolution
on LOR15cm7.53.751.5cm1.5mm

10ps: Spatial localization directly from TOF (1.5 mm)

A variety of crystals available

Characteristics of some inorganic crystals

	Na(TI)	Csl	CsI(TI)	BGO	PWO	CeF ₃	BaF ₂	LSO	LaBr₃ (Ce)	LuAP Pr/Ce	LuAG: Pr/Ce	GAGG:Ce
<i>ϱ</i> (g/cm³)	3.67	4.51	4.51	7.13	8.3	6.16	4.89	7.4	5.29	8.34	6.73	6.63
X _o (cm)	2.59	1.86	1.86	1.12	0.89	1.66	2.03	1.14	1.88	1.08	1.41	1.56
Rm (cm)	4.13	3.57	3.57	2.23	2	2.41	3.1	2.07	2.85		2.33	2.1
n	1.85	1.79	1.95	2.15	2.2	1.8	1.5	1.82	1.9	1.97	1.84	1.9
λ (nm)	415	310/420	550	480	420	310	195- 220/ 310	420	356	310/365	290,350/ 535	520
$oldsymbol{ au}$ (ns)	230	6/35	10.5	300	10/30	5/30	0.8/ 630	40	20	20/18	20/70	50-90
LY (ph/MeV)	38000	2000	54000	8000	200	2000	1500/ 10000	33000	63000	15000/ 11400	>15000/ >25000	>35000

Which one to choose?

M.T. Lucchini, Scint2022 conference

Which one to choose?

Scintillation: a complex process

From eh pair creation to light emission

A. Vasiliev, SCINT99 conference,

E. Auffray, TIPP2023, 06/09/2023

Scintillation Characteristics

$$f(t|\theta) = \sum_{i=1}^{3} R_{i} \cdot \frac{\exp\left(-\frac{t-\theta}{\tau_{d,i}}\right) - \exp\left(-\frac{t-\theta}{\tau_{r}}\right)}{\tau_{d,i} - \tau_{r}} \cdot \Theta(t-\theta)$$

Scintillation time characteristics

S. Gundacker et al., Phys. Med. Biol. (2019) 64 055012

S. Gundacker, PhD, CERN-THESIS-2014-034

Various emission process

- Excitonic emission (STE, excitations of anion complexes)
- Emission of activators (Ce, Pr, ...) Codoping:
- Cherenkov radiation
- Crossluminescence
- Hot intraband luminescence (HIL)
- Quantum confinement driven luminescence:

Slow

Ultra fast

Scintillator engineering example: codoping Ce, Mg in garnet

Faster decay time with codoping Ce³⁺/Mg²⁺

Mg²⁺ increase Ce⁴⁺ centers which can directly compete with any electron trap for electron capture in the first instants of scintillator mechanism

=> Expected faster decay time and lower slow component

M. Nikl, A. Yoshikawa, Adv. Optical Mater. 2015, 3, 463–481 M. Nikl et al. Cryst. Growth Des. 2014, 14, 4827.

Radiation hardness of garnet scintillators

V. Alenkov, et a., NIM A (2019), 916, 418 226{229 *E. Auffray, TIPP2023, 06/09/2023*

GAGG (Gd₃Al₂Ga₃O₁₂): Tunable properties with composition

Coincidence time resolution (CTR) versus photon density

E. Auffray, TIPP2023, 06/09/2023

Further acceleration of the emission

Heavy codoping Ce³⁺/Mg²⁺

Scintillation decay - Pulsed X-Rays

Coincidence time resolution vs effective decay time

No major loss of time resolution! Decay time decrease compensated the Light output reduction => the same photon time-density R&D on production on going

L. Martinazzoli et al., Mater. Adv., 2022, 3, 6842

Towards very fast PWO

M. Nikl et al, J.Cryst. Growth 229, 312-315 (2001)
M. Nikl, et al, Radiation Measurements 33, 705-708 (2001)
M. Kobayashi, et al: Nucl. Instr. Meth. in Phys. Res. A 459, 482-493 (2001)

Candidate for KLEVER & CRILIN calorimeter

Mixed materials: concept of multipurpose scintillation materials

Possibility to modify crystal composition

Courtesy M. Korzhik, RINP, Minsk

(Gd,Y,Lu)₃Al₂Ga₃O₁₂:Ce, Mg

New mixed tungstate (Pb,Ca,Sr,Ba)WO₄

Courtesy M. Korzhik, RINP, Minsk

E. Auffray, TIPP2023, 06/09/2023

Mixed tungstate properties

Compound	PbWO₄	CaWO ₄	SrWO₄	BaWO ₄	(Pb, Ca)WO₄ (PCWO)	(Pb, Sr)WO₄ (PSWO)	(Pb, Ba)WO₄ (PBWO)	
Density, g/cm³	8.28	6.12	6.03	6.38	7.20	7.15	7.33	
Effective charge, Z _{eff}	76	66	64	65	72	71	71	
Photo-absorption coefficient at 511 keV, cm ⁻¹	0.485	0.222	0.197	0.223	0.359	0.340	0.350	
Radiation length Xo, cm	0.89	1.49	1.50	1.33	1.11	1.11	1.07	
Moliere radius R _M , cm	1.91	2.28	2.40	2.36	2.09	2.12	2.11	
LY, ph/MeV (γ-quanta)	200	14400	1200	>100	7000	8700	5500	
Parameters of the scintillation kinetics, ns (%)	1.8(60) 6(40)	8200	522	>10	60(30) 350(70)	57(40) 246(60)	44(60) 180(40)	
*Effective decay constant, ns					263	170	90	

Mixed Material: BGO-BSO (Bi₄(Ge_xSi_{1-x})₃O₁₂)

To tune the material properties

TWISMA

×10³ Light output [photons/MeV] Light yield versus Ge fraction 9 - Š Ω \bigcirc Ū m 2 0.0 01 0.2 03 04 0.5 06 0.7 0.8 0.9 1.0 Ge fraction x Effective decay time [ns] 100 Effective decay Time versus Ge fraction 140-S 120m 100 80 B 60m 40 20 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Ge fraction x

Coincidence time resolution @511Kev versus Ge fraction

R. Cala et al, NIMA, A 1032 (2022) 166527

E. Auffray, TIPP2023, 06/09/2023

KLuS₂:Pr³⁺ for fast timing

=> 1.6× – 2.5× more scintillation light in first nanosecond compared to LYSO:Ce,Ca => potentially better time resolution

Jarý et al. Phys. Rev. Applied 19, 034092 (2023))

Crossluminescence material

Many possible materials

Radiative transition between the core- and valence bands.

 $E_{cv} < E_{g}$

Compilation of CL data at 293 K

C.W.E. Van Eijk J of lum., Vol 6061, 1994936-941

	E(C - V) (eV)	E(G) (eV)	Theoretical	Observed (eV)	λ (nm)	Light yield (photons/Me	τ V) (ns)	Density (g/cm ³)	References
KF KCl	7.5-10.5	10.7 8.4	+	7.5-8.5	156			2.5	[13, 18]
KI	9.5-14	6.0	_	STE					
RbF RbCl RbBr RbI	0-7.5 4-9 6.7-9.5 5-10	10.3 8.2 7.4 6.1	+ + /	3-6 5.5∵7.5 STE	203, 234 190	1700 1	1.3	3.6 2.8	[11–14, 18] [12]
CsF CsCl CsBr CsI	0-4.5 1-5 4-6 0-7	9.9 8.3 7.3 6.2	+ + + /	2.5-4 4-5.5 4.5-6.5 /STE	390 240, 270 250	2000 900 20	2.9 0.9 0.07	4.1 4.0 4.4	[6, 11, 14] [6, 14, 15, 17, 18] [6, 14, 15, 18]
CaF ₂ SrF ₂ BaF ₂	12.5–17.3 8.4–12.8 4.4–7.8	12.6 11.1 10.5	- / +	-/STE -/STE 5-7	195,220	1400	0.8	4.9	[1] [1] [1,3,4,9]
$K_x Rb_{1-x} F$ $KMgF_3$ $KCaF_3$ KYF_4 K_2YF_5				5-6/8 6-9 6-9 5.5-8.5	140190 140190 170 170	1400 1400 1000 300	1.3 < 2 1.9 1.3	3.2 3.0 3.6 3.1	[13, 18] [7-10] [10] [9, 16] [8, 9]
$KLuF_4$ KLu_2F_7 K_2SiF_6 $CsCaCl_3$ $CsSrCl_3$				5.5-8.5 5.5-8.5 5-9	170-200 165 140-250 250, 305 260, 300	~ 200 ~ 200 1400	1.3 < 2 ~ 1 ~ 1	5.2 7.5 2.9	[8,9,16] [8] [21] [10,17,19] [19,21]
LiBaF ₃ BaMgF ₄ BaY ₂ F ₈ K ₂ LiGaF ₆ K ₂ NaAlF ₆				47.5 5-9 5-9	190, 230 190, 220 140–250 140–250	1400 1000	0.8 0.9	5.2 4.5 5.0	[10] [21] [20] [21] [21]

Very fast emission < 2ns but UV emission

Crossluminescence material: BaF₂

Compilation of CL data at 293 K

	E(C - V) (eV)	E(G) (eV)	Theoretical	Observed (eV)	λ (nm)	Light yield (photons/MeV)	τ (ns)	Density (g/cm ³)	References	
KF KCl KBr	7.5-10.5 10-13 10-13	10.7 8.4 7.4	+ -	7.5-8.5	156			2.5	[13, 18]	BaF ₂ emisison spectra
KI	9.5-14	6.0	_	STE						100
RbF RbCl RbBr Rbl	0-7.5 4-9 6.7-9.5 5-10	10.3 8.2 7.4 6.1	+ + /	3-6 5.5-7.5 STE	203, 234 190	1700 1	1.3	3.6 2.8	[11-14,18] [12]	J 90 C 80
CsF CsCl CsBr CsI	0-4.5 1-5 4-6 0-7	9.9 8.3 7.3 6.2	+++++/	2.5-4 4-5.5 4.5-6.5 /STE	390 240, 270 250	2000 900 20	2.9 0.9 0.07	4.1 4.0 4.4	[6, 11, 14] [6, 14, 15, 17, 18] [6, 14, 15, 18]	tit to the second secon
CaF ₂	12.5-17.3 8.4 12.8	12.6	-	-/STE					[1] [1]	
BaF ₂ K.RbiF	4.4-7.8	10.5	+	5-7 5-6/8	195,220	1400	0.8	4.9	[1, 3, 4, 9]	. 30
KMgF ₃ KCaF ₃ KYF ₄ K ₂ YF ₅				6-9 6-9 5.5-8.5	140-190 140-190 170 170	1400 1400 1000 300	1.3 <2 1.9 1.3	3.2 3.0 3.6 3.1	[7-10] [10] [9,16] [8,9]	So 20 E 10 U 10
KLu ₂ F ₇ K ₂ SiF ₆ CsCaCl ₃ CsSrCl ₃				5.5–8.5 5.5–8.5 5–9	170-200 165 140-250 250, 305 260, 300	~ 200 ~ 200 1400	1.3 < 2 ~ 1 ~ 1	5.2 7.5 2.9	[8.9,16] [8] [21] [10,17,19] [19,21]	175 200 225 250 275 300 325 350 375 400 425 St Gobain, web page wavelength /nm
LiBa F_3 BaMg F_4 Ba Y_2F_8 K $_2$ LiGa F_6 K $_2$ NaAl F_6				47.5 5-9 5-9	190,230 190,220 140-250 140-250	1400 1000	0.8 0.9	5.2 4.5 5.0	[10] [21] [20] [21] [21]	

BaF2 was proposed in 90's for ECAL by L* Collaboration, Letter of Intent to the SSC Laboratory

Sub ns emission but in UV & additional slow component

https://lss.fnal.gov/archive/other/ssc/sscl-sr-1154.pdf R. Zhu, NIMA A 340 (1994) 442-457

Suppression of slow component in BaF₂ with Y codoping

R&D EΡ

Decay time spectra

With Y doping: No change of fast decay decay time, only slow component decrease

R. cala' et al, paper under preparation

J. Chen, et al., IEEE Trans. Nucl. Sci., vol. 65, no. 8, pp. 2147-2151, 2018. S. Gundacker et al., Phys. Med. Biol. 66 (2021) 114002

See :

Suppression of slow component in BaF₂ with Y codoping AIDA EP R&D

Similar time resolution than LSO but SiPM with lower PDE without optical coupling

R. Cala, et al. CERN, paper in preparation

Development of cross luminescence material more in UV/visible region

Emission spectra Decay spectra CTR @ 511keV CTR FWHM [ps] BaF₂ ----------------------PMT BaF2 CsCaCl_a 280 1 CsCaCl₃ log10(Number of Counts) BaF, 0.9 τ_{d1} =0.151ns (6.47%) 0.9 efficiency [-] 260 0.8 0.8 τ_{d2}=2.212ns (93.53 %) 240 CTR = 164 ± 12 ps norm. intensity [a. u.] 700 0.2 700 0 0.7 CTR = 148 ± 12 ps 0.6 220 Quantum 0.5 200 0.4 180 160 0.2 . 0.1 50 100 150 200 5 50 140 Not optimal optical coup 0 Res. [N. 0 -50 200 220 240 260 280 300 320 340 10 20 30 40 50 60 70 80 0 100 50 150 200 wl [nm] 0 Leading edge threshold [mV] $\Delta T [ns]$

Courtesy V. Vanecek, M. Nikl, FZU Prague Data for BaF₂ from M. Laval et al., NIM Phys. Res., 206 (1983) 169–176

> CsCaCl₃: 2 emissions @ 260nm & 290nm 2 fast decay times: 0.15ns, 2.2ns Same CTR than BaF₂

V. Vanecek et al., Optical Materials X 12 (2021) 100103

Development of cross luminescence material more in UV/visible region

CsZnCl_{4,5}: emissions @ 300nm & 370nm fast decay times and no slow components

D. Rutstrom et al, Optical Materials 133 (2022) 112912
Further development of cross-luminescence materials ongoing in different labs

- Collaboration between FZU, Prague and IMR, Tohoku University, Sendai to growth fluoride compounds by micro-pulling-down method aiming:
 - Better spectral matching with detector

Air stable

Incorporation of heavy elements

First attempts:

- CsSrF₃, CsCaF₃ \rightarrow high evaporation of CsF
- $CsMgF_3 \rightarrow unstable phase$
- $Cs_4Mg_3F_{10} \rightarrow stable$, non-hygroscopic
- Group of Tartu, Estonia:
 - Exploring ternary fluorides like K₂GeF₆: ultra fast emission

UNIVERSITY

Polished sample prepared from mPD grown Cs₄Mg₃F₁₀ crystal

Exploitation of Cherenkov/scintillation in intrinsic scintillating crystals

 \Rightarrow Possibility to separate Cherenkov from scintillation with filters &/or pulse discrimination BSO (or mixed BGSO) is faster than BGO and has higher LY than PWO \Rightarrow Promising candidate for dual readout homogenous calorimeter

R. Cala et al, NIMA 1032, 2022, 166527

Exploitation of Cherenkov/scintillation in Silica doped fibres

AIDA

Test with 20GeV in CERN SPS

F. Cova et al., Phys. Rev. Appl. <u>11</u> (2), 024036 (2019)

Dual read-out of Cherenkov and scintillation light simultaneously with the same SiO₂:Ce fibre

Cherenkov exploitation to improve time resolution

Example of BGO

S. Gundacker et al. (2019) Phys. Med. Biol. 64 055012 N. Kratochwil et al (2020), Phys. Med. Biol. 65 115004 N Kratochwil et al (2020) IEEE TRPMS 2020.3030483

Cherenkov exploitation to improve time resolution

CTR at 511KeV

S. Gundacker et al, Phys. Med. Biol. 65 (2020) 025001 (LSO& BGO)
 N. Kratochwil et al 2021 Phys. Med. Biol. 66 195001 (PbF₂)
 G. Terragni et al., Front. Phys. 2022 10:785627., (TICl& TIBr)

PbF2: candidate for Klever & CRILIN calorimeter

Cherenkov exploitation to improve time resolution Further Improvement

CTR @511 keV for several scintillators

Analytic CTR expression including SiPM SPTR influence S. Vinogradov, NIMA 912 (2018) 149-153

S. Gundacker et al. Phys. Med. Biol. 65 (2020) 025001

Time resolution of several scintillators under mips

Test conditions :

- Scintillator length 10mm except EJ232 (3mm)
- Crystals Teflon wrapped and Meltmount coupled to SiPM
- SiPM used HPK S13360-3050PE SiPMs (except for LSO:Ce:Ca (FBK NUV-HD)
- Readout with HF amplifier

R. Cala' et al., Paper in preparation

Development on Scintillating Glasses

- Scintillating glasses were considered in the 90's for LHC but were not sufficiently radiation tolerant*
 *See for instance E. Auffray *et al, NIM A* 380 (1996) 524-536; P R Hobson *et al* Journal of Non-Crystalline Solids 213-214 (1997) 147-151, S F Shaukat *et al* Journal of Non-Crystalline Solids 244 (1999) 197-204, CMS note)
- Since some years new developments on glasses within different projects (eg ATTRACT project, EIC R&D)
 - Oxyde and Fluoro glasses
 - Attempt to increase the density and the radiation hardness
 - Progress in production scale

Exemple DSB Glasses MIntelum

Industrial development via ScintiGlass: Attract project with Preciosa Company

ATTRACT

EIC R&D: eRD105 (SciGlass)

From T. Horn, CERN EP R&D, Nov21

Fluorophosphate glasses From AFO company

M. Lucchini et al., NIMA A 1051 (2023) 168214

V. Dormenev et al, NIMA, 1015, 2022, 165762

Potential of scintillating glasses for fast timing

DSB Glasses

Coincidence time resolution @ 511Kev

Timing resolution with mip

Timing resolution at shower max **100GeV electrons**

AFO Glasses

V. Dormenev et al, NIMA, 1015, 2022, 165762

M. Lucchini et al., NIMA A 1051 (2023) 168214

R&D for Organic Scintillators

Polysiloxane materials

See also A. Boyarintsev NIMA 930, 2019, 180–184 A. Quaranta et al. NIM B, <u>268, Issue 19</u>, 2010, Pages 3155-3159

Organic glasses developed in Sendai National lab

From Bulk to Nanomaterial: Quantum Confinement

Same crystal lattice but nanometer-sized crystal particle

from Benoit Dubertret and Hideki Ooba

With decreasing crystal size From "continous band" to quantized energy levels

Subns emission with nanomaterials

J. Grim et al., *Nature Nanotechnology*, **9**,2014, 891–895 R. Martinez Turtos et al., 2016 JINST_11 (10) P10015

ZnO:Ga embedded

in SiO₂ or polystyrene

Procházková et al., Radiat Meas 90, 2016, 59-63 R. Turtos Phys. Status Solidi RRL 10, No. 11, 843–847 (2016)

K. Děcká et al. Journal of Material Chemistry C 10(35):12,836–12,843.

CsPb(Cl/Br)₃ Scintillating nanocomposite

A DEGLI STUDI

BICOCCĂ

R&D to increase concentration of nanomaterial in the host

till

[NC] (wt %)	Pro mpt	t ₁		t ₂		t _{eff}	CTR
	R _P	R_1	ns	R ₂	ns	ns	Estimated (ps)
0.05	0.30	0.37	0.61	0.33	22	1.13	93
0.1	0.32	0.21	0.62	0.47	8.7	1.76	81
0.2	0.34	0.22	0.60	0.44	6.8	1.54	51

Very fast emission

A DEGLI STUDI

Radiation damage study

52

а

Two dimensional hybrid perovskites

An organic-inorganic hybrid structure.

Composite fast scintillators based on high-Z fluorescent metal–organic framework (MOF) nanocrystals

J. Perego, et al. Nat. Photonics (2021). https://doi.org/10.1038/s41566-021-00769-z

InGaN/GaN heterostructure: Multiple Quantum Wells

T. Hubacek, CrystEngComm, 2019, 21, 356

FZU Pyzikální ústav Akademie věd České republiky

E. Auffray, TIPP2023, 06/09/2023

crytur

NEW INSTRUMENTATIONS TO STUDY MATERIALS

Transient absorption technique

Pump-probe experiment:

- First short laser pulse (pump) temporarily modifies material optical properties
- Second laser pulse (probe) probes this modification by altered transmittivity (absorption)
- By changing the time delay between pump and probe pulses, the modification evolution in time can be traced

Courtesy G. Tamulaitis, Vilnius university

ADVANTAGES:

- all-optical contactless signal readout
- the time resolution of the measurements is limited just by the laser pulse duration
- enables selective excitation via specific optical transitions targeted in the crystal
- the dependences of pump-induced transient absorption on probe photon energy and time, which are simultaneously obtained in the experiment, facilitate the discrimination of contributions of different kinds of non-equilibrium carriers

Transient absorption technique: measurement example

TA on LYSO:Ce

Initial part of transient absorption kinetics after excitation with 200 fs pulse in LYSO:Ce samples. The peak of TA response for every kinetics is indicated by a circle of corresponding color.

Courtesy G. Tamulaitis, Vilnius university

In more detail: G. Tamulaitis etal., Radiation Physics and Chemistry 206, 110792 (2023)

Excellent correlation between the TA rise duration and coincidence time resolution (CTR) is observed => TA rise duration is a good figure of merit for the characterization of LYSO:Ce scintillation crystals.

Setup for studies of ultrafast (UF) timeresolved luminescence at FemtoMAX in Lund

Linac + undulator Up to 10 KeV hard X ray photon, 10 Hz repetition Xray flux ~ 1.5*10⁶ ph/pulse < 200 fs pulse duration

Instrumental response : 32 ps FWHM with MCP-PMT!

Enquist H, et al. J Synchrotron Radiat. 2018;25(Pt 2):570-579. https://www.maxiv.lu.se/accelerators-beamlines/beamlines/femtomax/

Emission	295 К		78 К	
eV / transition	τ ₁ (ps)	τ ₂ (ps)	τ ₁ (ps)	τ ₂ (ps)
5.51 eV K 3p –Ge 4p	71	171	115	699
4.68 eV Ge 4s – F 2p	38	141	50	612

INNOVATIVE CONCEPTS

Heterostructure Concept

Combine scintillators with high light yield, high stopping power with prompt emission material

F. Pagano et al, IEEE NSS/MIC2022 under review on TNS

=> Energy sharing between bulk and fast emitter

Concept proposed in the frame of ERC TICAL (GA 338953 PI: P.Lecoq) R. M. Turtos et al, Phys. Med. Biol. 64 (2019) 85018 F. Pagano et al, 2022, 2022 Phys. Med. Biol. 67 135010

Heterostructure proof of concept with BGO and Plastic

Work supported by CERN KT medical applications budget

First attempt of Heterostructure with nanomaterials

CdSe/CdS core crown nanoplatelets (CC NPLs) drop-casted film Effective deposited mass equivalent to 20 $\mu{\rm m}$

R. M. Turtos et al, Phys. Med. Biol. 64 (2019) 85018 R.M. Turtos, et al. npj 2D Materials and Applications vol. 3, article number: 37 (2019)

Timing performance of CsPbBr₃ nanocrystal layer on bulk GAGG

Thin layer of CsPbBr₃ NC on bulk scintillators

Work supported by CERN KT medical applications budget

F. Pagano et al., submitted in Advance Materials Interfaces

Development of porous scintillators

For radioactive gas detection

SPARTE

vE gas detection

Courtesy C. Dujardin https://www.sparte-project.eu

Nanocrystal of YAG:Ce in aerogel YAG:Ce SiO₂ el Aerogel Aerogel Ae ogel Aero Dgel Aero Aeogel Aeree rogel Aeroge gel Aerog Aerogel **Colloidal solution Composite aerogel** 300 -.......... 300.8 Ba ⁸⁵Kr 250 -200 -آ ا س150 activity Δ 100 -61.4 Ba 50 -0 + 1000 2000 3000 Time [s]

M. Odziomek et al., ACS Appl. Mater. Interfaces 2018, 10, 38, 32304–32312

Scintillating MOF

New Production Methods

Crystal fibre production

Czochralski method Fibres cut from large ingot

Micropulling down technique

 \Rightarrow Feasibility study of crystal fibres production in the ANR project INFHINI and Intelum project (European Rise grant 644260) with 16 Partners (many from CCC) from 12 different countries: 11 academia and 5 companies

3D printing of Scintillators

Plastic scintillator

3D Det project

Courtesy of G. Dossovitky, **Kurchatov Institute**

From EP newsletter Nov 21

Fibres allow flexibility in detector design

From bulk crystal

To bloc of fibers

To SPACAL

Sampling calorimeter

=> Requires large volume of fibres with high density

Homogeneous calorimeter

 \Rightarrow requires less fibres, possibility to use materials with lower density

Could be multifunctional: mixed type of fibres Cerenkov + scintillation +neutrons sensitive Could play on sampling fraction

Fibres offer Multifonctionalities

Tuning of detector performance with SPACAL

Study for :Pitch fixed at 1.67 mm, fibre size variable;

⇒ R&D on SPACAL with garnet and tungsten in framework of EP_R&D, LHCb upgrade II

SPACAL-W prototype with garnet crystal fibres

- Pure tungsten absorber with 19 g/cm³ holes with
- Crystal garnet scintillators
- 9 cells, each 1.5 x 1.5 cm² (R_M ≈ 1.45 cm)
- Longitudinal section at the shower maximum
- 4 + 10 cm long split (7+18 X₀), pitch 1.7mm
- Reflective mirror between sections
- Two photodetectors employed:
 - Energy resolution: Hamamatsu R12421 and PMMA light guides
 - Timing resolution: Hamamatsu R7600U-20 metal channel dynodes (MCD) PMTs in direct contact
- 4 garnet types tested:
 - Crytur YAG
 - Fomos GAGG
 - ILM GAGG
 - C&A GFAG

(see talk P. Roloff Monday)

CERN

SPACAL-W with garnet crystals: test beam results

Time resolution GFAG cell @ incident angle of 3° + 3° (DESY 2020, R7600-20)

L. Ann, NIM A 1045, 167629 (2022), <u>arXiv:2205.02500</u>

Grainita project

Concept: dispersed submillimetric particles of heavy material (ZnWO₄) in dense liquid CH₂I₂ readout with wavelength shifter

ZnWO₄ (From ISMA Ukraine):

- LY= 10kph/MeV
- Density 7.62
- Index n=2.1
- $\tau = 20 \ \mu s$
- $\lambda_{max} = 480 \text{ nm}$
- grain size : 0.5 mm 1 mm

GEANT4 simulation for $ZnWO_4 + CH_2I_2$ cubes (random position) 1mm cubes:

 σ_E 2% E

Courtesy M.H. Schune, IJCLab, Orsay, France on Behalf of Grainita project, see more: https://indico.in2p3.fr/event/27968/timetable/#20221121.detailed

Inspired by LiquidO technique for neutrino detector (A. Cabrera et al. LiquidO Commun Phys 4, 273 (2021))

First Attempt to use Nanomaterial in HEP Nanocal Bluesky Aidainnova project

Build a Shashlik module with CsPbBr₃ nanomaterial embedded in PMMA GLASS to POWER

Protvino scintillator Polystyrene 1.5% PTP/0.04% POPOP Kuraray Y-11(200) fibers

NanoCal scintillator PMMA 0.2% CsPbBr₃ Kuraray O-2(100) fibers

From M. Moulson Aidainnova WP13 20.12.2022

New European Pathfinder Project: UNICORN

Aim to develop nanocomposite scintillator for radiation detector

Consortium of several partners: UNIMIB, FZU, CERN, ITT, BC materials, Nexdot, Glass to Power, Starting in June 2023

Conclusion

The field of scintillation is constantly evolving since more than century

Much progress in the understanding of scintillators has been made since the 1990s The availability of new technologies and methods has enabled a much better understanding of the

- processes behind
- The research on fast emission processes has been strongly fostered by an increasing demand for fast timing detectors

Further R&D is still needed to push the limit:

- Develop bright and fast scintillator:
 - Search for new material
 - Band gap engineering
- Exploit better fast emission process: cross luminescence and Cherenkov emission
 - Will request for better UV sensitive photodetector and optical glue
 - Explore the field of quantum confinement

Together with R&D in production methods such as micropulling down, 3D printing, etc..

=> New perspectives for innovative concepts of detectors based on scintillating material with multi-functionalities for next generation of radiation detectors

Acknowledgment

Thanks to CERN colleagues from my CERN crystal Clear team, CMS, LHCb colleagues from Crystal Clear Collaboration all SCINT community and support from CERN EP-R&D, CERN KT medical applications and various European projects:

