

TIPP2023

GIULIANA FIORILLO UNIVERSITÀ DEGLI STUDI DI NAPOLI "FEDERICO II" & INFN NAPOLI

OUTLINE

- Noble Liquid Detectors
- Neutrino Experiments
- Dark Matter Experiments
 - Focus on
 - Key Technologies
 - Future Prospects

LIQUID ARGON AND XENON AS PARTICLE DETECTORS

- high density and large stopping power
 - Massive and self-shielding detectors
- both scintillation/ionization with high yields
 - Calorimetry, excellent energy resolution
 - Particle identification
 - Precise timing
- do not attach electrons, can be purified in-situ
 - Tracking, 3D reconstruction, low-background
- inert, non flammable, very good dielectrics
- can be obtained commercially

Large homogenous detectors for rare events

Properties	Argon	
Boiling Point T _b at 1 atm [K]	87.3	
Liquid density at T_b [g/cm ³]	1.40	
Dielectric constant of liquid	1.51	
Scintillation wavelength	128 nm	1
Time constant	6 ns, 1.5 µs	3
Scintillation yield [y/MeV]	40000	4
Ionization yield [e/MeV]	42000	(
Volume fraction in Earth's atmosphere [ppm]	9340	

64000

46000

าร, 27ns

78 nm

2.94

1.95

165.0

Kenon

3

NOBLE LIQUID DETECTORS

LIQUID ARGON TPC

- Originally proposed by Rubbia in 1977 for neutrino physics
- R&D over >3 decades, now detectors @ kton scale
 - ICARUS, µBooNE, LArlat, ArgonCube, SBND, **ProtoDUNE**

Ionization electrons drifted by uniform electric field towards readout anodic planes (drift ~1 mm/µs @ 500 V/cm)

3D reconstruction + calorimetry

VUV photons propagated and shifted to VIS photons

information on interaction time, triggering + calorimetry

See also Andrea Tesi in B4

with charge r/o

PandaX, XENON

Double phase LArTPC with light r/o

LATTPC NEUTRINO EXPERIMENTS

- high resolution, low backgrounds:
 - Short-baseline neutrino physics (neutrino anomalies, precision crosssections, BSM)

 - Underground physics (proton decay, solar, supernova, ...)

Enormous physics potential offered by high granularity imaging, extremely

Long-baseline neutrino physics (precision 3-flavor oscillation physics)

NEUTRINO EXPERIMENTS

See also Patrick Green in D2 7

- **Booster Neutrino Beam** $\nu_{\mu}(93.6\%), \nu_{\mu}(5.9\%), \nu_{e} + \bar{\nu}_{e}(0.5\%)$
- Sterile neutrino searches, BSM searches, cross-section measurements

760 ton - 2 x (19.6 x 3.6 x 3.9 m) 4 TPC 1.5 m drift Wire readout

Taking data

ICARUS

PDS: 360 PMTs

NEUTRINO EXPERIMENTS

- km baseline
- Dakota, 1.5 km underground; 2 additional modules in Phase II

New broad-band (mostly in 0.5-5 GeV) neutrino beam at Fermilab (1.2 MW, upgradeable to 2.4 MW), 1300

Phase I: 2×17 kton LArTPC Far Detector (FD) modules at Sanford Underground Research Facility, South

Multiple technologies for the Near Detector (ND) at Fermilab, LAr target to control systematic uncertainties

PRECISION 3ν **OSCILLATIONS:** KNOWNS & UNKNOWNS

- The 3 known flavor states ν_e, ν_μ, ν_τ are linear combinations of 3 states ν_1, ν_2, ν_3 with definite masses m_i through a unitary matrix $U_{\alpha i}$ also called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
- We know the two mass squared differences and three mixing angles from neutrino oscillations
- We don't know the sign of Δm_{31}^2 (hierarchy) and the size of the Dirac phase δ_{CP}
- > We also don't know the absolute neutrino mass or if neutrino is its own anti-particle
- Finally we don't know if our 3-flavor picture of oscillations is complete

 3ν knowns: Δm_{21}^2 , $|\Delta m_{31}^2|$, θ_{23} , θ_{13} , θ_{12} 3ν unknowns: δ , sign (Δm_{31}^2) , sign $(\theta_{23} - \pi/4)$, min (m_i) , Dirac/Majorana nature

CP is conserved for $\delta = 0$ or π

CP violation is max for $\delta = \pi/2$ or $3\pi/2$

PRD 106, 032004 (2022

NEUTRINO OSCILLATIONS IN DUNE

- Near Detector : measurements of ν_{μ} unoscillated beam
- Far Detector: measurements of oscillated ν_{μ} & ν_{e} spectra
- THEN repeat for antineutrinos and compare oscillations of neutrinos and antineutrinos
 - ν_{μ} disappearance: $|\Delta m_{32}^2|$, θ_{23}
 - ν_{ρ} appearance: octant of θ_{23} , δ_{CP} , mass ordering

NEUTRINO EXPERIMENTS

DUNE FAR DETECTORS (PHASE I)

FD1-HD

- 4 TPC 3.6 m horizontal drift
- HV = -180 kV
- High-resistivity CPA for fast discharge prevention
- Anode: 150 APAs, each with 4 will planes (Grid, 2x Induction, Collection)
- Photon Detectors: X-ARAPUCA modules embedded in APA

APA* Horizontal Drift

Nuno Barros in C2, Marta Torti in D2, Marco Guarise in E2

2 ×17 kton single phase LArTPCs J'strom FNAL 60 m 12 m 15 m CRP** Vertical Drift ****** Charge Readout Planes 2 x 6.5-m vertical drift 3x3 m2 PCB Anode FD2-VD • 2 TPC 6.5 m vertical drift Electronics Perforated PCB • HV = -300 kV Interface board • Anode: 2 CRPs (top & bottom) • Charge Readout via perforated PCB anode, fully immersed in LAr • Doping w/ O(10 ppm) xenon for greater Photon Detectors light collection uniformity • Photon Detectors: X-ARAPUCA megacell modules integrated on cathode and on cryostat walls

X-ARAPUCA light trap:

- Photon collector to expand coverage and trapping mechanism to give photons more than one chance of being detected
- Trapping through combination of a well defined cut off filter and two different WLSs
- Trapped photons reflected several times eventually reach a SiPM

DUNE NEAR DETECTOR COMPLEX (PHASE I)

- Measures the neutrino beam rate and spectrum to predict unoscillated event rates in the far detector
- Constrains systematic uncertainties (flux, cross sections, detector response) for oscillation measurements
- Additional physics program

- ND-LAr: 67 ton 7×5 array of modular
 1×1×3 m LArTPCs with 50 cm drift, pixel
 readout and high coverage light readout
- TMS: magnetized steel range stack for measuring muon momentum/sign from ν_{μ} CC interactions in ND-LAr
 - DUNE-PRISM: ND-LAr + TMS move up to 28.5m off-axis
- SAND: on-axis magnetized neutrino detector with 1 ton LAr target (GRAIN), tracking (STT), and calorimeter (ECAL)

DUNE PHASE II

Far Detector with 4 modules

- FD-3 SP LArTPC enhanced VD 4π concept TBD (by 2027),
- FD-4 : «module of opportunity»: decision by 2028
- Beam power upgrade to 2.4 MW
- Near Detector: TMS replaced by ND-GAr
 - ND-LAr
 - ND-GAr important for higher precison ν -Ar measurements and when the statistics reach ~200 kt-MW-yrs

SAND

DUNE SENSITIVITIES: PHASE I & PHASE II

DUNE Phase I:

- will be able to establish the **neutrino mass** ordering at the 5 σ level for 100% of δ_{CP} values
- **CP violation** (CPV) can be observed with 3σ significance after about 7 years if $\delta_{CP} = -\pi/2$ and after about 10 years for 50% of δ_{CP} values.
- Δm_{32}^2 can be measured with the resolution better than any other measurements after 2 years
- DUNE Phase II:
 - Measure δ_{CP} to 6-16° \rightarrow >5 σ CPV over >50% of δ_{CP} values
 - ▶ Measure θ_{23} and $\Delta m_{32}^2 \rightarrow$ resolve θ_{23} octant if non-maximal
 - Measure θ_{13} with precision comparable to reactors → indirect **test of PMNS non-unitarity**

DUNE PHASE II: EXPAND PHYSICS GOALS

Low-Energy Physics

- Interaction channels in argon:
 - Charged current (CC) interactions on Ar

$$\nu_e + {}^{40}\mathrm{Ar} \rightarrow e^- + {}^{40}\mathrm{K}^*$$

$$\bar{\nu}_e + {}^{40}\text{Ar} \rightarrow e^+ + {}^{40}\text{Cl}^*$$

ES on electrons

 $\nu_x + e^- \rightarrow \nu_x + e^-$

Neutral current (NC) interactions on Ar

$$\nu_x + {}^{40}\text{Ar} \rightarrow \nu_x + {}^{40}\text{Ar}^3$$

- Astrophysical neutrinos
 - Solar neutrinos:
 - potential for first detection of hep flux
 - precision θ_{12} and Δm_{21}^2 measurements
 - Supernova neutrino burst detection
 - unique capability of observing neutralization phase
 - Diffuse supernova background

DUNE PHASE II: EXPLORE NEW TECHNOLOGIES

General LAr TPC Requirements for Low-Energy Physics

- Iow E threshold (down to 100-10 keV)
- good angular resolution (<1°)</p>
- high position and vertex resolution (<1 mm)</p>

Key improvements of the detector

- Charge readout: from combination of 2D views to genuine 3D pixelated readout
 - ► LArPix, QPix
- Light detection:
 - Xe doping, 4π readout, metalenses, metasurfaces
- Light-charge integrated highly granular readout:
 - all-silicon unit based on VUV SiPMs with charge collection pads (SOLAR)
 - QPix + thin-film photoconductor (ASe) coating
- Fully optical readout:
 - double phase LArTPC (ARIADNE)
- Reconstruction algorithms with AI methods
- Low radiological background

DUNE PHASE II: BLUE SKY

Further Low-Energy Physics goals:

- Measurement of lower-energy neutrinos in real time with high statistics
- Ονββ
- WIMP dark matter
- ► CEvNS...

Higher detector challenges:

- External shielding
- Materials selection QA/QC
- Radon reduction
- Low-radioactivity underground argon
- % level energy resolution
- % level Xe-doping
- Photosensitive dopants

•••

DUAL-PHASE TIME PROJECTION CHAMBERS

- dual-phase Time Projection Chambers with multi-tonne liquid Xe, Ar targets
- read out primary scintillation: "S1" + proportional gas scintillation from drifted electrons: "S2"
- ▶ 3D position reconstruction:
 - time difference between S1 and S2 gives Z position (few mm resolution)
 - pattern of S2 light gives XY position (~1cm resolution)
- background identification + passive suppression
- zeptobarn (10⁻⁴⁵ cm²) to yoctobarn (10⁻⁴⁸ cm²) sensitivity to WIMP dark matter

DARK MATTER EXPERIMENTS

EXPERIMENTAL CHALLENGE: DETECTING NUCLEAR RECOILS

- DM detectors designed to observe a signal which is:
 - very small: low recoil energies < 100 keV</p>
 - very rare: <1 ev/(kg y) at low masses and < 1 ev/(t y) at high masses
 - buried in backgrounds from:
 - Muon-induced neutrons: NRs
 - Cosmogenic activation of materials/targets: ERs
 - Radioactivity of detector materials: NRs and ERs
 - Target intrinsic isotopes: ERs
 - Neutrinos (solar, atmospheric, DSNB): NRs and ERs

Internal backgrounds:

- ³⁹Ar: 1 Bq/kg in AAr to <1 mBq/kg in UAr
 ⁸⁵Kr: ~1 mBq/kg in commercially available xenon to 0.01 µBq/kg by dedicated removal devices
- Operation of the second state of the secon

EXPERIMENTAL CHALLENGE: DEFEATING BACKGROUNDS₄

- Background reduction:
 - Underground location
 - Clean environment
 - Material screening & selection
 - Purification of target materials
- Background rejection
 - Active veto shield
 - ER/NR identification

Active veto shield

NOBLE LIQUID DETECTORS SENSITIVE TO A BROAD RANGE OF WIMP MASSES

DARK MATTER EXPERIMENTS

XENON DETECTORS

XENON 10 (LNGS)

10 kg

SURF),

LZ: best limit for high WIMP masses XENON: lowest background from ER

KEY TECHNOLOGIES: XENON EXPERIMENTS

- Cryogenic distillation "online" to reduce Kr concentration in Xe and suppress radioactive ⁸⁵Kr
 - delivering gas with a ^{nat}Kr concentration of < 0.05 ppt
- Ultra-low (Rn) background gas pumps developed in context of XENON and nEXO
- Continuous Rn removal by cryogenic distillation (XENONnT and PandaX) or by gas chromatography (LZ)
 - Rn-222/Xe = 1.8 µBq/kg (GXe-only mode)
 - Rn-222/Xe = 0.8 µBq/kg (GXe+LXe mode)

Yanina Biondi in E4, Giovanni Volta in F3

DARK MATTER EXPERIMENTS

LAr high mass: background discrimination

KEY TECHNOLOGIES: ARGON EXPERIMENTS

DarkSide-20k cornerstones:

- 1. Pulse shape discrimination for complete electron recoil rejection
- 2. Underground argon for pile-up avoidance **R.Santorelli in E4**
- target
- 5. Custom SiPM-based photosensors for maximal photon collection

3. DUNE-like cryostat for shielding and cryogenic buffer protection of isotopic-enhanced

4. Use of PMMA vessel for containment of active volume coupled - ultrapure PMMA for anode and cathode window and Gd-PMMA barrel for enhancement of neutron vetoing

F.Di Capua in F3

DARKSIDE-20K TECHNOLOGIES

LOW RADIOACTIVITY ARGON: URANIA & ARIA PLANTS

1) URANIA

³⁹Ar (β -decay) suppressed by >1400 in UAr from CO2 reservoir in Cortez, Colorado UAr extraction rate: 250-330 kg/day Expected argon purity at outlet: 99.99%

CANFRANC LNGS

2) ARIA

Installed in the shaft of a coal mine in Sardinia, Italy Chemical purification rate: 1 t/day Designed for the isotopic distillation of ³⁹Ar First module operated according to specs with nitrogen Run completed with Ar

3) DArT in ArDM

A single-phase LAr detector with active volume ~1L, capable of measuring UAr to AAr ³⁹Ar depletion factors. Expected sensitivity 90% UL for DF=6×10⁴

15 (2020)

ULTRAPURE AND Gd-LOADED ACRYLIC

- Dual-phase LAr TPC
 - contained in pure & Gd-doped (1 wt%) acrylic;
 - field maintained by conductive Clevios coatings, ESR reflector + TPB wavelength shifter; viewed by SiPM arrays
- Inner Veto
 - contained in stainless steel vessel, viewed by SiPM arrays
 - neutron tagging via Gd-Loaded Acrylic
 - detection of γ-rays (<8 MeV) from n capture by Gd</p>
 - *n*-tagging efficiency ~90%

DARKSIDE-20K TECHNOLOGIES

Optical planes: ~2x10 m² Total PDUs used: 525 100% coverage

PDU: 20x20 cm² 16 Tiles assembled on a Motherboard **4 Readout Channel**

- Photon detection efficiency PDE > 40% at 77 K
- Dark count rate DCR < 0.01 Hz/mm² at 77 K

PDU: Photon Detection Unit

TPC PDU: assembled in Nuova Officina Assergi (NOA)

- ► NOA is a 420 m² ISO-6 Rn-free cleanroom at LNGS
- 528 TPC PDUs to be tested at the Naples Test Facility
- VETO PDU: assembled in UK
 - 120 VETO PDUs to be tested in multiple facilities in UK and Poland

24 SiPMs directly mounted on a FEB SiPM: NUV-HD-CRYO developed by FBK and produced by LFoundry

Napoli PDU Test Facility

NOA cleanroom

HIGH MASS WIMP SI INTERACTION EXCLUSION LIMITS PROSPECTS

Argo: 400 ton LAr

FUTURE OBSERVATORIES FOR DM AND NEUTRINOS

Dark Matter

• Axion-like particles

E

Planck mass

Sun

- Solar pp neutrinos
- Solar Boron-8 neutrinos

Supernova

- Supernova neutrinos
- Multi-
- messenger

- Neutrinoless double

Cosmic Rays

• Atmospheric neutrinos

SUMMARY & OUTLOOK

- Neutrino and DM experiments exploring New Frontiers with Noble Liquids
- Technological challenges boost synergies in noble liquid experiments:
 - Time projection chambers (TPCs) for particle tracking and interaction visualization
 - Light and charge signal detection for particle identification and energy measurement
 - Cryogenic systems for noble liquid handling and purification
 - Data analysis, calibration and background reduction techniques
- Ever-growing community fostering innovation:
 - > Many more developments for CEvNS, $0v\beta\beta$, low-mass DM, ...

several topics not covered here

