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• All of biology, chemistry 

• People, planets, stars 

• But we’ve known for a while that there’s a lot more stuff…

Introduction



• Most of Universe made of DE, DM 

• What is DM? 

Doesn’t interact with light (dark) 

Has mass (matter) 

“Dark Energy” - more mysterious 

Invisible non-mass energy 

Related to expansion the Universe
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• Most of Universe made of DE, DM 

• What is DM? 

• Doesn’t interact with light 

• Has mass 

• ~5x as much as the regular matter 

• New particles?

Dark Universe
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• Evidence for Dark Matter is largely cosmological/astrophysical in nature 

• Main pieces of evidence: 

• Galactic Rotation Curves 

• Gravitational Lensing 

• CMB Anisotropies 

• What we know: 

• Has mass 

• Weakly coupled to SM (no EM, no strong interaction, maybe weak?)

Evidence
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~The OTHER Dark Matter~









• Light boson first proposed in ‘70s as consequence of solution to the strong CP problem 

Strong CP problem in quantum chromodynamics 

There exist natural CP violating terms within the QCD Lagrangian 

  

Key point: if  is non-zero, CP is violated, and measurable effects would occur 

Specifically, neutron would develop electric dipole moment

ℒ = −
1
4

FμνFμν −
nf g2θ
32π2

FμνF̃μν + ψ̄(iγμDμ − meiθ′ γ5)ψ

θ
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• Light boson first proposed in ‘70s as consequence of solution to the strong CP problem 

• Strong CP problem in quantum chromodynamics 

• There exist natural CP violating terms within the QCD Lagrangian 

  

• Key point: if  is non-zero, CP symmetry is violated, and measurable effects would occur 

• Specifically, neutron would develop electric dipole moment

ℒ = −
1
4

FμνFμν −
nf g2θ
32π2

FμνF̃μν + ψ̄ (iγμDμ − meiθ′ γ5)ψ

θ
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• Experiments constrain neutron EDM to be very small if non-zero 

• So, a fine tuning problem emerges in this otherwise very precise theory 

• Why should this free parameter be zero? 

Possible solution: introduce a new broken symmetry to QCD which has the effect of “cancelling out” the  term 

Peccei and Quinn in 1977 

When this symmetry is broken at some point in the Universe’s history, a particle is created which has been named the axion 

Has some mass 

Weak coupling to SM particles 

Most properties governed by a single unknown parameter: 

  

  

 is a number which defines the energy level at which the symmetry breaks, and is completely unconstrained by this theory

θ

ma ∝
1
fa

gaγγ ∝
1
fa

fa
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• When this symmetry is broken at some point in the Universe’s history, a particle is created which has been named the axion 
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• It was later realized that for a certain range of masses (neV to a meV) axions could comprise dark 
matter 

• They are a neat candidate since they solve the strong CP problem 

• Have various interesting couplings to standard model particles 

    e.g. photons 

• Experiments attempt to exploit this coupling 

• Plenty of other couplings, too - electrons, nucleons, etc

Axions
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• ALPS, OSQAR

Light Shining Through a Wall

ALPS II Technical Report
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• CAST in particular 
is a long running,  
broadband experiment
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• CAST, IAXO 

• CAST in particular 
is a long running,  
broadband experiment 

• Also doesn’t assume  
local DM density of 
axions

Helioscopes



From CA O’Hare’s Axion Limit Plotting Tool



• Axions convert into photons in presence of strong magnetic field 

Conservation of energy dictates that 

  

Velocity comes from velocity of DM halo with respect to detector ( ) 

Mass is unknown 

So: narrowband photon signal of an unknown frequency is generated 

If resonant cavity has correct frequency, photons resonate inside cavity, and can be read out

hf = mac2 +
1
2

mav2
a

va ≈ 10−3c
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• Velocity comes from velocity of DM halo with respect to detector (  for isothermal halo 
model, but possibly much narrower for other models) 

• Mass is unknown 

• So: narrowband photon signal of an unknown frequency is generated 
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• If resonant cavity has correct frequency, photons resonate inside cavity, and can be read out 

• Embed tuneable resonant cavity inside magnet, and wait for axion conversion to occur inside

Haloscopes



Haloscopes



Haloscopes
• Detector must be very well shielded from 

environment, to reduce ambient photon 
noise 

• Thermal photons are also dominant noise 
source -> cryogenic temperatures 

• Also, cryogenics allows for strong 
superconducting magnets, and quantum 
technology in readout 

• Cavity must be tuneable 
 
 



Haloscopes
• Detector must be very well shielded from 

environment, to reduce ambient photon 
noise 

• Thermal photons are also dominant noise 
source -> cryogenic temperatures 

• Also, cryogenics allows for strong 
superconducting magnets, and quantum 
technology in readout 

• Cavity must be tuneable 

• A bunch of haloscopes these days: ADMX, 
ORGAN, CAPP, QUAX, MADMAX, etc



• Expected Signal 

• Note: Shape of signal, its motion in time will shed light on nature of DM distribution

Haloscopes



• Because photon frequency (axion mass) is unknown, must scan large range of cavity frequencies 

• Difficult engineering problem 

Figure of merit for experiment is allowable rate of frequency scanning: 
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 Coupling strength to regular matter also unknown, so we have a parameter space
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• Because photon frequency (axion mass) is unknown, must scan large range of cavity frequencies 

• Difficult engineering problem 

• Figure of merit for experiment is allowable rate of frequency scanning: 

Haloscopes

Top-down view of cavity cross-section as rod tunes



Haloscopes Detector Design



 

• Things set by nature

Haloscopes Detector Design



 

• Things set by nature 

• Things to do with readout, refrigeration system, magnet

Haloscopes Detector Design



 

• Things set by nature 

• Things to do with readout, refrigeration system, magnet 

• Things to do with resonant cavity

Haloscopes Detector Design



 

• Things to do with resonant cavity

Haloscopes Detector Design



 

• Things to do with resonant cavity 

• C - ‘form factor’, to do with EM field pattern of resonant mode

Haloscopes Detector Design



 

• Things to do with resonant cavity 

• C - ‘form factor’, to do with EM field pattern of resonant mode 

• V - volume, inversely proportional to frequency

Haloscopes Detector Design



 

• Things to do with resonant cavity 

• C - ‘form factor’, to do with EM field pattern of resonant mode 

• V - volume, inversely proportional to frequency 

• Q - quality factor, how long photons live inside resonator

Haloscopes Detector Design



 

• Form factor 

 

For typical haloscopes, only TM0n0 modes have non zero C 

Very uniform modes, hard to tune -> need for tuning rods

C =
( ∫ ⃗E ⋅ ⃗B 0 dV)

2

( ∫ ⃗B 0 ⋅ ⃗B 0 dV) ( ∫ ⃗E ⋅ ⃗E dV)
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• Only certain modes (TM0n0 modes) are 
axion sensitive 

• As they tune they run into intruder 
modes 

• This is a significant design issue in 
all resonant haloscope experiments

ADMX Searches
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ADMX Searches - Current Generation

Images borrowed from Chelsea Bartram

• Run 1a - Run 1d with current setup 

• Hosted at University of Washington 

• Custom Dil Fridge ~100 mK 

• Custom magnet - 8T 

• Uses Josephson Parametric Amplifier 

• Targets ~650 - ~1200 MHz



ADMX Searches - Current Generation
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• Significant design challenges going higher in frequency 

Cavity volume inversely proportional to TM010 mode frequency 

Noise temperature goes up 

Solution -> more cavities in sync
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• The Oscillating Resonant Group AxioN Experiment
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• Mass range of interest – 60-200 micro-eV 

• Motivations: 

• SMASH model 

• Josephson Junction results 

• High mass range relatively unexplored 

• Broken down into Phases: 

• Phase 1 - targeted 1 GHz scans ~month(s) scale 

• Phase 2 - wider scans with enhanced sensitivity, broken into 5 GHz chunks, ~year scale

ORGAN Introduction



Run Plan

1a 1b

2a 2b 2c 2d 2e 2f 2g

Less optimistic: 
HEMT or  
SQL Linear Amplifiers

More optimistic: 
Efficient GHz SPC

Phase 1:  
Existing Haloscope Technology 
Current Standard Designs 

Phase 2:  
Novel Resonators 
Better Qs 
Better Amplifiers/Readout

QCD Model 

CAST
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• Targeted scans around 15 GHz and 26 GHz 

• Commenced in 2021, completed 2023 

• Traditional, ADMX-like haloscope technology 

• HEMT amplifiers

Phase 1
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• Also limits on dark photons and scalar dark matter

Phase 1a
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Run Plan
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• Things to do with readout, refrigeration system, magnet 

• Things to do with resonant cavity 

• Attack these things wherever possible 

• Even harder at higher frequencies for a few reasons…

Future Haloscopes
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• Can coat cavities with Type-II superconductor 

• e.g. Nb3Sn, NbTi 

• Allows for higher Q values than bare copper 

• Ongoing R&D to implement 

• Another option - ReBCO tapes, some success in this  
area recently

Future Haloscopes - Superconductors
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• Single Photon Detection is superior to SQL linear amplification under the right conditions 
• Take ORGAN as an example 

• 100 mK 
• 15 GHz 
• SQL Noise ~ 1K 

• Ratio of SQL linear amp to SPD noise power: 
 
 
 
  

• This ratio can be tens or even thousands of times depending on the specifics 
• Not a lot of options for GHz SPCs…but a few! 
• SIS Josephson Junctions, SNSPDs, MKIDs…
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• Layer of superconductor – insulator – superconductor 

• Exhibits Josephson effect: supercurrent across junction until critical current reached -> becomes 
resistive

SIS Josephson Junctions

L. S. Kuzmin et al., IEEE Transactions on 
Applied Superconductivity, 2018
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• Samples under testing both for ORGAN and other haloscopes (QUAX, etc)

SIS Josephson Junctions



• Axions are cool particles (and good DM candidates) 

• There are a variety of ways to search for them 

• Most focus on axion-photon coupling 

• Haloscopes are an increasingly common experiment 

• Lots of room for innovation! 

• ADMX and ORGAN are two such experiments in different mass ranges 

• Future haloscopes will require new instrumentation and technology 

• Quantum technology is a common area of pursuit for haloscope searches
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