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Overview

* Dark Matter Problem

* Axions

* Axion Detectors

* Haloscopes

°* Current Generation: ADMX, ORGAN

°* Future
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Introduction

* Quick look back to Standard Model
Standard Model of Elementary Particles
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* Just a handful of particles

* Most of the regular matter made of just three of these things
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Introduction

* All of biology, chemistry
* People, planets, stars

* But we’ve known for a while that there’s a lot more stuff...
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Dark Universe

* Most of Universe made of DE, DM

Composition of Universe

* What is DM?

Doesn’t interact with light

¥ Regular Matter
W Dark Matter
W Dark Energy

* Has mass

~5Xx as much as the regular matter

New particles?
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Evidence

* Evidence for Dark Matter is largely cosmological/astrophysical in nature
* Main pieces of evidence:

* Galactic Rotation Curves

* Gravitational Lensing

* CMB Anisotropies

* What we know:

* Has mass

* Weakly coupled to SM (no EM, no strong interaction, maybe weak?)



Dark Matter Candidates

* Looking back at our standard model of particle physics:

Standard Model of Elementary Particles
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Dark Matter Candidates

* Looking back at our standard model of particle physics:

Standard Model of Elementary Particles [ Dark Matter |
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Dark Matter Candidates

* Broadly candidates come in a few classes:
* Weakly Interacting Massive Particles
* Weakly Interacting Sub-eV Particles (especially the axion)
e Sterile Neutrinos
* Massive Compact Halo Objects

* Others...

DARK MATTER~
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AXxions

* Light boson first proposed in “70s as consequence of solution to the strong CP problem
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* Light boson first proposed in “70s as consequence of solution to the strong CP problem
* Strong CP problem in quantum chromodynamics
* There exist natural CP violating terms within the QCD Lagrangian
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Axions

Light boson first proposed in *70s as consequence of solution to the strong CP problem

Strong CP problem in qguantum chromodynamics

There exist natural CP violating terms within the QCD Lagrangian

1 ”f829 - 0
g = — ZF//H/FMD — 327[2 F'L”/F/'”/ + l/_/(l}/'uD'u — mel 75)1//

Key point: if @ is non-zero, CP symmetry is violated, and measurable effects would occur

Specifically, neutron would develop electric dipole moment
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* Peccei and Quinn in 1977

* When this symmetry is broken at some point in the Universe’s history, a particle is created which has been named the axion
* Has some mass

* Weak coupling to SM particles



AXxions

* Experiments constrain neutron EDM to be very small if non-zero

* So, a fine tuning problem emerges in this otherwise very precise theory

* Why should this free parameter be zero?

* Possible solution: introduce a new broken symmetry to QCD which has the effect of “cancelling out” the 6 term

* Peccei and Quinn in 1977

* When this symmetry is broken at some point in the Universe’s history, a particle is created which has been named the axion
* Has some mass

* Weak coupling to SM particles

* Most properties governed by a single unknown parameter:
|

m, « —

a

1
8ayy X
144 fa

* [, is a number which defines the energy level at which the symmetry breaks, and is completely unconstrained by this theory
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AXxions

* |t was later realized that for a certain range of masses (neV to a meV) axions could comprise dark
matter

* They are a neat candidate since they solve the strong CP problem
* Have various interesting couplings to standard model particles

e.g. photons

waff

* Experiments attempt to exploit this coupling

* Plenty of other couplings, too - electrons, nucleons, etc
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Axion Detectors

* Going to focus on axion-photon coupling
* Broadly speaking, three classes of detector:
* Light shining through a wall U v @&

* Helioscope

e Haloscope
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Light Shining Through a Wall

* Experiments that exploit axion-photon coupling twice
* Do not require axions to be DM

* Less assumptions, but less sensitive than DM experiments
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Light Shining Through a Wall

. ALPS, OSQAR

Production cavity (100 m) & % Regeneration cavity (100 m)

(|-

528 Sl Central breadboard CJ Light tight enclosure

SHG crystal - = = Regenerated photon signal
v e ¢ Mirror (532 nm) Dichroic filter (1064 nm)
agnet strin
e D J I Shutter P Single photon detector

ALPS Il Technical Report
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Helioscopes

* Assume axions generated in the sun, stream to earth

* Track sun with telescope-like structures, convert axions back
to photons
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e CAST in particular
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broadband experiment




Helioscopes

* CAST, IAXO

e CAST in particular
IS a long running,
broadband experiment

* Also doesn’t assume
local DM density of
axions
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Haloscopes

* Axions convert into photons in presence of strong magnetic field

* Conservation of energy dictates that

hf = mc® + Emavg

* Velocity comes from velocity of DM halo with respect to detector (v, & 1073¢ for isothermal halo

model, but possibly much narrower for other models)
* Mass is unknown
* So: narrowband photon signal of an unknown frequency is generated

* If resonant cavity has correct frequency, photons resonate inside cavity,
and can be read out

AE/E ~10-6

Maxion (energy)

Duffy et al.
Snowmass 2021 Letter of Interest




Haloscopes

* If resonant cavity has correct frequency, photons resonate inside cavity, and can be read out

* Embed tuneable resonant cavity inside magnet, and wait for axion conversion to occur inside

Field




Haloscopes
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Haloscopes

* Detector must be very well shielded from
environment, to reduce ambient photon

noise Synth —@

* Thermal photons are also dominant noise
source -> cryogenic temperatures
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Haloscopes

* Detector must be very well shielded from
environment, to reduce ambient photon

noise Synth —@®

* Thermal photons are also dominant noise
source -> cryogenic temperatures

DAQ

ZARBOIH Temp. Amplifier

Cryogenic
r nic Environmen Amplifier/SPC
* Also, cryogenics allows for strong Cryogenic Environmenl/ AP
superconducting magnets, and quantum 2 O X
technology in readout g EEERRIRE
- 21O |neamancas| | <
¢ Cavity must be tuneable 20| ™ M"d” %
* A bunch of haloscopes these days: ADMX, T O 3 ‘ X
ORGAN, CAPP, QUAX, MADMAX, etc |




Haloscopes

* Expected Signal

* Note: Shape of signal, its motion in time will shed light on nature of DM distribution
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Haloscopes

* Because photon frequency (axion mass) is unknown, must scan large range of cavity frequencies

* Difficult engineering problem

* Figure of merit for experiment is allowable rate of frequency scanning:

df 1 oa')'yB4(2V2/)2QLQa
(h‘ WNRQO I m (ABTn)
—

Top-down view of cavity cross-section as rod tunes
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dt — SNR? m2(kgT,)

‘goal

 Things set by nature
e« Things to do with readout, refrigeration system, magnet

 Things to do with resonant cavity
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Haloscopes Detector Design

ﬁ N 1 g37734 V2
dt ~ SNR?

‘goal

/)EQL (Da
m2(kgThy)?

 Things to do with resonant cavity
e C - ‘form factor’, to do with EM field pattern of resonant mode
e V - volume, inversely proportional to frequency

e Q - quality factor, how long photons live inside resonator
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df 1 gg’y'y B4 CQV?‘/)ZQL Qa
—
dt ~ SNRZ,,, mz(kgTh)?

e Form factor




Haloscopes Detector Design

df X 1 8ayy BICIVIURLRa
dt ~ SNRZ,,, mz(kgTh)?
e Form factor
_— — 2
(JE-B,av)
C=— ——
(/Bo-Byav) (JE-E av)

e For typical haloscopes, only TMONnO modes have non zero C



Haloscopes Detector Design

df 1 gg’y'yBélCQVngQLQa
— X
it * SNRZ,,  m2(kpTy)?
e Form factor
—_— — 2
(JE-B,av)

e For typical haloscopes, only TMONnO modes have non zero C

 Very uniform modes, hard to tune -> need for tuning rods












ADMX Searches

A Search for Halo Axions
by
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ADMX Searches
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* Only certain modes (TMONO modes) are
axion sensitive
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* Experiment upgraded in the 2000s

* Implemented a SQUID-based amplifier
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ADMX Searches - Quantum Readout

* Experiment upgraded in the 2000s

* Implemented a SQUID-based amplifier

e SQUID A2-5, f = 684 MHz
o m SQUID K4-2, f = 702 MHz _
* Phys. Rev. Lett 104, 041301 (2010) % %
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) ..
E A
Nb coil isolated ©
from washer, [}
. Nb washer = T .
< CIE> T ..
é 100_5 1T PSS
© IETT IR R aeiil e am ok
Nb counter (¢ = | B I Tq ~ 33 mK
electrode™/ s NS -~ T/ TTETmTaoTTTmmmmmmmmmmmmmEE
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junctions/ 100 1000
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ADMX Searches - Quantum Readout

* Experiment upgraded in the 2000s Axion Mass (ueV)
| o 335 3.4 3.45 3.5
* Implemented a SQUID-based amplifier W e T T
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ADMX Searches - Current Generation

* Run 1a - Run 1d with current setup 'l _

* Hosted at University of Washington Flic-rea Reglon e

* Custom Dil Fridge ~100 mK BN )

* Custom magnet - 8T “Mg

* Uses Josephson Parametric Amplifier ;hm: 1"

+ Targets ~650 - ~1200 MHz

In cleanroom In magnet bore

Images borrowed from Chelsea Bartram




ADMX Searches - Current Generation

Axion Mass (ueV)
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ADMX Searches - Future

Significant design challenges going higher in frequency

df 1 8a,BC?V2p2Q1Q
— X
dt ~ SNR? m2(kgTy)?

‘goal

Cavity volume inversely proportional to TM0O10 mode frequency

Noise temperature goes up

Solution -> more cavities in sync




ADMX Searches - Future

2022--23 2023--25 2025--
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Images borrowed from Chelsea Bartram




ADMX Searches - Future

1079 B2

2019

ADMX (2010, 2018,

- ADMX (this work)

Axion Mass (ueV)
10'
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Model

Frequency (MHz)

10*

Single cavity 4-Cavity array 18-Cavity array
Big tuning rod

Images borrowed from Chelsea Bartram
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°* Many cavities together

* The Oscillating Resonant Group AxioN Experiment
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* Mass range of interest - 60-200 micro-eV

* Motivations:
* SMASH model

* Josephson Junction results

Unifying Inflation with the Axion, Dark Matter, Baryogenesis, and
the Seesaw Mechanism

Guillermo Ballesteros, Javier Redondo, Andreas Ringwald, and Carlos Tamarit
Phys. Rev. Lett. 118, 071802 — Published 15 February 2017

Possible Resonance Effect of Axionic Dark Matter in Josephson
Junctions

Christian Beck

| Phys Rev' Lett 111’ 231801 - PUb|IShed 2 December 2013
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ORGAN Introduction

* Mass range of interest - 60-200 micro-eV
* Motivations:
* SMASH model
* Josephson Junction results
* High mass range relatively unexplored
°* Broken down into Phases:
* Phase 1 - targeted 1 GHz scans ~month(s) scale

* Phase 2 - wider scans with enhanced sensitivity, broken into 5 GHz chunks, ~year scale
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Better Qs

Better Amplifiers/Readout
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Frequency (GHz)



Phase1

* Targeted scans around 15 GHz and 26 GHz

* Commenced in 2021, completed 2023

* Traditional, ADMX-like haloscope technology
 HEMT amplifiers




Phase 1a
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Phase 1a

* Also limits on dark photons and scalar dark matter
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https://arxiv.org/abs/2212.01971
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* Also limits on dark photons and scalar dark matter
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Future Haloscopes

df 1 (8, BICTVp
dt — SNR? m2(kgT,)

‘goal

2
a

kthga
2

 Things to do with readout, refrigeration system, magnet
 Things to do with resonant cavity
» Attack these things wherever possible

« Even harder at higher frequencies for a few reasons...
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Future Haloscopes - Resonators

* Lots of idea for new types of resonator beyond
standard TMO10 tuning rod resonators — 7 1
. . . ‘ /"/ \\ ,"’f \\‘\ 0.5 ‘// \\‘\\ / \\\
* Keep C high, go to higher frequencies, A /A A AR AR
& O \ f \ L O
be tunable . N =" \
-0.5 \ // \ / 1 -0.5
* Use dielectrics, new geometries, s T e
combine many resonators (20
* Ongoing field of research ". |
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Future Haloscopes - Superconductors

St
» SRPTNTY 4
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* Can coat cavities with Type-Il superconductor
* e.g. Nb3Sn, NbTi

* Allows for higher Q values than bare copper

* Ongoing R&D to implement

* Another option - ReBCO tapes, some success in this
area recently
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Future Haloscopes - Readout

« Single Photon Detection is superior to SQL linear amplification under the right conditions
« Take ORGAN as an example

« 100 mK

15 GHz

« SOL Noise ~ 1K
« Ratio of SQL linear amp to SPD noise power:

P D ﬁ | 1) I

« This ratio can be tens or even thousands of times depending on the specifics
 Not a lot of options for GHz SPCs...but a few!
e SIS Josephson Junctions, SNSPDs, MKIDs...




SIS Josephson Junctions

* Layer of superconductor - insulator - superconductor



SIS Josephson Junctions

* Layer of superconductor - insulator - superconductor

“| crystal

Josephson tunnel
junction

L. S. Kuzmin et al., IEEE Transactions on
Applied Superconductivity, 2018



SIS Josephson Junctions

* Layer of superconductor - insulator - superconductor

* Exhibits Josephson effect: supercurrent across junction until critical current reached -> becomes
resistive

(testing,30-Oct-2018)
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L. S. Kuzmin et al., IEEE Transactions on
Applied Superconductivity, 2018
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SIS Josephson Junctions

* Can be used as weak current sensor in the GHz range...in principle

* 10s of ueV+ energy thresholds

* Gets easier at higher energy...
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SIS Josephson Junctions

* Samples under testing both for ORGAN and other haloscopes (QUAX, etc)
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There are a variety of ways to search for them

Most focus on axion-photon coupling
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ADMX and ORGAN are two such experiments in different mass ranges

Future haloscopes will require new instrumentation and technology

Quantum technology is a common area of pursuit for haloscope searches
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