

中国科学院高能物理研究所

# **Liquid Scintillator Detectors for Neutrinos**

# **Guofu Cao**

Institute of High Energy Physics, CAS TIPP2023, Cape Town, South Africa Sep. 4 - 8, 2023

### **\*** Open questions in neutrinos

**\*** Neutrino signal and background in Liquid Scintillator (LS)

**\* LS technologies (refer to Milind's presentation yesterday)** 

### \* Liquid scintillator detectors for neutrinos

- **>LS-based reactor neutrino experiments**
- **LS-based solar and 0vββ neutrino experiments**

LS-based short baseline accelerator neutrino experiments (LSND, KARMEN, JSNS<sup>2</sup>/JSNS<sup>2</sup>-II, IsoDAR, etc)

### **\*** Future plans and summary

# **Neutrino discovery**

In 1930, v proposed by W. Pauli

In 1956, v discovered by F. Reines and C. Cowan In 1962, v<sub>µ</sub> discovered by L. Lederman, M. Schwartz and J. Steinberger



# **Neutrino Mixing and oscillation**



Mass ordering, CP phase, mass are still unknown, how long can we get the answers?

### In the three neutrino framework

Neutrino flavour eigenstates  $\neq$  Mass eigenstates

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} V_{e1} & V_{e2} & V_{e3} \\ V_{\mu 1} & V_{\mu 2} & V_{\mu 3} \\ V_{\tau 1} & V_{\tau 2} & V_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

⇒ Oscillation Probability:  

$$P_{\nu_{\alpha} \to \nu_{\beta}} = 1 - 4 \sum_{i < j} |V_{\alpha j}|^2 |V_{\beta i}|^2 \sin^2 \frac{\Delta m_{ji}^2 L}{4E}$$
  
Amplitude  $\propto \sin^2 2\theta$   
Frequency  $\propto \Delta m^2 L/E$ 





**6** fundamental parameters to describe neutrino oscillation:  $\theta_{23} \& \Delta m_{32}^2$ ,  $\theta_{13}$ ,  $\theta_{12} \& \Delta m_{21}^2$ ,  $\delta$ 

- The discovery of neutrino oscillation provided the first evidence of new physics beyond the standard model
  - > Neutrinos have non-zero masses, a huge impact to the particle physics and cosmology
  - >A possible source of CP violation to explain the matter-antimatter asymmetry in the Universe
- \* Many experiments launched to measure the oscillation parameters and made a huge success
  - > Liquid scintillator detectors played a critical role

**PDG 2022** 

| Parameter            | Central value                                                                  | Uncertainty | Dominant Experiments                                       |
|----------------------|--------------------------------------------------------------------------------|-------------|------------------------------------------------------------|
| $sin^2(\theta_{12})$ | 0.307                                                                          | 4.2%        | Solar                                                      |
| $\Delta m^2_{21}$    | 7.53×10 <sup>-5</sup> eV <sup>2</sup>                                          | 2.4%        | Reactor LBL                                                |
| $sin^2(\theta_{23})$ | 0.546 (NO)<br>0.539 (IO)                                                       | 4.2%        | Accel LBL $\nu_{\mu}/\bar{\nu}_{\mu}$ Disapp.              |
| $ \Delta m^2_{32} $  | 2.453×10 <sup>-3</sup> eV2 (NO)<br>2.536×10 <sup>-3</sup> eV <sup>2</sup> (IO) | 1.3%        | Reactor MBL, Accel LBL $\nu_{\mu}/\bar{\nu}_{\mu}$ Disapp. |
| $sin^2(\theta_{13})$ | 0.022                                                                          | 3.2%        | Reactor MBL                                                |
| δ <sub>CP</sub>      | <b>1.36</b> (π rad)                                                            | 14.7%       | Accel LBL $v_e/\bar{v}_e$ App.                             |

### **Open Questions in Neutrinos**

- Neutrino mixing and oscillation
  - Neutrino mass ordering still unknown
  - **CP** violation phase still unknown
  - $> \theta_{23}$  octant still unknown
  - Precise oscillation parameters, sub-percent level
- **\*** Are neutrinos Majorana particles? (**0**νββ)
- **\*** Absolute neutrino mass?

**Cosmology (~0.1 eV), β-decay (~0.8 eV), ββ-decay (~0.1 eV)** 

- **\*** Sterile neutrinos?
  - **>** Reactor Antineutrino Anomaly (RAA)
  - **≻ Gallium anomaly** [<u>PRC 105, 065502</u>]
  - >LSND anomaly [PRD 64, 112007]



|              | Isotope           | Mass(t) | <m<sub>ββ&gt;,meV</m<sub> |
|--------------|-------------------|---------|---------------------------|
| SNO+         | <sup>130</sup> Te | 8       | 19-46                     |
| KamLAND2-Zen | <sup>136</sup> Xe | 1       | ~20                       |
| NEXT-HD      | <sup>136</sup> Xe | 1       | 14-40                     |
| nEXO         | <sup>136</sup> Xe | 5       | 7-22                      |
| LEGEND-1000  | <sup>76</sup> Ge  | 1       | 10-40                     |
| AMoRE-II     | <sup>100</sup> Mo | 0.1     | 12-22                     |
| CUPID        | <sup>100</sup> Mo | 0.24    | 12-20                     |
| CUPID-1T     | <sup>100</sup> Mo | 1       | 4-7                       |
| JUNO-ββ      | <sup>136</sup> Xe | 50      | 4-10                      |
|              | <sup>130</sup> Te | 100     | 3-14                      |

# **Neutrino Signals**

 $\ \ \, \bigstar \ \, \overline{\nu}_e + p \rightarrow e^+ + n \ \, \text{(IBD)}$ 

> 1.8 MeV threshold for free protons > Colden channel to detect  $\overline{\mathbf{v}}$  a g reactor

> Golden channel to detect  $\overline{\nu}_e$ , e.g. reactors

 $\mathbf{*} \mathbf{v} + \mathbf{e}^- \rightarrow \mathbf{v} + \mathbf{e}^- \ (\mathbf{ES})$ 

Typical threshold ~10 eV – 100 keV

> Sensitive to all flavours, e.g. solar neutrinos

## $\diamondsuit v_e + n \rightarrow p + e^- \text{ (v-capture)}$

No threshold for free neutrons, some in nuclei
Radiochemical experiments, cosmic v bkg

\*  $v_l/\overline{v}_l + n/p \rightarrow p/n + l^-/l^+$  (Quasi-elastic)

- > Tens of MeV for  $\nu_e$ , ~100 MeV for  $\nu_{\mu}$
- $\mathbf{*} \, \mathbf{v}_l / \overline{\mathbf{v}}_l + n/p \to X + l^- / l^+ (\text{Inelastic})$ 
  - > Hundreds of MeV threshold
  - >Additional hadrons, detectable in LS

# **Backgrounds**

- \* Radioactivity
  - ≻ Most less than ~3 4 MeV
  - ➤ Major task in a low background experiment
  - Careful material screening, environment cleanness, dust/radon control, etc

# Cosmic muon induced background

Spallation products, e.g. long-lived isotopesDeep overburden

# Neutrino NC

- ≻Gammas, hadrons, etc
- > Pulse shape discriminator (PSD) could help

# **\*** Other neutrino sources

≻e.g. reactor neutrinos vs geo-neutrinos

### **\*** LS-based reactor neutrino experiments

### **\*** LS-based solar and 0vββ neutrino experiments

#### H.W. Wang Modified from Astropart. Phys. 97 (2018) 136-159

| Experiment              | Mass                           | LS composition                                                                                                                       | Physics investigation  | Status                      |
|-------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------|
| Chooz                   | 5 t LS+Gd<br>(0.1 %)+107 t LS  | Gd-loaded: 50% Norpar-15, 50% IPB+hexanol and p-PTP+bis-MSB (1 g/l)<br>unloaded: 92.8 % Mineral oil, 7.2 % IPB and PPO+DPA (1.5 g/l) | $\nu$ oscillations     | past, 1998 - 1999           |
| KamLAND                 | 1kt LS                         | $80\%$ dodecane, $20\%$ PC and $1.36\pm$ 0.03 g/l of PPO                                                                             | $\nu$ oscillations     | past, 2002 - 2011           |
| Karmen                  | 56t + Gd foils                 | 75%  MO + 25%  PC + 2g/L PMP                                                                                                         | $\nu$ oscillations     | past, 1990 - 2001           |
| LSND                    | 167t LS                        | 50,000 gallon Britol 6 NF HP White Mineral Oil + 6 kg b-PBD $(0.031 \text{ g/l})$                                                    | $\nu$ oscillations     | past, 1993 - 1998           |
| Palo Verde              | 11tLS + Gd(0.1%)               | Gd "concentrate" (BC-521C), PC (with 4 g/l PPO and 100 mg/l bisMSB) and mineral oil (1:1:3)                                          | $\nu$ oscillations     | past, 1998 - 2000           |
| Borexino                | 278t LS                        | Inner shell: PC and PPO (1.5 g/l)<br>The 2nd and 3rd shell: PC and DMP (5 g/l)                                                       | $\nu$ oscillations     | past, 2007 - 2020           |
| Reno                    | 16t LS+Gd(0.1 %)+30t LS        | LAB, PPO, and bis-MSB + Gd(TMHA) <sub>3</sub>                                                                                        | $\nu$ oscillations     | past, 2011- 2023            |
| Daya Bay                | 20t LS + Gd (0.1 %) + 20t LS   | PC, PPO (3 g/l) and bis-MSB (15 mg/l) (Gd(TMHA) <sub>3</sub> as solute for the Gd-loaded LS)                                         | $\nu$ oscillations     | past, 2011 - 2020           |
| Double Chooz            | 8t LS + Gd(0.1%) + 18t + 80tLS | NT: o-PXE/n-dodecane mixture (volume 20:80) + 0.123% Gd                                                                              | $\nu$ oscillations     | past, 2011-2017             |
|                         |                                | GC: same as NT + medicinal white oil                                                                                                 |                        |                             |
| Juno                    | 20kt LS                        | LAB, PPO $(2.5 \text{ g/l})$ and bis-MSB $(3 \text{ mg/l})$                                                                          | $\nu$ oscillations     | under construction          |
| JSNS <sup>2</sup> (-II) | 17t 0.1%Gd doped LS            | 90%LAB, 10%DIN, PPO (3 g/l) and bis-MSB (15 mg/l)                                                                                    | $\nu$ oscillations     | Ongoing, 2021 -             |
| KamLAND-Zen             | 13t Xe-LS + 1 kt LS            | Xe-LS: 82% decane, 18% PC by volume, PPO (2.4 g/l) and 3.13% enriched xenon by weight $(90.85 \pm 0.13)\%^{136}$ Xe                  | $0\nu\beta\beta$ decay | Ongoing, 2011 -             |
| SNO+                    | 780t LS + Te(up to $3\%$ )     | LAB, PPO $(2 \text{ g/l})$ + Telluric acid                                                                                           | $0\nu\beta\beta$ decay | ongoing, 2017-              |
| LVD                     | 1008t LS                       | aliphatic and aromatic hydrocarbons (one counter doped with Gd in 2005)                                                              | SN $\nu$               | past, 1992 - 2020           |
| JUNO-TAO                | 2.8t LS+Gd (0.1%)              | PPO (3 g/l), bis-MSB (2 mg/l), LAB, Gd(TMHA) <sub>3</sub> and 0.5% DPnB                                                              | reactor $\nu$          | under construction          |
| Neos/Neos-II            | 1t LS+Gd (0.5%)                | LAB + DIN, PPO (3 g/l) and bis-MSB (30 mg/l) + Gd                                                                                    | sterile $\nu$          | Past, 2016 - 2020           |
| Neutrino-4              | 0.35t LS + Gd(0.1%)            | 4001  BC-525 + Gd (1  g/l),                                                                                                          | sterile $\nu$          | Upgrading, 2014 - 2021      |
| Prospect(-II)           | $3-13t LS + {}^{6}Li$          | LAB, UltimaGold, and EJ-309 $+$ <sup>6</sup> LiCl                                                                                    | sterile $\nu$          | Past (Planning) 2018 - 2018 |
| Stereo                  | 18001  LS + Gd (0.2 %)         | LAB (75%), PXE (20%) and DIN (5%); PPO, bis-MSB and Gd(thd) <sub>3</sub> + THF (1:1 in mass)                                         | sterile $\nu$          | Past, 2016 - 2020           |

- In 1956, F. Reines and C. Cowan discovered the electron anti-neutrino from the reactor [Science. 124 (3212): 103–4]
- \* Poltergeist Project: the first liquid scintillator detector used for neutrino detection
  - **Detector: 3 tanks of LS, 183×132×56 cm<sup>3</sup>/each**
  - **Target: 2 tanks of CdCl<sub>2</sub>-doped water, sandwich structure**
  - $ightarrow \overline{
    u}_e + p 
    ightarrow n + e^+$ , inverse beta decay







### **LS-based Reactor Neutrino Experiments**



Measure neutrino oscillations with different baselines
 LBL (>100 km): KamLAND
 MBL (<100 km): Daya Bay, D-Chooz, RENO, JUNO, etc</li>
 SBL (~10 m): Prospect, Stereo, NEOS, TAO, etc

**\*** LS is a common use to detect neutrinos via IBD





- Overburden: ~2700 mwe, baseline: 180 km
- 1000 t LS: 80% dodecane+20% pseudocumen (PC)+1.36 g/L PPO,

enclosed in an EVOH/nylon balloon supported by a rope network

- LS balloon immersed in MO to shield external radiations
- 1325 17-inch PMTs + 554 20-inch PMTs  $\rightarrow$  34% coverage
- **E resolution:** 6.5%/ $\sqrt{E(MeV)}$  R resolution: ~12  $cm/\sqrt{E(MeV)}$
- OD: 3.2 kton water Cherenkov detector with 225 20-inch PMTs
- Data taking started in March 2002

# KamLAND LS

- PC + PPO was selected, diluted by normal-dodecane (ND), PPO concentration optimized
  - > LAB was not discovered yet by M. Chen at that time
  - ND: safer for balloon, higher flash point (ND~80 °C, PC~54 °C), better transparency and stability
- LS radiopurity: <sup>238</sup>U ~ 10<sup>-18</sup> g/g, <sup>232</sup>Th ~ 10<sup>-17</sup> g/g, <sup>40</sup>K ~ 10<sup>-16</sup> g/g, but relatively high rates of <sup>85</sup>Kr (883 μBq/kg) and <sup>210</sup>Pb (58.4 μBq/kg): ~5 orders higher than 500/kton/day of <sup>7</sup>Be solar neutrino rate
- Two purification campaigns in 2007 and 2008-2009 with distillation and nitrogen purge systems underground with reduction factors of <sup>85</sup>Kr: ~6×10<sup>-6</sup>, <sup>210</sup>Bi: 8×10<sup>-4</sup>, <sup>210</sup>Po: 5×10<sup>-2</sup> [NIM A 769, 79 (2015)]





Data

Fit Range

### **Major Results of KamLAND**



Search for neutrinoless double beta decay of <sup>136</sup>Xe (Q-value 2.458 MeV)

- \* <sup>136</sup>Xe loaded LS in a new Inner Balloon (IB) at KamLAND center
  - > ~3% <sup>136</sup>Xe by weight, enrichment ~90%, LY is 3% lower than the undoped LS
- **\*** Unexpected background of <sup>110m</sup>Ag on IB from Fukushima-I fallout (March 2011) in KamLAND-Zen 400
- **\*** The purification was done from 2012 to 2013, after 3 times purification and circulation,  $10 \times {}^{110m}Ag$  less

### Past KamLAND-Zen 400

320-380 kg of Xenon Data taking in 2011 - 2015



### Present KamLAND-Zen 800

~750 kg of Xenon DAQ started in 2019



### Future KamLAND2-Zen

~1 ton of <sup>136</sup>Xe Better energy resolution



A. Gando @Neutrino2022

### KamLAND-Zen 800

- In KamLAND-Zen 800, very careful radiopurity control for IB production @class 1 clean room, U/Th: ~3/40×10<sup>-12</sup> g/g, 10× reduction compared with KamLAND-Zen 400, no <sup>110m</sup>Ag observed
- ★ Combined result of KamLAND-Zen 400 and 800 gives the currently most strict limit:  $T_{0\nu\beta\beta}^{1/2} > 2.3 \times 10^{26} \text{ yr (90\% C.L.)} \qquad \left\langle m_{\beta\beta} \right\rangle < (36 156) \text{ meV}$
- \* Major backgrounds: Xenon/carbon spallation, radioactivity impurity and solar neutrinos



### KamLAND2-Zen

### Enlarge opening

General use: accommodate various devices such as CdWO<sub>4</sub>, NaI, CaF<sub>2</sub> detectors



### **New electronics**

A. Gando @Neutrino2022

To improve background suppression. Tagging long lived isotope from cosmic ray spallation.

Scintillation inner balloon BG reduction from Xe-LS container

### Winstone cone & High QE PMT

Improve light collection efficiency and photo coverage

### **Brighter LS**

Current LS ~8,000 photon/MeV LAB based new LS ~12,000 photon/MeV

 $\sigma(2.6 MeV) = 4\% \rightarrow \sim 2\%$ Target  $\langle m_{\beta\beta} \rangle \sim 20 \text{ meV in 5 yrs}$ 

### **MBL -- Daya Bay, Double-Chooz and RENO**

- \* Aimed to determine the last unknown mixing angle  $\theta_{13}$
- \* Near and far identical detectors help to eliminate systematic errors on absolute normalization scale
  - > Daya Bay: 4 ND (~0.5 km) and 4 FD (~1.6 km), D-Chooz/RENO: 1 ND (~0.4/0.3 km) and 1 FD (~1/1.4 km)
- \* Similar detector structure: v-target, γ-catcher, buffer, active µ-veto, calibration, etc
- O.1% Gd-doped LS, similar recipe in DYB and Reno, different solvent in D-Chooz (n-dodecane/o-PXE)
  Similar Energy scales of DYB ~160 p.e./MeV, D-Chooz ~230 p.e./MeV, and RENO ~250 p.e./MeV



- \* First time to use LAB-based LS in Daya Bay and RENO, which was first proposed by M. Chen for SNO+
- **A big achievement on both chemical and optical stability of Gd-LS at ~0.1% Gd level**
- **\*** Very successful systematic error control on energy scale and response < **1%**
- \* Major backgrounds: accidentals, fast n and isotopes (<sup>9</sup>Li/<sup>8</sup>He) from muons, and <sup>13</sup>C(α, n)<sup>16</sup>O, S/N: ~20-30



### **Great Precisions on Oscillation Parameters**



### **Precise Measurements on Reactor Neutrino Flux**



- \* Daya Bay reported that the flux deficit is mostly from <sup>235</sup>U, confirmed by others [PRL 118, 251801 (2017)]
- **Current reactor neutrino flux calculations show no deficit, but the 5 MeV bump is still there (next slide)** 
  - Summation with improved nuclear data [PRL 123, 022502 (2019)]
  - Conversion with recent <sup>235</sup>U/<sup>239</sup>Pu fission beta ratio measurements [Phys. Atom. Nucl. 84 1–10, PRD 104, L071301 (2021), etc]

### **Precise Measurements on Reactor Neutrino Flux**



- \* Daya Bay reported that the flux deficit is mostly from <sup>235</sup>U, confirmed by others [PRL 118, 251801 (2017)]
- **Current reactor neutrino flux calculations show no deficit, but the 5 MeV bump is still there (next slide)** 
  - Summation with improved nuclear data [PRL 123, 022502 (2019)]
  - Conversion with recent <sup>235</sup>U/<sup>239</sup>Pu fission beta ratio measurements [Phys. Atom. Nucl. 84 1–10, PRD 104, L071301 (2021), etc]

#### N. Bowden @Neutrino 2022





- ✤ 20~30% higher light yield than expectations when turned on the detector
  - > Daya Bay: ~20%, RENO: ~21%, KamLAND: ~80%, Borexino: ~25%, etc
- A recent study [EPJC (2022) 82:329] indicates that this might be caused by the usage of the simplified PMT model
  - > A simplified model: photons absorbed by photocathode converted to p.e. by QE measured in air
  - > The new proposed model predicts 20% to 30% more light yield, consistent with observations
  - > More excess in KamLAND is caused by scattering and re-emission





# Jiangmen Underground Neutrino Observatory (JUNO)

- **\*** Proposed to determine Neutrino Mass Ordering (NMO) via detecting reactor neutrinos
  - > Independent of the CP phase, and the large  $\theta_{13}$  makes it easier
- \* Critical requirements to make it to be realized
  - **Site selection**  $\rightarrow$  optimum baseline (oscillation maximum of  $\theta_{12}$ )
  - ➤ Sufficient statistics → large LS detector and powerful reactors
  - **Good E resolution Heat** highly transparent LS and high LY, highly efficient PMTs and high coverage
  - ➤ Shape uncertainty → satellite detector (TAO) provides reference spectrum, comprehensive calibration system
  - ➤ Low BKG → good overburden, highly efficient veto and shielding, material screening, clean installation



### JUNO Detector – a 20k ton LS detector

- ✤ 52.5 km baseline, ~700 m overburden
- Central Detector
  - > 20 kton LAB-based liquid scintillator
  - > Acrylic panels, 265 pieces in total, bonding onsite
  - ➤ ~45,000 20"+3" PMTs with 78% coverage
  - Stainless Steel structure



**\*** Veto detectors *Contribution ID 92* > Water Pool (2400 20-inch PMTs) > Top Tracker (plastic scintillators) **Top Tracker and** calibration house THE R. L Water pool Earth magnetic field compensation coils Photomultiplier tubes Acrylic spherical vessel filled with liquid scintillator

Acrylic supporting

nodes

**43.5** m

# **Predicted Energy Resolution in JUNO**

| Change                                | Light yield in detector<br>center [PEs/MeV] | Energy resolution | Reference                  |  |
|---------------------------------------|---------------------------------------------|-------------------|----------------------------|--|
| <b>Previous estimation</b>            | 1345                                        | 3.0% @1MeV        | JHEP 03 (2021) 004         |  |
| Photon Detection Efficiency (27%→30%) | +11% ↑                                      |                   | <u>EPJC 82 1168 (2022)</u> |  |
| New Central Detector Geometries       | + <b>3%</b> ↑                               | 2.9% @ 1MeV       |                            |  |
| New PMT Optical Model                 | + <b>8%</b> ↑                               |                   | <u>EPJC 82 329 (2022)</u>  |  |



• Cherenkov radiation

۲

٠

- Cherenkov yield factor (refractive index & re-emission probability) is re-constrained with Daya Bay LS non-linearity
- Detector uniformity and reconstruction

### **A Rich Physics Program in JUNO**



 $\sim 50/{\rm day}$ 



 $\sim 1$  - 2/day



 $\mathcal{O}(1000)/\mathrm{day}$ 





 $\frac{30000 \text{ m}}{\text{Secondary}} \frac{\pi^{*}}{N} \frac{\pi^{0}}{\gamma} \frac{1}{\gamma} \frac{\pi^{0}}{V} \frac{\pi^{*}}{V} \frac{\pi$ 

**New Physics** 

Proton decay etc

- \* NMO sensitivity:  $3\sigma$  in 6 years
- Determine most of oscillation parameters to a sub-percent level
  - Chinese Phys. C 46 123001 (2022)

|                     | Current<br>(PDG2020) | JUNO<br>(100 d) | JUNO<br>(6 y) |
|---------------------|----------------------|-----------------|---------------|
| $\Delta m_{31}^2$   | 1.3%                 | 0.8%            | 0.2%          |
| $\Delta m_{32}^2$   |                      |                 |               |
| $\Delta m_{21}^2$   | 2.4%                 | 1.0%            | 0.3%          |
| $\sin^2\theta_{12}$ | 4.2%                 | 1.9%            | 0.5           |
| $\sin^2\theta_{13}$ | 3.2%                 | 47.9%           | 12.1%         |

**More refer to <b>Prog. Part. Nucl. Phys. 123**,

(2022) 103927

**Contribution ID 50** 

Contribution ID 95

# **JUNO LS Cocktail**

### JUNO&Daya Bay, NIMA 988 (2021) 164823



**Experimental Hall 1** 



- **\*** High transparency and low radioactivity  $\rightarrow$  **No Gd**
- **\*** Use one Daya Bay AD to optimize JUNO LS recipe
- A newly developed optical model used to consider the detector size difference (35 m vs 4 m) [NIM A 967 (2020)
   <u>163860</u>]
  - > Model absorption and re-emission processes in LS
  - > Key inputs include absorption, scattering, re-emission, etc



- **\*** Different LS recipes were checked by the DYB detector
- Good agreements between the LS model and data taken at Daya Bay
- Final solution: LAB + 2.5 g/L PPO + 3 mg/L bis-MSB
- **\*** The LS recipe showed the good stability

JUNO&Daya Bay, NIMA 988 (2021) 164823







# **Determination of Th&U in PPO**

# **Method detection limit (ICP-MS):**

- 0.033 ppt for <sup>232</sup>Th
- 0.040 ppt for <sup>238</sup>U

### M. Liu, Y. Ding\* et al., NIM A 1041 (2022) 167323

Mass weighted mean value for 35.4t PPO from ~45 batches <sup>232</sup>Th/<sup>238</sup>U ~ 0.1 ppt

Measured Th&U concentration in JUNO PPO

◆Th-232 ●U-238





#### NIM A 908 (2021) 164823

#### Four purification plants to achieve target radio-purity 10<sup>-17</sup> g/g U/Th and 20 m attenuation length at 430 nm







radioactive impurities



#### Joint commissioning of all LS plants will start in this autumn



**Contribution ID 35** 

- A 20t detector to monitor radiopurity of LS before and during filling to the central detector
  - > A few days: U/Th (Bi-Po) ~  $1 \times 10^{-15}$  g/g (reactor baseline case)
  - > 2~3 weeks: U/Th (Bi-Po) ~  $1 \times 10^{-17}$  g/g (solar ideal case)
  - ▶ Other radiopurity can also be measured: <sup>14</sup>C, <sup>210</sup>Po and <sup>85</sup>Kr
- **\*** Commissioning will start soon





### Eur.Phys.J.C 81 (2021) 11, 973



- \* Possible upgrade to Serappis (SEarch for RAre PP-neutrinos In Scintillator) [arXiv: 2109.10782]
- > A precision measurement of *pp* solar neutrino flux on the few-percent level

### **JUNO PMTs**

- ✤ 17612 20-inch PMTs (75% coverage) in CD, 2400 20-inch PMTs in the veto detector
  - > 15012 20-inch MCP-PMTs, produced by NNVT, with higher PDE
  - > 5000 20-inch dynode PMTs from Hamamatsu, with better TTS
- 25,600 3-inch PMTs (3% coverage) in CD to ensure energy resolution and charge linearity **\***
- All PMTs have been produced, tested, and instrumented with waterproof potting \*



Acrylic cover



Stainless Steel cover



**Contribution ID 91** 

33

# **PMT Performance**



#### Dark Counting Rate, DCR



|                         | LPMT (20                   | -inch)       | SPMT (3-inch)                   |     |  |
|-------------------------|----------------------------|--------------|---------------------------------|-----|--|
|                         |                            | Hamamatsu    | NNVT                            | HZC |  |
| Quantity                | 5000                       | 15012        | 25600                           |     |  |
| Charge Collection       | Dynode                     | МСР          | Dynode                          |     |  |
| Photon Detection Effic  | 28.5%                      | 30.1%        | 25%                             |     |  |
| Mean Dark Count Rate    | Bare                       | 15.3         | 49.3                            | 0.5 |  |
| [kHz]                   | Potted                     | 17.0         | 31.2                            | 0.5 |  |
| Transit Time Spread (σ  | ) [ns]                     | 1.3          | 7.0                             | 1.6 |  |
| Dynamic range for [0-10 | [0, 100]                   | PEs          | [0, 2] PEs                      |     |  |
| Coverage                | 75%                        | ,<br>)       | 3%                              |     |  |
| Reference               | <u>Eur. Phys. J. C (20</u> | 022) 82:1168 | <u>NIM.A 1005 (2021) 165347</u> |     |  |



DCR/Khz

- Mass testing was done with the commercial electronics
- With JUNO's electronics, MCP-PMTs present the similar DCR with HPK's

Good radiopurity control on raw material, reduced by 15% compared to the design



| Singles (R < 17.2 m, E > 0.7 MeV) | Design [Hz] | Change [Hz] | Comment                                         |
|-----------------------------------|-------------|-------------|-------------------------------------------------|
| LS                                | 2.20        | 0           |                                                 |
| Acrylic                           | 3.61        | -3.2        | 10 ppt -> 1 ppt                                 |
| Metal in node                     | 0.087       | +1.0        | Copper -> SS                                    |
| PMT glass                         | 0.33        | +2.47       | Schott -> NNVT/Ham                              |
| Rock                              | 0.98        | -0.85       | 3.2 m -> 4 m                                    |
| Radon in water                    | 1.31        | -1.25       | 200 mBq/m <sup>3</sup> -> 10 mBq/m <sup>3</sup> |
| Other                             | 0           | +0.52       | Add PMT readout, calibration sys                |
| Total                             | 8.5         | -1.3        |                                                 |

With great efforts on onsite cleanliness control, the cleanliness in the hall reaches better than Class 100,000 and radon concentration in the air < 100 Bq/m<sup>3</sup>



### JHEP 11 (2021) 102

# **Radiopurity Control during LS Filling**



4. Water/LS filling

Pure water

### **\* JUNO** was approved in 2013

- **Civil construction done, 2015 2021**
- Detector installation started in 2022, will be completed in 2023
- **\*** Filling will start in 2024
- Lots of technical issues have been addressed during the civil construction and detector installation
- **\*** Installation going smoothly



More information, refer Xiaoyan Ma and Xiaonan Li's talks on this Monday



# **JUNO-0**νββ

- \* JUNO offers an unique opportunity to search for 0νββ after completion of mass ordering measurements (~2030)
  - ➤ Large target mass: 20 kton LS → 100-ton scale isotope loading e.g., Tellurium, no enrichment (~34%  $^{130}$ Te), cost effective
  - Low background
  - Energy resolution < 3% @ 1 MeV</p>
  - ➔ Potential to explore normal mass ordering parameter space of Majorana neutrino mass

### Critical R&D in progress

- Te loaded LS requirements: high light yield, transparency and solubility and stability
- Background rejection (<sup>8</sup>B solar neutrinos, Te muon-spallation products)

**Contribution ID 93** 



#### <u>NIM A 1049 (2023) 168111</u>

0.6% Te-LA



Promising one-step synthetic method, capability of Te loading in LAB: > 3%
 Good stability, transparency and solubility of Te-compounds
 Quick, convenient and applicable for most diols

Current characteristics w/ 0.6% Te-loading

➢Good UV-Vis spectra for Te-LAB

- NO visible difference (Δ<sub>ABS</sub><0.002 for λ>370 nm) compared to the purified LAB (A.L. > 20m)
- NO degradation after 6 months
- ≻ Relative light output: 60%~70% w.r.t un-loaded LS



### **SBL Reactor Neutrino Experiments**



 Search for sterile neutrino, L~O(10 m) sensitive to large Δm<sup>2</sup>



| Experiment             | Solid                      | Neutrino-4    | PROSPECT (II)              | STEREO        | DANSS         | NEOS            | JUNO-TAO        |
|------------------------|----------------------------|---------------|----------------------------|---------------|---------------|-----------------|-----------------|
| Power [MW]             | 80                         | 100           | 85                         | 58            | 3,100         | 2,800           | 4,600           |
| Baseline [m]           | 6 – 9                      | 6 – 12        | 7 – 9                      | 9 – 11        | 10 – 13       | 24              | ~44             |
| Detector mass [t]      | 1.6                        | 1.5           | 4                          | 1.7           | 0.9           | 1               | 2.8             |
| Detector<br>technology | Seg.<br><sup>6</sup> Li-PS | Seg.<br>Gd-LS | Seg.<br><sup>6</sup> Li-LS | Seg.<br>Gd-LS | Seg.<br>Gd-PS | Unseg.<br>Gd-LS | Unseg.<br>Gd-LS |
| Energy resolution      | 14%                        | 25%           | 4.5%                       | 7%            | 34%           | 5%              | < 2%            |
| Overburden [mwe]       | 8                          | 3.5           | 0.5                        | 15            | 50            | 20              | 10              |
| S/B                    | 1/3                        | 0.54          | 1.4                        | 1.1           | 58            | >20             | 10              |

**\*** Close to the reactor core, ~10 m

### **\*** Constraints from the reactor site

➤ Limited space and floor load → small detector size (a few tons) and limited shielding

Strict safety regulation → detector materials with high flash point, less toxicity, etc

### **\*** Large backgrounds

Shallow overburden (~10 mwe) → high muon rate and cosmogenic backgrounds
 Limited amount of shielding → high fast neutron flux and high radioactivity

### **I K E resolution**

≻LEU reactor cores ~ 3 m → larger L/E smearing ~ 10%, powerful reactor

➤ HEU reactor cores ~ 0.5 m → segmented detector, smaller L/E smearing ~ 2%, less powerful reactor

# **NEUTRINO-4 and STEREO**

- Movable segmented detector, optically separated
  - 50 cells = 10 rows × 5 column, 22.5 × 22.5 × 85 cm<sup>3</sup> each
- **\*** BC-525 + 0.1% Gd, Single PMT readout, active/passive shielding
- \* 4× detectors  $\rightarrow$  3× larger volume, double PMT readout
- \* New LS with PSD capability  $\rightarrow$  4× less correlated bkg
- \* More Gd  $\rightarrow$  4× less accidental bkg



# **PROSPECT-I** and **II**



# **NEOS/NEOS-II**

source

<sup>137</sup>Cs

<sup>60</sup>Co





Ratio to 1st Data Point <sup>22</sup>Na 0.9 252Cf <sup>208</sup>TI 8.0 PoBe 0.7 0.6 0.5⊑ 0 200 400 600 Time [day]  $^{252}$ Cf n-capture time parameter ( $\mu$ s) 10.5  $7.8 \rightarrow 10.4 \ \mu s / 583 \ days$ 10.0 9.5 9.0 8.5 8.0 7.5 300 100 200 400 500 600 Days since 19-Sep-2019

1.0

- ✤ 0.5% Gd-LS with PSD, NEOS-I started data taking from 2015 to 2016
- **Replaced with new LS in NEOS-II, due to large LS aging effect**
- ✤ NEOS-II data taking completed, 2018 ~ 2020, 45/388/67 days, reactor off/on/off
- **\*** Both chemical and optical stabilities seem not good, due to high Gd concentration

### Landscape of Sterile Neutrinos and Prospects



#### Modified by M. Licciardi from arXiv:2203.07214

BEST confirmed Gallium deficit, but seems no oscillation over baseline

#### 45

# JUNO-TAO or TAO

- Taishan Antineutrino Observatory (TAO), a satellite experiment of JUNO, a 2.8 t Gd-LS detector
- ✤ Full coverage of SiPMs (10 m<sup>2</sup>) w/ PDE > 50%
- ✤ LY: ~4000 p.e./MeV, resolution: < 2% @1 MeV</p>
- ✤ Operated at -50 °C, low temperature LS
- **\*** Under construction, online in 2024

- Provide reference spectrum for JUNO to boost NMO sensitivity
- Provide a benchmark to examine nuclear database, first time to measure fine structures
- Measure isotopic neutrino spectrum
- \* Sterile neutrino search



### **Predicted Performance of TAO**



|                                | Chooz | Palo<br>Verde | Daya Bay | D-Chooz | RENO | KamLAND | Borexino | SNO+ | JUNO   | NEOS<br>(II) | Stereo | Prospect (II) | Neutrino-4 | JUNO-TAO |
|--------------------------------|-------|---------------|----------|---------|------|---------|----------|------|--------|--------------|--------|---------------|------------|----------|
| Baseline                       | м     | м             | М        | М       | М    | L       |          |      | м      | S            | S      | S             | S          | S        |
| Mass (t)                       | 5     | ~11           | ~20      | ~8      | ~16  | 1000    | 278      | 780  | 20,000 | 1            | 1.7    | 4 (~5)        | 1.5        | 2.8      |
| Energy<br>Resolution<br>@1 MeV | ~9%   | ~20%          | ~8%      | ~7%     | ~7%  | 6.5%    | 5%       | ~5%  | 3%     | 5→7%         | ~7%    | ~4.5%         | 25%        | < 2%     |
| Light Yield<br>[p.e./MeV]      | ~130  | ~25           | ~160     | ~230    | ~250 | 250     | 511      | ~520 | ~1500  |              | ~350   | 500           | ~16        | ~4000    |

### **Low Temperature Gd-LS**

#### NIM A 1009 (2021) 165459



## **SiPMs**

- \* All SiPM tiles have been produced and delivered by HPK, 4100 pcs
- ✤ 3/4 of them completed mass tests at IHEP
- ✤ 3 steps mass testing
  - Visual check
  - **>** Burn-in test at room temperature for 2 weeks
  - > Mass test at -50 °C for each channel (65,600)











### **Copper Shell Fabrication**

### A non-trivial task, 2 m diameter, 28 mm thickness (12 mm after machining), took 2 years to successfully make it



# Casting

completed

Welding

Welding completed



**PTFE coating** 

8 pcs for each

semi-sphere

Sandblasting

Degreasing

**Machining done** 

**Turning & milling** 

# LS-based Solar Neutrino Experiment -- BOREXINO

- \* A successful LS-based solar neutrino experiment [2007 2021]
- ✤ Deep underground at Gran Sasso, ~3800 mwe
- ✤ Inner detector, enclosed by a stainless steel sphere
  - **Two nylon vessels (0.125 mm thick)**
  - ➤ ~278 t LS (PC+1.5 g/L PPO) in the inner vessel
  - > 2 shells of buffer (PC + 2.8 g/L DMP light quencher)Internal
  - 2212 8-inch PMTs, 1828 PMTs with light concentrators
- **\*** Outer detector
  - > Water Cherenkov detector with 208 PMTs
- \* A long R&D phase to address the radiopurity issue
  - Prototype, counting test facility [NIM A 440 (2000) 360]
- \* A big achievement of radiopurity in LS
  - > <sup>238</sup>U < 9.4 × 10<sup>-20</sup> g/g, <sup>232</sup>Th < 5.7 × 10<sup>-19</sup> g/g
  - ➢ <sup>210</sup>Bi < 10.8 cpd/100ton, the major CNO background</p>



NIM A 600 (2009) 568–593

## **Radiopurity Control**



# **Radiopurity Control**



### **Major Results of BOREXINO**





- First direct measurements of <sup>7</sup>Be, pep, pp, and CNO neutrinos
- Important datasets to study the neutrino oscillation, MSW effect and SSM
- Insight to the solar metallicity problem, disfavor SSM-LZ at 3.1σ by combining CNO + <sup>7</sup>Be + <sup>8</sup>B flux

A 780 t deep underground (6010 m.w.e.) LS detector at the SNO lab

**Multi-purpose:** 0vββ of <sup>130</sup>Te, solar neutrinos, geo- and reactor neutrinos, supernova, exotic searches





- natTe loaded LS in a 12-m diameter acrylic sphere with a hold-down rope-net (polyethylene fibres)
- ✤ 9362 8-inch PMTs with light concentrators, effective coverage ~54%
- ~2.4 m shielding with ultra-purity water (UPW) from target to PMTs (7000 t)
- ✤ Three operating phases
  - ➢ UPW phase: Done, May 2017 − July 2019
  - LS phase: 2.2 g/L PPO in LAB, data taking ongoing
  - ▶ 0νββ phase: Te-loading in 2024, 0.5% (1.3 t <sup>130</sup>Te) in the 1<sup>st</sup> step ( $T_{0νββ}^{1/2} \sim 2.1 \times 10^{26} y$ , 5 yr)
- ✤ R&D on higher (up to 3%) Te-loading ongoing

# **Purification Plant**

# Target of Te-LS radiopurity $(0\nu\beta\beta)$ : $< O(10^{-15}g/g)$

1. UPW system 2. LS purification system 3. Tellurium process system

### LS purification system

- ♦ Leakage:  $< 1 \times 10^{-6}$  mbar  $\cdot L/s$ , surface treatment: electropolished 316L stainless steel
- Purification plant:
  - multi-stage distillation
  - Water extraction
  - Gas stripping
  - Metal scavenging
- ✤ Being recirculated after filling
  - ➤ 1 volume per 100 hours
- ✤ Measured RI in the LS phase
  - > <sup>238</sup>U: 4.7 × 10<sup>-17</sup> g/g
  - ≥ <sup>232</sup>Th:  $5.3 \times 10^{-17}$  g/g



Telluric acid

purification



- \* Neutrino opens a window to new physics beyond the Standard Model
- \* LS-based detectors played a critical role in neutrino discovery and oscillation parameter measurements in the past
- \* A bunch of LS-based experiments are going to be online to address the open questions of neutrinos
  - Small → large (JUNO 20kt, Theia 25kt/100kt), along with many technical challenges
  - ➢ Precise energy measurements ~10%@1 MeV → < 3% (JUNO/TAO), where is the limit?</p>
  - **>** For metal loading (Gd, Te, etc), More R&D required to achieve high concentration
- \* Many new ideas proposed to enhance LS detector capability and reduce costs
- **\*** A bright future along with challenges

