Superconducting Technology for Future Colliders and Detectors

Akira Yamamoto

(KEK and CERN)

A plenary talk, TIPP 2023, Cape Town September 8, 2023

Acknowledgements

Special thanks to:

G. Ambrosio, G. Apolinari, S. Atieh, A. Ballarino, O. Bruning, S. Belomestnykh, L. Bottura, S. Calatroni, B. Cure, A. Devred, F. Bertinelli, M. Garlasche, J. Gao, R. Geng, S. Gourlay, H. Ito, Y. Makida, M. Mentink, S. Michizono, T. Ogitsu, M. Omet, P. Prestemon, L. Rossi, G.J. Rosaz, K. Sasaki, A. Siemko, E. Todesco, K. Umemori, Q. Xu, M. Yamanaka, J. Zhai, and A. Zlobin,

for their kind cooperation and information provided for preparing this talk.

References:

Overview:

• V. Shiltsev and F. Zimmermann, Modern and Future Colliders, Rev. Mod. Phys. 93 (2021) 015006.

LDG Report for ESPPU-2020: European Strategy for Particle Physics Update (ESPPU-2020): https://arxiv.org/abs/2201.07895

• N. Mounet (Editor), "European Strategy for Particle Physics, Accelerator R&D Roadmap", CERN Yellow Report, CERN 2022-001. (2022),

LDG: Community Report on the Accelerator Roadmap at Acc. R&D Workshop, INFN Frascatti, July 2023: https://agenda.infn.it/event/35579/

- U. Bassler, "A portfolio of HEP Colliders",
- G. Bisoffi and P. Mcintosh, et al., "RF achievements and plans",
- A, Siemko, "High field magnet R&D programme status of HFM within the accelerators roadmap".
- J.G. M.Jimenez, "Magnet developments for future physics programmes",

FCC-week 2023, June 7: https://indico.cern.ch/event/1202105/timetable/

- B. Auchmann, "Future HFM R&D directions".
- A. Ballarino, "HTS developments".

US Snowmass'21 Report (2023) : https://iopscience.iop.org/journal/1748-0221/page/snowmass21

- T. Roser et al., "On the feasibility of future colliders", Snowmass'21 Implementation Task Force, 2023 JINST 18, P05018 (2023).
- S. Belomestnykh amd S. Posen, I., "Key directions for research and development of superconducting radio frequency cavities", arXiv:2204.01178.
- S. Belomestnykh et al., "Acceleraor technology R&D: Report of AF7-rf Topical Group for Snowmas'21, arXiv:2208.12368
- M. Mentink, K. Sasaki et al., "Superconducting detector magnets for high energy physics", 2023 JINST 18, T06013 (2023).

US-P5 Townhall (2023): https://indico.slac.stanford.edu/event/7992/overview

- S. Gourlay, T. Raubenheimer, and V. Shiltsev , "Snowmass'21 Accelerator Frontier"
- S. Belomestnynkh, "ILC and SRF " (not uploaded).
- S, Prestemon, "Magnets for energy frontier colliders", US-P5 Townhall meeting, May 2023.

AFAD-2023:

• K. Umemori, "Development of SRF technology at KEK-iCASA" Asian Forum for Accs & Detectors 2023.

Outline

Introduction :

• Future Colliders baaed on Superconducting (Sc) Technology

Sc Technology for Colliders:

- Sc RF Cavities
- Sc Magnets

Sc Technology for Detector Magnets

• Summary

Frontier Accelerators based on SC Technology

Superconductor Applications for Accelerator Magnet and RF

Material	T _c [K]	B _c (0) [T]	B _{c1} (0) [T]	B _{sh} (0) [T]	B _{c2} (0) [T]
Nb	9.2	(0.25)	0.18	0.21	0.28
NbTi	~ 9.3		0.067		11.5 ~ 14
Nb₃Sn	~ 18.3	(0.54)	(0.05)	0.43	28 ~30
Application				RF	Magnet

Advances in SRF Technology for Accelerators

Advances in SC Magnets for Colliders

Future Colliders based on Sc Acc. Technology

Linear Colliders:

ILC e+e- (250 GeV \rightarrow 1 TeV) :

- SRF: for High-Q (10¹⁰) and high-G (31.5 \rightarrow 45 MV/m) ٠
- Highest efficiency and AC-power balance • CLIC e+e- (380 GeV → 3 TeV) :
- NRF: Very high G (100 MV/m)

Circular Colliders :

FCC-e+e- (90 → 350 GeV):

- SRF: (400 800 MHz, 20 ~ 30 MV/m) FCC-hh (80 -120 TeV):
- HF SC magnets (SCM: **14 20 T**) ٠
- SRF: (400, 800 MHz) •

CEPC e+e- (90 - 240 GeV):

- SRF: (0.65, 1.3 Ghz, 5 30 MV/m) SPPC- pp (75 - 125 TeV):
- HF SCM (12 -20 T)

EIC Ion•e-(275/100 GeV/n v.s. 18 GeV, approved)

SCM and SRF •

MC $\mu + \mu - (3 - 14 \text{ TeV})$

SRF (1, 3 GHz, 30 MV/m, HF solenoid (\geq 40 T, Dipole, 16 T). ٠

10

Courtesy:

A new/revived Direction for Muon Collider:

Courtesy: D. Schultz, Luca Bottura, A. Grudiev

Outline

• Introduction :

- Future Colliders, relying on <u>Superconducting</u> (SC) Technology

• SC Technology for Colliders/Accelerators:

- Superconducting RF Cavities
- Superconducting Magnets
- Superconducting Detector Magnets (SC-DM)
- Summary

Features of Superconducting RF (SRF)

Features:

- High Q₀ (> 10¹⁰):
 - Small surface resistance \rightarrow nearly zero
 - Efficient acceleration
- Low Freq. (~ 1GHz) → Long beam pulses :
 - intra-pulse feedback (in **1 ms** pulse)
- Larger aperture(~ 70 mm ϕ) :
 - better beam quality
 - lower wake-fields

Drawback:

Cryogenics required

Advances in L-band (~ 1GHz) SRF Cavity Gradient

R.L. Geng, Physica C: Superconductivity, V441, Issues 1–2 (2006), P.145-150, ISSN 0921-4534,

R. L. Geng, Y. Fuwa, H. Hayano, H. Ito, Y. Iwashita, and Z. Li, Proc. SRF'19, MOP064, Dresden (2019) pp. 222-226.

Courtesy: S. Michizono

~ 1.3 GHz SRF Accelerators, worldwide

European XFEL (in operation, 2017~)

800 cavities 100 CMs 17.5 GeV (Pulsed)

ESS (0.8 GHz) (under construction)

(under construction)

SHINE

75 CMs

~600 cavities

8 GeV (CW)

S1 Global: DESY, Fermilab, KEK 8-cavity string Test, 2010

ILC (planned)

8,000 9-cell cavities 900 CMs 2 x 125 GeV (Pulsed)

LCLS-II -HE (under construction)

-280+200 cavities -35+25 CMs - 4 +4 GeV (CW)

JLab-CEBAF(1.5 GHz) (in operation)

40 CMs 6~12 GeV(CW)

Advances in ~ 1 GHz, SRF Accelerators

Prospects for High-Performance & Cost Reduction

High Performance: High -Gradient (-G) and –Q: **Nb-Cavity:**

- Shape cavities will be limited by ~ 60 MV/m, as B_{sh} ~ 200 mT
 - Tesla Type, Surface Process to reach G \sim 50 MV/m, Q = \sim 3E10 : - Surface treatment, Heat treatment, Thin film coating etc...
- **Traveling Wave** (TW), Acc. structures
 - Expecting Effective Gradient to be ~ 70 MV/m or higher
- Nb3Sn-Cavity:
- Gradient limit expected to be ~ 80 MV/m, at B_{sh}~ 430 mT

Cost Effective Production (for Nb Cavity):

- Larger/Medium Grain Nb material: clean and cost-reducted
- Cu-hydroforming followed by thin-layer SC coating

A. Yamamoto, 2023/09/08

"ILC: The International Linear Collider -- Report to Snowmass 2021", Aryshev et al., arXiv:2203.07622 (15 March, 2022)

For High Performance: Surface Treatment

For High Performance: Mid-T. Furnace Baking

Courtesy; H. Ito, K. Umemori (SRF2023)

- Mid-T Baking: Easy to achieve high-Q
- Oxygen diffusion is important process to control the performance of Nb cavity.
- Suppression of HFQS is important to reach high gradient.

- Q value 1.4 times higher than that of standard treatment, and
- Eacc performance comparable to standard treatment.

A Highlight: World's First Mid-T High Q, 1.3 GHz Cryomodule

- IHEP made a 1.3 GHz cryomodule, with 8 mid-T baking, 9-cell cavities
 - w/ individual vertical tests showing high average <Q₀> 4.5E10 at 16 ~ 21 MV/m.
- Module horizontal test shows usable gradient and Q₀ exceeds CEPC and CW FEL projects specs, and first time demonstrates excellent performance and distinct advantage of mid-T baking, in a module.

Parameters	IHEP Mid-T CM	LCLS-II (SHINE, S ³ FEL) Spec	LCLS-II-HE Spec	CEPC Booster Higgs mode Spec
Avg. usable CW <i>E</i> _{acc}	> 23 MV/m	2.7×10 ¹⁰ @	2.7E10 @ 20.8 MV/m	3.0×10 ¹⁰ @ 21.8 MV/m
Avg. Q ₀ @ 21 MV/m	3.6×10 ¹⁰	16 MV/m		

Courtesy: H. Padamsee, S. Belomestnykh

For High Performance: A new concept for SRF Acc. : Standing → Travelling Wave

- **Red:** standing wave → High Peak Fields
- Green (acceleration) and Blue (return): travelling Waves → Lower peak fields
- Note: Guide blue wave in a return wave-guide to avoid SW peak fields – attached to both ends

A. Yamamoto, 2023/09/08

Waveguid

 $B_{sh}(0)$

[T]

0.21

0.43

0.31

For High Performance: Nb₃Sn coating on Nb

SRF cavity

B_{sh} = strict limit for SRF

Bs_{sh-Nb}: 210 mT
Bs_{sh-Nb3Sn}: 430mT

Nb₃Sn progress at Fermilab. S. Posen et al., SUST, 34, 02507 (2021)

T_c

[K]

9.2

18.3

39

0.18

(0.05)

(0.03)

Material

Nb

Nb₃Sn

MgB₂

Nb₃Sn Potential in high-G future

For Cost Effective Production:

Courtesy: M. Yamanaka, M. Carlasche, G.J. Rosaz, et al.

Cu full-seamless cavity + Thin-film coating

New Cu Hydroforming (succeeded)

Thin-film Coating (in progress) High Power Impulse Magnetron Sputtering (HiPIMS)

 \rightarrow

A. Yamamoto, 2023/09/08

- Exploring production cost reduction for large series,
- Saving Cryogenics \rightarrow operational cost reduction

24

Outline

- Introduction :
 - Future Colliders, relying on <u>Superconducting</u> (SC) Technology

SC Technology for Colliders:

- Superconducting RF Cavities (Acc. Structure)
- Superconducting Magnets
- Superconducting Detector Magnets (SC-DM)
- Summary

Nb₃Sn, NbTi Superconducting Magnets and HILUMI MgB₂ SC Link for HL-LHC Courtesy, E. Todesco, A. Ballarino,

MgB₂ SC Link for HL-LHC IR Region Magnets

CERN and US-LARP/AUP Cooperation for Nb₃Sn IR Quadrupoles

- US-LARP/AUP Collaboration taking a critical leading role for:
 - establishing Nb3Sn magnet-technology up to B > 11 T and L = 4 m, with:
 - overcoming the very brittle feature (like ceramic),
 - developing Al-ring and Bladder & Key (B&K) technology
 - for rigid support of *magnetic pressure* proportional to *j*•*B*,
- CERN leading HL-LHC global collaboration and maturing the Nb₃Sn acc. magnet technology with:
 - establishing the Nb3Sn technology up to B > 11 T and L = 7 m
 - overcoming the difficulty and sensitivity critical with longer magnets,
 - integrating acc. operation, to prepare for future energy frontier colliders

Structure based on Al-ring and B&K loading

A. Yamamoto, 2023/09/08

LARP

Courtesy: E. Todesco, A. Devred

Extreme Efforts for establishing the Technology to reach 7 m long Nb₃Sn Magnets

- Route-cause analysis on:
 - Performance limitation and instability
- Magnet/Coil loading:
 - Bladder & Key process upgraded for pre-stressing
 - Stress-overshoot minimized during magnet loading.
- Cold mass assembly:
 - Shell welding condition optimized,
 - Longitudinal friction eliminated between magnet (coil, Yoke, Al-ring) and outer-shell (St. St.)
- Ultimate care of handling and monitoring:

Kev

operation

- Coil 124

20

QL Q2a Q2b, Q3

40

D1

MBXF

80

MCBXF

60

Nb₃Sn HL-LHC IR Quadrupoles

- First 2-magnet cold-mass LQXF01 assembled &
- tested successfully in May 2023, and
- reached the nominal current + 300A at 1.9 and 4.2 K

Nb₃Sn HL-LHC IR Quadrupoles

MQXF-BP3 and –B02 tested at CERN:

- Reachding I-nom.+ 300 A at 1/9 K and $T_{\!c}.$
- Experiencing 3 thermal cycles w/o degradation

HL-LHC Nb₃Sn Program demonstrated ≥ 11 T acc. magnet up to 7 m, as an important step for the future !!

Future Hadron Colliders based on SC Magnet Technology

FCC-hh (80 – 120 TeV):

• HF magnet: 14 - 20 T

SPPC- pp (75 - 125 TeV):

Figure 7-4. Cross section of the four main dipele design options explored within the EuroCirCol program. From left to right, cos-theta (INFN), bock (CEA), common coil (CIEMAT), and CCT (PSI) designs.

Table 7-1. Parameters of design options for the 16 T arc dipole.							
Parameter	Cos-theta	Block-coil	CCT	Common-coil			
Peak field on conductor (T)	16.40	16.73	16.35	16.57			
Operating current (A)	11441	10176	18135	15880			
Inductance @ 16 T (mH/m)	38	48	18	26			
Outer yoke diameter (mm)	660	616	750	650			
Mass of conductor (kg/m)	115	120	148	145			

S. Izqioerdp Ber, idez. G. Sabbi, A.V. Zlobin, arXiv: 2208.13349, v2 (2022)

Courtesy: L. Bottura, G. De Rijk, A. Devred, A. Zlobin

Advances in Nb₃Sn HF Magnet Development

A. Yamamoto, 2023/09/08

Quench # 41

Courtesy: E. Todesco, A. Godeke, A. Siemko

Mechanical Constraint to consider Operating Margin

Courtesy: E. Todesco, A. Godeke,, A. Zlobin

Mechanical Constrain to consider Operating Margin

Courtesy: A. Zlobin

Stress management in HF (14+ T) acc. magnets

- Stress Management (SM) concept:
 - Coil blocks or individual turns are placed in their own compartments inside a strong coil structure
 - A significant portion of the Lorentz forces in coil blocks is transmitted to the magnet's external mechanical structure, reducing stress build-up.
- Effect: Stress management helps minimizing coil geometry deformations (field quality) and superconductor *I_c* degradation (magnet margins)

- SM concept applications:
 - Large-aperture dipole and quadrupoles (e.g. 2nd EIC IR, Muon Collider SR and IR)
 - Very high-field magnets with brittle HTS/LTS coils (see HFM programs in US and EU)

Courtesy, A. Ballarino, A. Siemko

Future Prospect: HTS anticipated at B ≥ ~ 16 T

Advantages: Higher Jc at Hifh Field, Larger T-margin, Cryogenic Efficiency, ,,, Challenges: Mechanical sensitivity, Magnetisation, AC-loss, Quench protection, ,,

A Highlight: HTS (IBS) and Magnet in China

Iron Based Superconductor (IBS) development in China., toward 12 --> 24 T

Courtesy, A. Ballarino, Q. Xu, Y. Ma

Y. Mao et al., Supercond. Sci. Technol. 31 (2018) 015017

High-J_c Ba-122 HIP wires improved by GR+HIP a packing Ba_uK_v, Fe₂A₅ powder Ag tube groove rolling Ba122/Ag+Cu groove rolling

Presented by D. Wang and Y. Ma, at HiTAT Workshop, March 2023, CERN A. Yamamoto, 2023/09/08
Courtesy: A. Siemko

Directions for HFM in LDG Program

- Development of new HFM grade Nb₃Sn conductor with
 - target Jc of 1500 A/mm2 @ 16 T and enhanced mechanical properties
- Demonstration of the 12 T Nb₃Sn technology matured
 - for collider-scale production through 12 T dipole magnet design, to establish industrial production readiness with cost reduction:
- Demonstrators of the Nb₃Sn technology potential above 14 (+) T:
 - Single aperture graded conductor block coil demonstrator (CEA)
 - Block coil demonstrator with coil stress management, targeting 16 T (CERN)
 - Common coil demonstrator (CIEMAT)
 - **Common coil** demonstrator with coil stress management, targeting 16 T (PSI)
- R&Ds for Hybrid (Nb3Sn+HTS) magnets targeting 16 T and beyond.

Personal Scope for HFM Development Timeline

for reaching Accelerator Construction and Operation

Timeline	,	~ 10 Short-model R&D Proto/Pre- Short-model R&D		~ 20					
12~14T <mark>Nb₃Sn</mark>	Short-model R&D	Proto/Pro	e-series	Constr	ruction	Opera	ation		
14+ (~16)T Nb ₃ Sn (+HTS)	Short-model F	t-model R&D Proto/Pr Short-model R&D		Prototype/Pre-series			Construction		
> 15 ~ 16 T <mark>Nb₃Sn + HTS</mark>	Fundamental a	nd Short M	lodel R&D		Prototype	/Pre-series			
Note: LHC experi;	ience: NbTi (10 T) R&D st > (8.3 T) Production star →	tarted in 1980 ted in late 19 LHC Operation	D's 990's, in ~ 15 on started in	<mark>years</mark> later 2000's,	in ~ 25 years				

Personal Scope for HFM Development Timeline

for reaching Accelerator Construction and Operation

Outline

• Introduction :

- Future Colliders, relying on <u>Superconducting</u> (SC) Technology

- SC Technology for Colliders:
 - Superconducting RF Cavities (Acc. Structure)
 - Superconducting Magnets
- Superconducting Detector Magnets (SC-DM)
- Summary

Advances in SC Detector Magnets for Colliders

Advances in Detector Solenoids

Experiment	Laboratory	<i>R</i> (m)	<i>B</i> (T)	I (kA)	$X(X_0)$	$E/M~{\rm (kJ/kg)}$	E (MJ)	Year	Ref.
PLUTO	DESY	0.75	2.2	1.3	4.0	2.3	4.1	1972	18
ISR point 1	CERN	0.85	1.5	2	1.1	1.8	3.0	1977	19
CELLO	Saclay/DESY	0.85	1.5	3	0.6	5.0	7.0	1978	20
PEP4/TPC	LBL/SLAC	1.1	1.5	2.27	0.83	7.6	11	1983	21
CDF	KEK/FNAL	1.5	1.6	5	0.84	5.4	30	1984	22
TOPAZ	KEK	1.45	1.2	3.65	0.70	4.3	19	1984	23
VENUS	KEK	1.75	0.75	4	0.52	2.8	11.7	1985	24
AMY	KEK	1.2	3	5	N/A	N/A	40	1985	25
CLEO-II	Cornell	1.55	1.5	3.3	2.5	3.7	25	1988	26
ALEPH	Saclay/CERN	2.75	1.5	5	2.0	5.5	136	1987	27
DELPHI	KAL/CERN	2.8	1.2	5	1.7	4.2	110	1988	28
ZEUS	INFN/DESY	1.5	1.8	5	0.9	5.2	10.5	1988	29
H1	RAL/DESY	2.8	1.2	5	1.8	4.8	120	1990	28
BESS	KEK	0.5	1.2	0.38	0.2	6.6	0.25	1990	30
WASA	KEK/Uppsala	0.25	1.3	0.9	0.18	6	0.12	1996	31
BABAR	INFN/SLAC	1.5	1.5	6.83	0.5	N/A	27	1997	32
D0	FNAL	0.6	2.0	4.85	0.9	3.7	5.6	1998	33
BELLE	KEK	1.8	1.5	4.16	N/A	5.3	37	1998	34
ATLAS-CS	KEK/CERN	1.25	2.0	7.8	0.66	7.1	38	2001	35
BESS-polar	KEK	0.45	1.0	0.48	0.156	9.2	0.34	2005	36
CMS	CMS/CERN	3.0	4.0	19.5	N/A	12	2600	2007	37
BESIII	IHEP (China)	1.45	1.0	5	N/A	2.6	9.5	2008	38
CMD-3	BINP	0.35	1.5	1	0.085	8.2	0.31	2009	39

A Spin-out of the AI-SC Technology

Muon (g-2) Storage Ring Magnet in US-Japan Cooperation (KEK-BNL)→ Fermilab based on Al-stabilized SC Technology

Status: LHC, ATLAS and CMS Detector Magnets

Motivation:

- Preparing SC Detector Magnets technology,, for future Colliders
- Re-establishing: Al-stabilized SC technology, as a critical issue

Future Colliders and Physics Experiments Expected

COMET, Mu2e

Other phys. Experiments: Mu2e, G-2 (fnal), Comet, G-2)J-Parc), BabyAXIO, AXIO (desy)

Future Particle Detector Plans proposed

Subject / Project	Institutes in charge		Reserved to the second			ned rters g sr forward hegian wm Yoke monit are x Detect
The Electron-Ion Collider (EIC)	BNL / JLab	FIC				
International Linear Collider –ILD (ILC-ILD)	ILC-IDR	EIC	ALICE-3			
International Linear Collider - SiD (ILC-SiD)	SLAC			Mars Main Solamid IICAL FCAL Mayn-sharehers shale	Anti-Proton	
Compact Linear Collider (CLiC)	CERN			1. ar Beam Versea Verse Linder Terrent Tole Reddena stadi	Architecture Archi	
Leptron Future Circular Collider (FCC-ee)	CERN			Fig. 4.4 Proposed PEC-bit detector base line legent		
Hadron Future Circular Collider (FCC-hh)	CERN				Mar 100	
Circular Electron Positron Collider (CEPC)	IHEP	FCC-ee	CEPC	FCC-hh	PANDA	
A Large Ion Collider Experiment 3 (ALICE-3)	CERN					
Muon to Electron (Mu2e)	ermilab					
Muon Experiments in Japan	KEK		Mu2e	and the second sec	Comet	
anti <u>P</u> roton <u>AN</u> ihilation at <u>Da</u> rmstadt (PANDA)	GSI					
Baby International Axion Observatory (BabyIAXO)	DESY	27		~6 m		
MAgnetized Disc & Mirror Axion eXp. (MADMAX)	CEA for DESY					
Alpha Magnetic Spectrometer 100 (AMS-100)	Rheinish West.			9 Tin 135 m		
		BabyIAX0		MadMax	AMS100	

BabyIAX0

Future Particle Detector Plans proposed

Subject / Project		Institutes in				Schuld Maye
	Experiments	Site	B [T}	Size, ID x L [m]	Note	
	EIC-Detector	BNL	1.5~3	2.5~3.2 x 8.5	Solenoid	The Here Deter
The Electron-Ion Collide	ILC-ILD	Japan	4	6.88 X 7.35	Solenoid	LD/SiD CLIC
International Linear Colli	ILC-SiD	Japan	5	5 X 5	Solenoid	
International Linear Colli	CLIC-ILD	CERN	4	6.8 X 8.3	Solenoid	Anti-Proton
Compact Linear Collider	CLIC-SiD	CERN	5	5.4 X 6.5	Solenoid	Architecture Demositi
Leptron Future Circular	CLIC	CERN	4	7 X 8.3	Solenoid	
Hadron Future Circular (FCC-ee IDEA	CERN	2	4.2 X 6.0	Solenoid	the transformed to the test of tes
Circular Electron Positro	FCC-ee CLD	CERN	2	7.4 X 7.4	Solenoid	PANDA
A Large Ion Collider Exp	FCC-hh	CERN	4	10 X 20	Solenoid	
Muan to Electron (MuQa	ALICE-3	CERN	2	3 x 7.5	Solenoid	- New -
	M2e	Fermilab	5 ~ 2.5	1.5 X 4	Production	Comot
Muon Experiments in Ja	Muon-g-2	Fermilab	1.473	0.09 X 14.22 - 2π	Storage solenoid	Comer
anti <u>P</u> roton <u>AN</u> ihilation at	COMET	J-PARC	5 ~ 3	1.3 X 1.6	Capture Sol.	
Baby International Axion	Muon-g-2	J-PARC	3	0.66 X 0.33	Solenoid	STATE1/
MAgnetized Disc & Mirro	BabyAXIO	DESY	2	0.7 X 10	D. Racetrack	
Alpha Magnetic Spectro	ΙΑΧΟ	DESY	5 - 6	5 X 25	Toroid	A THURS
	Panda	GSI	Institutes in Size, ID x L [m] Site B [T] Size, ID x L [m] BNL 1.5~3 2.5~3.2 x 8.5 Japan 4 6.88 X 7.35 Japan 5 5 X 5 CERN 4 6.88 X 8.3 CERN 4 6.83 X 8.3 CERN 4 7 X 8.3 CERN 4 7 X 8.3 CERN 2 4.2 X 6.0 CERN 2 7.4 X 7.4 CERN 2 3 x 7.5 Fermilab 5 ~ 2.5 1.5 X 4 Fermilab 1.473 0.09 X 14.22 * J-PARC 3 0.66 X 0.33 DESY 2 0.7 X 10 DESY 5 - 6 5 X 25 GSI 2 1.8 x 3.1 DESY 9 1.25 x 1.2	1.8 x 3.1	Solenoid	
A Vamamoto 20	Madmax	DESY	9	1.35 x 1.2	Dipole	AMS100

Al-stabilized Superconductor, reinforced, required

All future solenoids need **AI-stabilized** and reinforced superconductor:

Large solenoids → high B resulting large stored Energy, and with small Mass

 \rightarrow high E/M \rightarrow <u>reinforcement</u> crucially important

Ultimate effort for maximizing the peroformance

Urgent Near Future Programs :

AI-Stabilized SC Technology to be re-established

- NbTi/Cu SC and Cable production: remaining:
 - SC strand: industry
 - Cable: CERN, FNAL, LBNL, and industry*.

Al-stabilizer reinforcement remaining:

- · with micro-alloying and cold work remain feasible
- Industrially available in Japan.

• Al-NbTi/Cu co-extrusion technology :disappearing:

- All the experienced industrial facilities have been shut-downed and dismantled,
- Toly E. (in China) started the development with aiming for the CEPC detector solenoid. The progress sounds promising and needs to watch further progress.
- The technology shall be widely transferred to the industry to maintain production
 - capability

• EBW for conductor reinforcement: remaining:

• Technology kept at TECHMETA in France

A Critical Issue: Co-extrusion for Al-stab.SC

We need to action it, NOW ?

Urgent Action Required:

• Al-stabilized superconductor technology needs to be resumed,

> "Co-extrusion technology" of Al-stabilizer to be resumed, and

- ➤ "Hybrid-structure technology" by using electron beam welding (EBW)
- > Laboratory's leading effort very important to advance the technology
- CERN is now working for establishing a program on coextrusion process for AI-stab SC with institutional and industrial partners.

Remarks:

- It will be **needed** to investigate **backup solutions** such as:
 - soldering technology of NbTi/Cu conductor with Cu-coated Al-stabilizer, and/or CICC. ,,,
- It will be encouraged to investigate AI-stabilized HTS for specofoc applications

Outline

- Introduction :
 - Future Colliders, relying on <u>Superconducting</u> (SC) Technology

SC Technology for Colliders:

- Superconducting RF Cavities (Acc. Structure)
- Superconducting Magnets
- Superconducting Detector Magnets (SC-DM)

Summary

• Acc. SRF Technology :

- Nb-bulk (for > 1 GHz) :High-G (> 45 MV/m) and High-Q (> 3E10) w/ optimizing the surface process,
 High-G (> 50 MV/m w/ travelling wave SRF
- − Thin-Film (to be combined with Nb → Cu substrate) : New material such as NB_3Sn to improve performance to reach > 50 MV/m.

Acc. Magnet Technology:

- Nb₃Sn toward 14 + (toward 16) T, w/ higher Jc, mechanical property, field quality, training quenches,,
- <u>Nb₃Sn + HTS-insert</u>" be inevitably required, for 16 T and beyond, and cost effective HTS will be essentially required for practical accelerator applications.

• Detector Magnet Technology :

- Al-stabilized superconductor technology needs to be revived, and urgently required !
- **CERN** is acting to **re-establish the technology** in close cooperation with industry.

Superconducting technology is essential for Future Colliders & Detectors !!

Reserved

Challenges in Future Energy-Frontier Colliders

		Ref.	E (CM) [TeV]	Luminosity [1E34]	AC- Power [MW]	SRF E [MV/m] [GHz]	SCM B [T]	Major Challenges in Technology
LC	ILC	TDR update	0.25 -1	1.35, 2.7 (~ 4.9)	110, 138 (~ 300)	31.5 – 45 [1.3]		SRF cavity: High-G and high-Q Higher-G for future upgrade including new material, Nano-beam stability
ee	CLIC	CDR	0.38 - 3	1.5 (~ 6)	100 (~ 580)	72 – 100 [12]		Acc. Structure: High-precision, Large-scale production, Two-beam acceleration in a prototype scale, Precise alignment and stabilization.
СС	FCC-ee	CDR	0.09 ~ 0.38	460 ~ 31	260 ~ 350	10 – 20 [0.4 - 0.8]		SRF cavity: High-Q at < GHz, Nb thin-film Coating, Synchrotron Radiation absorption, Energy efficiency (RF efficiency).
ee	CEPC	CDR	0.046 - 0.24	32 ~ 5	150 ~ 270	20 – 40 [0.65]		SRF cavity: High-Q at < GHz, LG Nb-bulk/thin-film, Synchrotron Radiation constraint, Low-field magnet with high-precision.
сс	FCC-hh	CDR	<u>80 - 120</u>	5 ~ 30	580	tbd [0.4, 0.8]	14-20	SC magnet : High-field - <u>Nb3Sn (+HTS)</u> : high Jc, mechanical stress sustainability Energy management
hh	SPPC	CDR	75 - 125	10		tbd	12 - 24	SC magnet : High-field - <u>IBS</u> : High Jc, stress sustainability, energy management
Cc e-h	EIC							To be filled
CC mm	MC		0.12 ~ 14	0.008~33	200 ~290	30 0.8 ~1.3	10 -16 (> 40)	Short lifetime, cooling, SC magnet: High-field, RF in strong magnetic field,

ILC and the Accelerator Technology

	tantanti ta ina se te
Parameters	Value
Beam Energy	125 + 125 GeV
Luminosity	1.35 / 2.7 x 10 ¹⁰ cm ² /s
Beam rep. rate	5 Hz
Pulse duration	0.73 / <mark>0.961</mark> ms
# bunch / pulse	1312 / <mark>2625</mark>
Beam Current	5.8 / <mark>8.8</mark> mA
Beam size (y) at FF	7.7 nm
SRF Field gradient	< 31.5 > MV/m (+/-20%) $Q_0 = 1x10^{10}$
#SRF 9-cell cavities (CM)	~ 8,000 (~ 900)
AC-plug Power	111 / 138 MW

Courtesy: T. Lesiak, TIPP2023

FCC Overview

CEPC Superconducting RF System Design and R&D

- CEPC SRF system has unprecedented challenges in high RF voltage (gradient and Q), high current (power) and mode switching. Progress in 650 MHz and 1.3 GHz SRF R&D.
- TDR review in June. Will publish and release TDR in late 2023.

Bypass scheme of an RF section

High G High Q 650 MHz 1-cell Cavity
 EP treated: 2.3E10@41.6 MV/m@2 K
 Mid-T treated: 6.3E10@31 MV/m@2 K

CEPC 650 MHz test cryomodule

2x2-cell cavities, high power input couplers, HOM couplers and absorbers, tuners etc. Beam test soon.

A. Yamamoto, 2023/09/08

Collider Outer R

Collider

Booster Ring

Ring inner sig

Higgs Factory Summary (from Snowmass)

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
FCC-ee ^{1,2}	0.24	7.7 (28.9)	0-2	13-18	12-18	290
	(0.09-0.37)					
$CEPC^{1,2}$	0.24	8.3 (16.6)	0-2	13-18	12-18	340
	(0.09-0.37)					
ILC ³ - Higgs	0.25	2.7	0-2	<12	7-12	140
factory	(0.09-1)					
CLIC ³ - Higgs	0.38	2.3	0-2	13-18	7-12	110
factory	(0.09-1)					
CCC^3 (Cool	0.25	1.3	3-5	13-18	7-12	150
Copper Collider)	(0.25-0.55)					
CERC ³ (Circular	0.24	78	5-10	19-24	12-30	90
ERL Collider)	(0.09-0.6)					
ReLiC ^{1,3} (Recycling	0.24	165(330)	5-10	$>\!25$	7-18	315
Linear Collider)	(0.25-1)					
$ERLC^3$ (ERL	0.24	90	5-10	> 25	12-18	250
linear collider)	(0.25-0.5)					
XCC (FEL-based	0.125	0.1	5-10	19-24	4-7	90
$\gamma\gamma$ collider)	(0.125 - 0.14)					
Muon Collider	0.13	0.01	>10	19-24	4-7	200
Higgs Factory ³						

T. Roser et al, https://iopscience.iop.org/article/10.1088/1748-0221/18/05/P05018 A. Yamamoto, 2023/09/08

Courtesy: W. Wuensch

SRF

Superconducting (ILC)

Gradient: 31.5 to 35 (to 45) MV/m,

RF Frequency: 1.3 GHz - Large aperture gives low wakefields

Q₀: order 10¹⁰,

- low losses at cryogenic temperatures

Pulse structure: 700 µs / 5 Hz

Fabrication

- Forming

- High-efficiency RF also from long-pulse, low-frequency klystrons

A. Yamamoto, 2023/09/08

NRF

Normal conducting (CLIC)

Gradient: 72 ~ 100 MV/m

RF Frequency: 12 GHz

- High efficiency RF peak power

Q₀: order < 10⁵, - Resistive copper wall losses compensated by strong

Pulse structure: 180 ns / 50 Hz

Fabrication:

- Machining

- High-efficiency RF peak power production through long-pulse, low freq. klystrons and two-beam scheme

Traveling Wave Cavity Technology proposed for HELEN SRF Accelerator

HELEN: A LINEAR COLLIDER BASED ON ADVANCED SRF TECHNOLOGY*

S. Belomestnykh^{†,1}, P. C. Bhat, M. Checchin[‡], A. Grassellino, M. Martinello[‡], S. Nagaitsev², H. Padamsee³, S. Posen, A. Romanenko, V. Shiltsev, A. Valishev, V. Yakovlev Fermi National Accelerator Laboratory, Batavia, IL, USA ¹also at Stony Brook University, Stony Brook, NY, USA ²also at University of Chicago, Chicago, IL, USA ³also at Cornell University, Ithaca, NY, USA

- **Red** standing wave High Peak Fields
- Green (acceleration) and Blue (Return) Waves are Travelling Waves - Lower peak fields
- Guide blue wave in a return wave-guide to avoid SW peak fields – attached to both ends

Table 1: Tentative Baselin	ne Parameters of HELEN
Parameter	Value
Center of mass energy	250 GeV
Collider length	7.5 km
Peak luminosity	$1.35 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
Repetition rate	5 Hz
Bunch spacing	554 ns
Particles per bunch	2×10 ¹⁰
Bunches per pulse	1312
Pulse duration	727 µs
Pulse beam current	5.8 mA
Bunch length, rms	0.3 mm
Crossing angle	14 mrad
Crossing scheme	crab crossing
RF frequency	1300 MHz
Accelerating gradient	70 MV/m
Real estate gradient	55.6 MV/m
Total site power	110 MW

Figure 3: Options for HELEN collider at Fermilab.

https://doi.org/10.48550/arXiv.2209.01074

A. Yamamoto, 2023/09/08

Possible Choices among SC Materials for Magnets

	Material	T _c [K]	ρ _n [μΩ.cm]	B _{c1} (0) [T]	B _c (0) [T]	(^B 72(0)	 Type, Feature 	Year
	Pb	7.2			0.08			1913
	Nb	9.2	2	0.18~0.185	0.2~0.25	0.28-0.42	Ш	1930
	NbTi	9.2 ~9.5		0.067		11.5 ~ 14	ll, Wire	1962
	NbN	17.3	35	(0.02)			II, Film	1940
	Nb₃Sn	18.3	20	(0.02-0.05)	0.54	28 ~30	Ш	1954
	MgB ₂	39	0.1-10	(0.03)	0.43	39	Ш	2001
1 April	YBa ₂ Cu ₃ O ₇ (REBCO family)	92		0.01	1.4	100	II, Tape	1987
ND ₃ Sn	Bi ₂ Sr ₂ Ca ₁ Cu ₂ O ₈ (BSCCO-2212)	94		0.025		 	ll, Wire	1988
Nb-T	Bi ₂ Sr ₂ Ca ₂ Cu ₃ O ₁₀ (BSCCO-2223)	110		0.0135		>100/30	II, Tape	1988
	Note Important for:				SRF	Magnet		
						<u>``</u>		

Courtesy, A. Ballarino

HTS Advantages

Very high in-field current density at low temperature:

- Enabling technology for magnets with fields > 16 T
- No magneto-thermal instability,
- Higher <u>temperature margin</u>

Operation at higher temperature:

- Low(er) field magnets operated at temperatures higher than liquid helium (dry-cooling, He gas cooling, LH₂, LN₂): operational power saving
- High specific heat, and. high thermal stability (MQE)
- Higher temperature margin to the benefit of an easier cryogenic control

Main challenges facing the development of future HTS high-field magnets

Courtesy: A. Siemko LDG meeting, 2023

Current main limitations of HTS conductors specific to accelerator magnets:

- ReBCO conductor shear stress sensitivity and degradation caused by delamination
- Large magnetisation of ReBCO conductors (due to the tape shape), resulting field errors
- AC losses (magnetic hysteresis, coupling and eddy currents) are major drawbacks of ReBCO. With significant "filamentation" the ReBCO losses compare to Nb₃Sn (at > 10 T)
- Limited ability to bend at small radii of ReBCO tapes is forcing specific designs of coil ends •
- Quench protection of accelerator size magnets due to low guench propagation velocity and high stored energy density in coils made of ReBCO as well as Bi-2212
- Anisotropy of ReBCO tapes properties, including mechanical properties. Uniformity of • tapes and cables along the length and lot to lot, impacting on magnet protection
- Bi-2212 conductor stress/strain sensitivity and degradation •
- Very complex Reaction Heat Treatment for Bi-2212

Roebel flat cables

HFM HTS CERN program

Courtesy, A. Ballarino

- Objective: demonstrator of 5 T in a background field of 15 T
- Development of electrically insulated cables. Target: 10 kA @ 20 T, 5 kV
- Model racetrack coils
- Common coil design

Common-coil design, R. Gupta

Future Colliders based on SC Technology

Linear Colliders:

ILC e+e- (250 GeV \rightarrow 1 TeV) :

- SRF: for High-Q (10¹⁰) and high-G (31.5 \rightarrow 45 MV/m)
- Highest efficiency and AC-power balance

CLIC e+e- (380 GeV \rightarrow 3 TeV) :

• NRF: Very high G (100 MV/m) for energy frontier with compactness

Circular Colliders :

FCC-e+e- (90 → 350 GeV):

- SRF: with staging for efficient energy extension
 Synchrotron radiation (SR) to determine the energy
- Highest luminosity at Z and H,

FCC-hh (80 – 120 TeV):

- High-field SC magnets (SCM: <u>**14 20 T**</u>) for energy frontier
- SRF: for acceleration for good energy balance w/ SR

CEPC e+e- (240 GeV):

- SRF: for acceleration,
 - Synchrotron radiation to determine the energy

SPPC- pp (75 - 125 TeV):

- High-field SCM (12 -20 T) for energy frontier
- SRF: beam acceleration

EIC Ion•e-(275/100 GeV/n v.s. 18 GeV, under constr.)

SCM and SRF

MC $\mu + \mu - (3 - 14 \text{ TeV})$

- SRF and NRF with very high-field SCM
- Higher efficiency at > 3 TeV, although short life-time.

HF Magnet R&D Roadmap at IHEP-CAS

72

J_e of IBS conductor: Status and Outlook

Courtesy: Q. Xu.

- 90% Stainless-steel & 10% Sliver stabilized IBS tape achieved the highest J_e in 2022!
- Significantly reduced the cost and raised the mechanical properties.

R&D of the High Field Model Dipoles

Background: Historical experiences of the ATLAS and CMS magnet projects

Very large superconducting detector magnet projects!

- Time-scale for engineering design and validation effort, the construction, and the commissioning: More than 15 years each
- Production of components (conductor, coils, support structure, etc) in industry, and subsequent assembly at CERN
- Designed, constructed, commissioned, and maintained with strong support from multiple institutes:
 - ATLAS: CEA-Irfu, KEK, INFN-LASA, RAL, NIKHEF, JINR-Dubna, IHEP-Protvino, ITAM Novosibirsk, CERN
 - CMS: CEA-Irfu, ETH Zurich, INFN Genoa, University of Wisconsin, Fermilab, ITEP Moscow, CERN

Important lessons:

- For large superconducting detector magnets a long-term strategy is needed
- The historical importance of collaboration is evident

ATLAS Superconducting magnets

International Linear Collider: ILC-ILD

	Detector solenoid
Warm bore diameter [m]	6.9
Cold mass length [m]	7.35
Magnetic field in the centre [T]	4.0
Stored magnetic energy [MJ]	2300

ILC-ILD detector featuring a 4 T superconducting solenoid

- Magnet parameters
- Presentations by K. Buesser (DESY) and Y. Makida (KEK)
- For the International Linear Collider project, proposed to be hosted in Japan
- Featuring a superconducting solenoid, with 4 T over a 6.9 m warm bore diameter, and a 7.35 m cold mass length, stored magnetic energy of 2300 MJ
- With optional "Detector-Integrated-Dipole" coil wound on top of the solenoid
- Conductor: Foresees to use a reinforced aluminum-stabilized Nb-Ti/Cu conductor

Future Circular Collider FCC-ee: IDEA and CLD

	Detector solenoid #1	Detector solenoid #2
Warm bore diameter [m]	8.0	4.0
Cold mass length [m]	7.0	5.8
Magnetic field in the centre [T]	2.0	2.0
Stored magnetic energy [MJ]	600	170

Magnet parameters

- Presentation by N. Deelen (CERN)
- For the FCC-ee project, proposed to be hosted at CERN, with operation foreseen to start in 2045, featuring electron-position collisions
- Two solenoid types (For "IDEA" and "CLD") detectors
 - One solenoid, featuring 2 T over a free bore of 8.0 meters, and a cold mass length of 7.0 meters, no transparency requirement
 - One solenoid, featuring 2 T over a free bore of 4.0 meters, and a cold mass length of 5.8 meters, with transparency requirement
- Conductor: Reinforced aluminum-stabilized Nb-Ti/Cu conductor

CLD detector, featuring a 2 T solenoid

IDEA detector, featuring a transparent 2 T solenoid

Longer Time-scale: Aluminum-stabilized conductor technology

• The aluminum-stabilized Nb-Ti/Cu (SC) conductor is the traditional workhorse

- that is used in nearly all superconducting detector magnets.
- Al-based SC conductors give strong performance needed for SC detector magnets:
 - Significant heat capacity for a given amount of weight
 - Excellent electrical and thermal conductivity at 4 K (pure or nickel-doped aluminum)
 - Very good mechanical properties (nickel-doped aluminum or aluminum-alloy)
 - Affordable, in combination with superconducting Nb-Ti/Cu Rutherford cables

→ However, in recent years, commercial availability has been an issue

ightarrow Can we obtain it? Do viable alternatives exist?

Courtesy: The CMS collaboration

Nb-Ti/Cu Rutherford cable

Cross-section of a Nb-Ti/Cu strand used in the CMS conductor (Blau et al, "The CMS conductor", IEEE Trans 2002)

A. Yamamoto, 2023/09/08

Future Direction and Back-up/Alternate SC Solutions

A. Yamamoto, 2023/09/08