Water Cherenkov [and Hybrid] Detectors for Neutrino Physics

- Water Cherenkov Detector Overview
- Techniques and Instrumentation Responsible for Success
- Technical and Instrumentation Challenges and Development Work

Josh Klein 8 September TIPP 2023 Cape Town

Could build a different detector type with a different technology for every physics topic...

HOWEVER...

"Neutrinos don't really do anything..."

Detectors need to be big

- To get enough $\boldsymbol{\nu}$ interactions
- And to contain produced muons
- Need to be affordable

Sensitive to a broad range of energies

• Because neutrino physics...

Water Cherenkov Detectors

Water is cheap!

Ice is even cheaper... Sea water is "even more" cheaper... (Heavy water is expensive but SNO got it for free)

And has pretty high index of refraction:

Cherenkov threshold: $\beta = 1/n = 1/1.33 = 0.75$ in water

And water is transparent to $1/\lambda^2$ Cherenkov spectrum in visible window

Particle	kinetic energy threshold in MeV
electron	0.26
muon	54
pion	72
proton	480
tau	920
alpha	1929

Kamiokande

Water Cherenkov Detectors

First Large Scale Detectors

About 40 years ago...

Water Cherenkov Detectors

(Not "direct" v experiments, but can have relevant technical developments)

"Segmented"

Pierre Auger

LHAASO

HAWC

Water Cherenkov Detectors Small Scale/Demonstrators

Water Cherenkov Detectors

Arguably the most successful single technology in neutrino physics

Observation of neutrinos from SN1987A

(Kamiokande II, IMB)

Discovery of atmospheric v oscillations

(Super-Kamiokande)

First directional observation of solar vs (Kamiokande II, Super-Kamiokande)

Resolution of Solar v Problem (SNO)

Water Cherenkov Detectors

Arguably the most successful single technology in neutrino physics

Observation of v_e appearance via 3-flavor mixing

First detection of ultra-high energy extra-terrestrial vs (ICECUBE)

Milky Way map in neutrinos

(ICECUBE)

Cherenkov ring imaging is simple but rich

- Fast timing allows precision reconstruction and background rejection 0
- Cherenkov time scale << 1 ns ٠
- Totally dominated by photosensor ٠ timing, scattering, and photon dispersion

Position reconstruction done by time-of-flight residuals

t1-x1/c t2-x2/c PMT 2 PMT 1

Super-K/T2K fitQUN likelihood	Time PDF
$L(oldsymbol{x}) = \prod_j^{unhit} P_j(unhit oldsymbol{x}) \prod_i^{hit} \{P_i(hit oldsymbol{x})\} f_q(q_i)$	$ m{x})f_t(t_i m{x})$

But AI/ML techniques becoming more common

800

1000

Time to reach 96 m (ns)

1200

KM3NET TDR

• Threshold

- "Cleans up" Cherenkov rings using physics
- Cherenkov threshold makes low energy backgrounds invisible (e.g. αs, low E γs)

• Detectors are simple, linear, with wide dynamic range

• Detector response =

cross sections x particle propagation

All measurable and testable with optical or low-energy radioactive calibration sources and do not depend on particle species or energy.

Very few phenomenological parameters

Channel dynamic ranges are at most 1-1000 pe and rarely above 100 pe

Channel-level observables are only N_{photons} and t_i Energy scale uncertainties < 1%

Water can be "loaded" with isotopes easily for broader physics program

SNO: Increased precision on NC distintegration of deuterons

> Super-K: Allows detection of antineutrinos, particularly from Diffuse Supernova v Bkd

• Super-K Gd

•

Water can be "loaded" with isotopes easily for broader physics program

SNO: Increased precision on NC distintegration of deuterons

Super-K: Allows detection of antineutrinos, particularly from Diffuse Supernova v Bkd

Super-K Gd ٠

v_o Energy [MeV]

Water Cherenkov Detectors

Hyper-Kamiokande

Expected to start in 2027

Also:

- Best limits on p decay to $e^+\pi^0$
- ⁸B solar and Day/Night
- Diffuse Supernova v background

Water Cherenkov Detectors Upcoming Physics Program

C. Lastoria TAUP 2023

New string

deployment

Mass ordering ICECUBE alone

Jan Welder, TAUP 2023

4

бз

NMO sensitivity

Reconstructed L/E [km/GeV] 103

··· IC86

IC86 (12 yr) + IC93

IceCube Simulation

 $\theta_{23} \pm 3\sigma$ range (NuFit 5.2)

Mass ordering ICECUBE+JUNO

1. Mass: v physics and astrophysics, nucleon decay all depend on N_{targets}

• Water is cheap, digging holes is not!

Size also limited by water/ice optics

SNO D₂O --100 m @ 400 nm

(OK: No holes in sea but

Antarctic Ice 30m—250 m (depth-dependent)

^{*}Biggest challenge at high energies is physics: interaction cross sections and beam

2. Light Collection, Pixelization, and Timing

Physics depends on number of photons and *information content* of each

- Calorimetry depends on N_{photons}; at low energies detectors are "photon starved"
- Position and direction reconstruction also depends on timing and sensor location (pixels)
 - Information content/photon ~ 1/ σ_{ttj} and ~1/ σ_{xyz} for position and direction
 - (Minus noise hit probability...)
- Particle ID dependent on timing and pixels

Photomultiplier tubes are nearly 100 years old!

- Still the best game in town for most detectors
- But quantum efficiency (QE) historically only 20-25%
- Timing historically at > 5 ns FWHM level
- And still not cheap!...

Technical and Instrumentation Challenges

For Future Path Forward

2. Light Collection, Pixelization, and Timing

Hyper-K 50 cm PMT (R12860) Box-and-line dynode

Peak QE = 30%

"multi-PMTs" provide better timing and pixelization, "quasi"direction

Hyper-Kamiokande

3" PMTS

кмзнет

ICECUBE-GEN2

gure 1: mDOM overview: Left: mDOM constructed for the Design Verification Test (DVT) campaign ghr: Exploded view featuring main components.

2. Light Collection, Pixelization, and Timing

JUNO/LHAASO: 50 cm MCP-PMT

Sen.QIAN, TIPP 2023

Timing performance improving from JUNO to LHAASO

Light Collection, Pixelization, and Timing 2.

Multi-anode (2") Fast PMTs

SiPMs/MPPCs (6x6 mm)

But noisy when warm •

And expensive/area •

LAPPDs (Incomm)

Relatively low OE •

efficiency (%)

Light Collection, Pixelization, and Timing 2.

Multi-anode (2") Fast PMTs

Sen.QIAN, TIPP 2023

SiPMs/MPPCs (6x6 mm)

Peak OE ~ 50% 20

LAPPDs (Incomm)

Charge Response

Wavelength (nm)

(M=1.25 × 10⁶)

But noisy when warm •

1.5 2.0

Overvoltage (V)

And expensive/area •

Light Collection, Pixelization, and Timing 2.

Vikuiti

SNO/SNO+ (Truncated) Winston cone light concentrators: ~50% increase in light yield

Krzysztof Dygnarowicz, TIPP2203

Field of view can be challenging

(Or helpful)

Hyper-K light concentrators for mPMTs

Anderson Campos Fauth, ICRC 2023

WLS plates for H-K veto

WLS plates in IMB!

Alexander Izmaylov, TIPP2023

WLS fibers for collection with small PMTs in LHAASO

Hao Sun, TIPP2023

3. Radiological backgrounds (at low energies)

- Water washes everything...it "likes" to hold onto metals
- U and Th chains, "unsupported" Rn are primary culprits
- Photon-starved resolution means no good spectral separation
- And Cherenkov threshold prevents use of α , β coincidences

Nevertheless...

SNO+: Lowest solar v background levels ever achieved in H_2O

Workhorses here:

- Radon degassing
- Reverse osmosis

3. Radiological backgrounds (at low energies)

- Water washes everything...it "likes" to hold onto metals
- U and Th chains, "unsupported" Rn are primary culprits
- Photon-starved resolution means no good spectral separation
- And Cherenkov threshold prevents use of α , β coincidences

Nevertheless...

SNO+: But with even more work on radon mitigation and purification

3. Radiological backgrounds (at low energies)

- Water washes everything...it "likes" to hold onto metals
- U and Th chains, "unsupported" Rn are primary culprits
- Photon-starved resolution means no good spectral separation
- And Cherenkov threshold prevents use of α , β coincidences

Nevertheless...

 \overline{v} +p $\rightarrow e^+$ +n

~200 μs delayed neutron capture creates 2.2 MeV γ ---only 12/9000 PMTs hit on average

5. Threshold and Resolution

5. Threshold and Resolution

• Add scintillation light to water detector for a "hybrid Cherenkov/scintillation detector"

High energy

- particle ID and final states from "chertons"
- Large detector mass for high statistics
- "scintons" for reconstruction of sub-Cherenkov threshold recoils

Low energy

- energy resolution from scintons for solar, reactor, $0\nu\beta\beta...$
- Direction reconstruction from chertons rejects/accepts solar vs

Hybrid Cherenkov/Scintillation Detectors Extremely broad physics program

CP Violation Sensitivity Theia 70 kt **CP** sensitivity "Theia" is most well-developed concept; Normal Ordering Theia 17 kt comparable to one 7 vears DUNE 10 kt (CDR) Could be Module 4 for DUNE? **DUNE** module (with ND changes) $\sigma = \sqrt{\Delta \chi^2}$ Theia25 Theia100 World-leading precision on pep and Only experiment capable of seeing CNO solar vs (1-1.5 MeV) MSW ⁸B transition region ≚₅₈₀₀ - Sum ---- Backgrounds 0-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 ₩ V 5780 - Data Lighter nucleus to £ 5760 check cross section 5740 MSW-LMA 8 B systematics ▲ MSW-LMA ⁷ Be, pep NSI 8 B 5720 NSI ⁷ Be, pep SNO polynomial fit Eur. Phys. J. C 80 (2020) Borexino ⁷ Be, pep 5700 All solar nn 10⁰ E. (MeV) -0.6 -0.4 10¹ 0.2 0.4 0.8 -0.8 -0.2 0 0.6 COS E [eV] sensitivity on $m_{_{\beta\beta}}$ Reconstructing $0\nu\beta\beta$ sensitivity eES 200 ES electron IBD 4000 direction 90% tag eff. into normal 0.57<u>±</u>1.24 θο

Complementary (anti-v vs v) to DUNE with pointing resolution < 2°

hierarchy region with *natural* Tedirection removes ⁸B background

o discovery

3

Hybrid Cherenkov/Scintillation Detectors Many Ways of Doing This

Eur. Phys. J. C 80 (2020)

Target can be adjusted for different physics goals

Add just a little scintillation \rightarrow new materials/fluors # *sciut sciut sc*

Ratio

Isotopes easily loaded into WbLS

Target	Loading (mass)	Potential Applications
Indium	>8% In	Solar ν
Tellurium	> 6% Te	0 uetaeta
Lithium	0.1% ⁶ Li	Reactor $\bar{\nu}$; excellent PSD
	$>0.2\%$ 6 Li	Reactor $\bar{\nu}$; super PSD with improved optics
Boron	>0.5%	Dark Matter veto, reator $\bar{\nu}$
Potassium	>1%	Calibration for LS detectors
Iron, Strontium	ppm to 1%	Nuclear waste management,
		environmental tracers
Gadolinium	0.1% Gd	Dark matter veto
		Reactor monitoring
		Reactor $\bar{\nu}$ oscillations
High-Z elements	10-15%Pb	Solar ν
-		Calorimeters
		Medical QA/AC

M. Yeh, BNL

Adjust Cher/Scint Ratio

5. Threshold and Resolution

First deployment of WbLS (0.5%) target in ANNIE

Ratio Add just a little scintillation \rightarrow new materials/fluors # $\int \frac{sout}{c} \frac{sout}{$

Increase in μ response through WbLS target

Cherenkov peak easy to pick out even in pure scintillator

Biller, Leming, Paton, NIM A 972 (2020) 164106

Spectral differences may allow separation---could use filters or redsensitive PMTs: R6954 (S20) [5"]

Spectrum

UV/blue scintillation vs. blue/green Cherenkov → wavelength-sensitivity

Although this means each spot taken up by filter or "red" PMT is lost scintillation light---Is there a way to keep both even at high photocathode coverage?

5. Threshold and Resolution

Dichroic filters already used in ARAPUCA photon-trap design

Winston-style light concentrator made out of dichroic mirrors can concentrate longwavelength and pass short wavelength light (a "dichroicon")

Spectrum

5. Threshold and Resolution

Dichroic filters already used in ARAPUCA photon-trap design

Also useful for measuring dispersion of photons in water new way of reconstruction in very large detectors. (And scattering is lower for big λ) Winston-style light concentrator made out of dichroic mirrors can concentrate longwavelength and pass short wavelength light (a "dichroicon")

Spectrum

5. Threshold and Resolution

Dichroic filters already used in ARAPUCA photon-trap design

And in principle can increase light collection by sorting photons to sensors with better QE for a given λ

Winston-style light concentrator made out of dichroic mirrors can concentrate longwavelength and pass short wavelength light (a "dichroicon")

Spectrum

5. Threshold and Resolution

A. Bacon, Penn

(But actual response is more complex than basic concept)

Winston-style light concentrator made out of dichroic mirrors can concentrate longwavelength and pass short wavelength light (a "dichroicon")

Spectrum

5. Threshold and Resolution

Winston-style light concentrator made out of dichroic mirrors can concentrate longwavelength and pass short wavelength light (a "dichroicon")

Spectrum

UV/blue scintillation vs. blue/green Cherenkov \rightarrow wavelength-sensitivity

A. Bacon, Penn

TIPP2023

TECHNOLOGY IN INSTRUMENTATION & PARTICLE PHYSICS CONFERENCE 4 - 8 SEPTEMBER 2023

NRF

Theia100 MC with dichroicons

Eos demonstrator (~5 t WbLS) at LBNL will have several dichroicons

5. Threshold and Resolution

Atomic layer deposition (ALD) allows larger filters at lower cost, and on non-flat surfaces

RAYTUM, Inc.

Can concentrate short-wavelength light but this leads to more leakage into longwavelength sensors

6. Electronics, Trigger, and DAQ

Experimental sizes (100 m to 10 km) mean digitization must be done locally

ICECUBE-GEN2

- Which places requirements on reliability: electronics are wet or cold and inaccessible
- And also places requirements on long-distance synchronization
 - May be the most complex, long-distance synchronized networks
 - Channel-to-channel around 1 ns
 - Absolute timing for astrophysics ~1 μs
- Solutions include White Rabbit (KM3NET) also custom designs
- Triggering typically very inclusive: N_{pmt} above threshold (can be analog, firmware, or software)

6. Electronics, Trigger, and DAQ

- Local digitization is self-triggered: need to limit data rate
 - Hyper-Kamiokande: ~50,000 channels

- Want 0.1-0.3 ns precision
- 100 MSPS@14 bits

KM3NET:~ 50,000 channels,

- ~1 ns resolution
- 250 MHzx4 @14 bits

- Want ~ 1 ns precision
- 250 MHz @14 bits
- Higher dynamic ranges likely as arrays get denser or PMTs get larger
 - Typically aiming now for 12-14 bits or > 11 or 12 ENOB
- Desire for faster timing means ADC sampling rates also pushing faster > 250 MSPs
- Data volumes can get big; ADCs and FPGAs more expensive

Technical and Instrumentation Challenges

For Future Path Forward

6. Electronics, Trigger, and DAQ

- Signals are very prompt, so full waveforms not necessarily useful
 - For hybrid detectors, late-time photons do matter, but still mostly single pe
- Only observables are N_{photons} and t_i ٠
- Typically "feature extraction" done, sometimes in local FPGA, sometimes in offline •
- Analog feature extraction? ٠

Features can be extracted via analog techniques and then digitized... Peaks/inflection points, time, time-over-threshold, integral

via differentiation

("Analog Photon Processor"

Other Challenges

- PMT protection for underwater and ice operation
- Simulation --- every photon is simulated and big detectors make this slow
 - GPU accelerated ray tracers like Optiks or Chroma
 - Generative AI models
- Advanced reconstruction methods
 - High multiplicity events in Hyper-K
 - Hybrid detector reconstruction

Instrumentation Wish List

- Fast, high-photon detection efficiency, large-area, low-cost sensors 0
 - 500 ps FWHM
 - 40% QE
 - 50 cm diameter but...pixelated? (Hyper-K mPMTs pretty close!)
 - < \$2500/device...?
- Nano-filtration for radiologicals in water or WbLS 0
- Dichroic filters on shaped surfaces (for lower cost/area) 0
- Narrow-band fluors for hybrid detectors and spectral sorting $\overline{}$
- Large-area photon sensors with better long-wavelength sensitivity 0
- **Real direction sensitivity via lensing?** 0
- **Polarization?** 0

Summary

- Water Cherenkov detectors continue to be very successful!
- Size, low-cost, simplicity and dynamic range are major reasons for success
- New detectors being built or expanding (Hyper-K, ICE-GEN2, KM3NET, B-GVD)
- Future efforts will push on size, timing, photon collection, and threshold
- Hybrid detectors are a big area for detectors beyond Hyper-K, ICECUBE-GEN2, KM3Net

