

Design and R&D of the Electromagnetic Calorimeter for the Super Tau-Charm Facility

Yong Song

State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

On behalf of the STCF calorimeter working group

Technology and Instrumentation in Particle Physics (TIPP) Cape Town, Sep 4-8, 2023

- Research Background
- STCF ECAL Conceptual Design
- STCF ECAL R&D

> Summary

Research Background

STCF ECAL Conceptual Design

STCF ECAL R&D

> Summary

Super Tau-Charm Facility

- The Super Tau-Charm Facility (STCF) is a next generation electron-positron collider experiment in the tau-charm energy region
 - > High luminosity: $\geq 0.5 \times 10^{35} \ cm^{-2} \cdot s^{-1}$ @ 4 GeV
 - Wide energy region: center-of-mass energy range of 2~7 GeV

Requirements for Electromagnetic Calorimeter(ECAL)

Fast response

 Challenge of high Luminosity High event rate (400 kHz) High background level (~MHz for single crystal unit)

High precision

- Energy resolution
 Better than 2.5% @1 GeV
- Position resolution
 Better than 5 mm @1 GeV
- Time resolution

Better than 300 ps @1 GeV

Energy distribution of photons

For more specific details, please refer to the STCF CDR.

Research Background

STCF ECAL Conceptual Design

STCF ECAL R&D

> Summary

ECAL Conceptual Design— crystal calorimeter

- Pure CsI (pCsI) crystal
 - Fast decay time (~30 ns)
 - Good radiation hardness
 - Low light yield
- Avalanche photodiode (APD)
 - > Large area

- > Barrel: $51 \times 132 = 6732$
- ➤ Endcap: 3 × (85 + 102 + 136) = 969
- > Crystal Size: ~ $5 \times 5 \times 28(15X_0) \ cm^3$

Crystal arrangement diagram and geometry model

Simulation Studies Based on Geant4

Geant4 Simulation Setup

- 1. "Dead Material"
 - a. 150-µm Teflon reflective film
 - b. 75-µm polyethylene insulating film
 - c. 75-µm AI electrostatic shielding film
 - d. 200-µm-thick carbon fiber
- 2. Light Yield (100 p.e./MeV)
- 3. Light Collection Non-uniformity

collection efficiency:

 $\varepsilon(l) = 95\% + l/L \times 5\%,$

where *L* is the length of the crystal, *l* is the distance from APD.

- 4. Secondary Particles Hit APD
- 5. Electronics Noise (1 MeV)

Photon Shower Visualization

Reconstruction of Energy

The photon energy is reconstructed by summing energy deposition of a 5×5 crystal array

Energy reconstruction of 1GeV γ

The energy spectrum is fitted by Crystal Ball function, and the energy resolution is defined by

$$\sigma_E = \frac{FWHM}{2.355}.$$

Reconstruction of Position

Barycenter method with logarithmic weight

$$X_c = \sum_j^N W_j(E_j) \cdot X_j / \sum_j^N W_j(E_j)$$

Where:

Linear-Weight: $W_j(E_j) = E_j$, Log-Weight: $W_j(E_j) = \max\{0, a + \ln(E_j / \sum_{j=1}^{N} E_j)\},$ E_j is the deposited energy in the j_{th} crystal.

Position resolution of the ECAL

Timing Performance Simulation

- Time distribution of photoelectron was convolved with the electronic impulse response function
- Timing was performed using waveform fitting method.
- The main factor limiting timing performance is electronic noise, especially at low energy.
- Performance can be improved by increasing the light yield to reduce the equivalent noise energy

Impact of Background on ECAL Performance

Challenges of high background level

- High luminosity introduces high background, which will cause pileup and affect energy reconstruction
- The background counting rate of single crystal unit is close to MHz

Waveform Fitting Method

Multi-template fitting

With the help of the waveform fitting method, the energy resolution is greatly improved, which meets the requirements of STCF ECAL.

13

- Research Background
- STCF ECAL Conceptual Design
- STCF ECAL R&D

> Summary

Detector Element and Electronics

➢ pCsI crystal

- The fluorescence main peak is at about 310 nm
- The transmission is about 40% @ 310 nm
- The reflection coefficient of reflective film
 - Teflon material is close to 100% @ 310 nm

APD type

➢ HAMAMATSU, S8664-1010

Electronics

CSA-based readout design

S8664-1010 APD

Front End Board & Back End Board For more specific details, please refer to the Electronics for STCF ECAL.

Light yield measurement by a cosmic ray test

- Different packaging method
 Bare or wrapped back-end face
- Different APD size
 - > Four S8664-55 APDs ($5 \times 5 mm^2 \times 4$)
 - > Four S8664-1010 APDs $(10 \times 10 \ mm^2 \times 4)$

Schematic diagram and photo of the cosmic ray test setup

Wavelength Shifter(WLS)

- The quantum efficiency(QE) of APD is approximately 40% at 310nm.
- NOL-9 is a type of wavelength-shifting material that can convert short wavelengths into longer wavelengths.

APD QE

Light yield increment by using WLS

Coating the WLS on packaging materials

WLS coated on packaging materials and a assembled module

The light yield is increased by 60%, ~240 p.e./MeV

Coating the WLS on crystal

The light yield is increased by 100%, ~300 p.e./MeV

Time measurement by LED

Contribution of electronics to time resolution Amp

- Using LED to simulate crystal luminescence
- Using waveform fitting method for timing

Drive

Pulse

APD

CSA

LED

 (T_0)

FPGA

TDC

FPGA

Start

Pulse

Obtaining time(T_{Fit})

by fitting the signal

waveform

/bs

Amp³/fC

. . . .

200

100

LED test system

Waveform

Generator

500

400

Time measurement by cosmic ray

Other contributions to time resolution

- 1. Light transmission
- 2. Fluctuations in the emission location of a crystal

The test result of cosmic ray is close the LED result indicate that the main contribution to time resolution comes from electronics at low energy.

Cosmic ray test system

$T_{Fit} = 0.01(ns/mm) \times l (mm) + C$

Where *l* is the distance from the APD, *C* is a constant. The fluctuation of photon shower positions is a few centimeters at high energy, the contribution of the 2nd point is about 50 to 100 ps.

Research Background

STCF ECAL Conceptual Design

STCF ECAL R&D

> Summary

- > We illustrate the design of ECAL detector for the future STCF
 - ✓ pCsI + APD + CSA electronics
 - ✓ The preliminary MC results show that this design could meet STCF requirements
- The WLS was used to enhance the light yield, the result showed that the L.Y. could reach to 300 p.e./MeV
- The results from both the simulation and the test indicate that the timing performance of ECAL could meet the requirements of STCF

- > We illustrate the design of ECAL detector for the future STCF
 - \checkmark pCsI + APD + CSA electronics
 - ✓ The preliminary MC results show that this design could meet STCF requirements
- The WLS was used to enhance the light yield, the result showed that the L.Y. could reach to 300 p.e./MeV
- The results from both the simulation and the test indicate that the timing performance of ECAL could meet the requirements of STCF

Back Up

ECAL Design —— Crystal Selection

Total absorption calorimeter

pCsI crystal + APD photo-device

	-	-			
Pure Csl	LYSO	GSO	YAP	PWO	BaF:Y
4.51	7.40	6.71	5.37	8.30	4.89
621	2050	1950	1872	1123	1280
1.86	1.14	1.38	2.70	0.89	2.03
3.57	2.07	2.23	4.50	2.00	3.10
1.95	1.82	1.85	1.95	2.20	1.50
Slight	No	No	No	No	No
310	402	430	370	425	300
				420	220
30	40	60	30	30	600
6				10	1.2
3.6	85	20	65	0.3	1.7
1.1				0.1	4.8
No	No	ТВА	ТВА	Yes	No
-1.4	-0.2	-0.4	TBA	-2.5	тва
KTeV				CMS	
Mu2e				ALICE	
				PANDA	
	Pure Csl 4.51 521 1.86 3.57 1.95 5 6 10 30 5 3.6 1.1 No 1.4 (TeV Vu2e	Pure Csl LYSO 4.51 7.40 521 2050 1.86 1.14 3.57 2.07 1.95 1.82 Slight No 30 402 3.6 85 1.1 -0.2 You 2e -0.2	Pure Csl LYSO GSO 4.51 7.40 6.71 521 2050 1950 1.86 1.14 1.38 3.57 2.07 2.23 1.95 1.82 1.85 Slight No No 30 402 430 30 402 430 30 85 20 3.6 85 20 1.1 -0.2 -0.4 Yu2e	Oure CslLYSOGSOYAP4.517.406.715.375212050195018721.861.141.382.703.572.072.234.501.951.821.851.95SlightNoNoNo30402430370368520651.1-0.2-0.4TBA1.4-0.2-0.4TBA	Pure Csl LYSO GSO YAP PWO 4.51 7.40 6.71 5.37 8.30 521 2050 1950 1872 1123 1.86 1.14 1.38 2.70 0.89 3.57 2.07 2.23 4.50 2.00 1.95 1.82 1.85 1.95 2.20 Slight No No No No 310 402 430 370 425 420 10 10 10 10 30 85 20 65 0.3 1.1 0.2 -0.4 TBA Yes 1.4 -0.2 -0.4 TBA -2.5 CMS ALICE PANDA ALICE PANDA

1-Template Fitting

• Template shape function:
$$f(t) = A \times f(t - \tau) + p$$

• $\chi^2 = \sum_{i,j} (y_i - A \cdot f(t_i - \tau) - p) \cdot S_{ij}^{-1} \cdot (y_j - A \cdot f(t_j - \tau) - p)$
• Apply $\frac{\partial \chi^2}{\partial A} = 0, \frac{\partial \chi^2}{\partial \tau} = 0, \frac{\partial \chi^2}{\partial p} = 0$:

$$\begin{cases} \sum_{i,j} f_{ki} \cdot S_{ij}^{-1} \cdot (y_j - Af_{kj} - Bf'_{kj} - p) = 0 \\ \sum_{i,j} f'_{ki} \cdot S_{ij}^{-1} \cdot (y_j - Af_{kj} - Bf'_{kj} - p) = 0 \\ \sum_{i,j} 1 \cdot S_{ij}^{-1} \cdot (y_j - Af_{kj} - Bf'_{kj} - p) = 0 \end{cases}$$

$$\begin{pmatrix} F_k \cdot S^{-1} \cdot F_k^T F_k \cdot S^{-1} \cdot F_k'^T F_k \cdot S^{-1} \cdot I \\ F'_k \cdot S^{-1} \cdot F_k^T F_k \cdot S^{-1} \cdot F_k'^T F_k \cdot S^{-1} \cdot I \\ I \cdot S^{-1} \cdot F_k^T I \cdot S^{-1} \cdot F_k'^T F_k \cdot S^{-1} \cdot F_i'^T F_k \cdot S^{-1} \cdot I \\ I \cdot S^{-1} \cdot F_k^T I \cdot S^{-1} \cdot F_k'^T F_k \cdot S^{-1} \cdot F_k'^T F_k \cdot S^{-1} \cdot I \\ I \cdot S^{-1} \cdot F_k^T I \cdot S^{-1} \cdot F_k'^T F_k \cdot S^{-1} \cdot F_k'^T F_k \cdot S^{-1} \cdot I \\ I \cdot S^{-1} \cdot F_k^T F_k \cdot S^{-1} \cdot F_k'^T F_k \cdot S^{-1} \cdot F_k'^T F_k \cdot S^{-1} \cdot I \\ I \cdot S^{-1} \cdot F_k^T I \cdot S^{-1} \cdot F_k'^T F_k \cdot S^{-1} \cdot F_k'^T F_k \cdot S^{-1} \cdot I \\ I \cdot S^{-1} \cdot F_k^T I \cdot S^{-1} \cdot F_k'^T F_k \cdot S^{-1} \cdot F_k'^T F_k \cdot S^{-1} \cdot I \\ I \cdot S^{-1} \cdot F_k^T I \cdot S^{-1} \cdot F_k'^T F_k \cdot S^{-1} \cdot F_k'^T F_k \cdot S^{-1} \cdot I \\ I \cdot S^{-1} \cdot F_k^T I \cdot S^{-1} \cdot F_k'^T I \cdot S^{-1} \cdot F_k'^T F_k \cdot S^{-1} \cdot I \end{pmatrix}$$

Waveform Fitting Method

Multi-template fitting

- The waveform template is obtained by convoluting the pure CsI fluorescence signal with the electronics impulse response function.
- > The fit minimizes the χ^2 defined as:

$$\chi^2 = \left(\sum_{j=1}^N A_j \overrightarrow{p_j} - \overrightarrow{S}\right)^T C^{-1} \left(\sum_{j=1}^N A_j \overrightarrow{p_j} - \overrightarrow{S}\right)$$

Where:

N is the number of templates;

vector \vec{S} comprise the readout samples;

vector $\overrightarrow{p_j}$ is the waveform template;

 A_j are the amplitudes, which are obtained by the fit; **C** is the noise covariance matrix.

An example of the multi-template fitting result.

- The green line is the fitting result of the data, which is the sum of total templates.
- □ The red line is the template represents the signal.
- The blue line represents the background, which is the sum of the remaining templates.

Electronics

- High precise energy measurement
 - CSA-based readout design
- Wide dynamic range
 - dual gain readout
- Time measurement
 - waveform fitting

Front end board

WLS

29

Wavelength shifter material study

- Radiation resistance test of WLS film using ⁶⁰Co
- The irradiated WLS film coated crystals were tested by cosmic rays:
 - 100 krad: No significant change
 - 1000 krad: close to 40% degradation

Radiation test

Performance Simulation

Material budget in front of the ECAL

- The performance is affected by the interaction of photons with materials in front of the ECAL.
- The dominant interaction process for photons in the energy range of interest is gamma conversion.

Materials in front of the ECAL in units of a radiation length X_0

 γ conversion probability in front of ECAL

Performance Simulation

Impact of materials in front of ECAL

A full STCF detector simulation study was carried out, and the simulation results are compared with ECAL only simulation results.

The energy resolution varies with γ energy.

have little effect on the energy resolutionhave great effect on reconstruction efficiency.

The reconstruction efficiency varies with γ energy.

The reconstruction efficiency is defined by $\frac{N_{rec}}{N_{MC}}$, N_{rec} satisfy: $E_{peak} - 4\sigma_E < E_{rec} < E_{peak} + 2\sigma_E$.