Spin Physics Detector at NICA

Alexey Zhemchugov (JINR Dubna) on behalf of SPD Collaboration

06 December 2022

Sixth Biennial "Workshop on Discovery Physics at the LHC" (Kruger2022)

The NICA project

Timeline 2009 – first proposal 2016 construction started **2023** — first collision 2024 — MPD starts operation 2028 – SPD starts operation

SPD at NICA

Alexey Zhemchugov on behalf of SPD Collaboration

SPD Collaboration

32 institutes from 14 countries, ~300 members

Alexey Zhemchugov on behalf of SPD Collaboration

Physics program

- SPD a universal facility for comprehensive study of gluon content in proton and deuteron at large x
 - Prompt photons
 - Charmonia
 - Open charm
- Other spin-related phenomena
- Other physics

More details: Prog.Part.Nucl.Phys. 119 (2021) 103858 arXiv:2011.15005

TMD PDFs

Alexey Zhemchugov on behalf of SPD Collaboration

Gluon PDFs

Gluon probes at SPD

Rates for main probes

	$\sigma_{27\text{GeV}}$,	$\sigma_{13.5\text{GeV}}$,	$N_{27\mathrm{GeV}},$	N _{13.5 GeV}	per 1 year
Probe	nb (×BF)	nb (×BF)	10 ⁶	10 ⁶	of data taking
Prompt- γ ($p_T > 3$ GeV/c)	35	2	35	0.2	
J/ψ	200	60			
$ ightarrow \mu^+\mu^-$	12	3.6	12	0.36	
$\psi(2S)$	25	5			
$ ightarrow J/\psi\pi^+\pi^- ightarrow \mu^+\mu^-\pi^+\pi^-$	0.5	0.1	0.5	0.01	
$ ightarrow \mu^+\mu^-$	0.2	0.04	0.2	0.004	
$\chi_{c1} + \chi_{c2}$	200				
$ ightarrow \gamma J/\psi ightarrow \gamma \mu^+\mu^-$	2.4		2.4		
η_c	400				
$ ightarrow par{p}$	0.6		0.6		
Open charm: $D\overline{D}$ pairs	14000	1300			
Single <i>D</i> -mesons					
$D^+ \rightarrow K^- 2\pi^+ (D^- \rightarrow K^+ 2\pi^-)$	520	48	520	4.8	
$D^0 \to K^- \pi^+ \ (\overline{D}^0 \to K^+ \pi^-)$	360	33	360	3.3	

Phase-I

A dedicated physics program for the NICA starup, when polarized beams of high energy are not available:

- Spin effects in p-p, p-d and d-d elastic scattering
- Spin effects in hyperons production
- Multiquark correlations
- Dibaryon resonances $pp \rightarrow (6q)^* \rightarrow NN$ Mesons,
- Physics of light and intermediate nuclei collision
- Exclusive reactions
- Light hypernucei $dd \rightarrow K^+ K^+ {}^4_{\Lambda\Lambda} n_{,}$
- Open charm and charmonia near threshold
- Auxillary measurements for astrophysics

Alexey Zhemchugov on behalf of SPD Collaboration

More details:	
Phys.Part.Nucl. 52 (2021) 6, 1044-111	.9
arXiv:2102.08477	

SPD vs others

Experimental	SPD	RHIC	EIC	AFTER	LHCspin
facility	@NICA			@LHC	
Scientific center	JINR	BNL	BNL	CERN	CERN
Operation mode	collider	collider	collider	fixed	fixed
				target	target
Colliding particles	p^\uparrow - p^\uparrow	$p^{\uparrow} extsf{-} p^{\uparrow}$	$e^{\uparrow}-p^{\uparrow}, d^{\uparrow}, {}^{3}\mathrm{He}^{\uparrow}$	p - p^{\uparrow} , d^{\uparrow}	$p extsf{-}p^\uparrow$
& polarization	$d^{\uparrow} extsf{-} d^{\uparrow}$				
	p^{\uparrow} - d, p - d^{\uparrow}				
Center-of-mass	≤27 (<i>p</i> - <i>p</i>)	63, 200,	20-140 (<i>ep</i>)	115	115
energy $\sqrt{s_{NN}}$, GeV	≤13.5 (<i>d</i> - <i>d</i>)	500			
	≤19 (<i>p</i> - <i>d</i>)				
Max. luminosity,	~1 (<i>p</i> - <i>p</i>)	2	1000	up to	4.7
$10^{32} \text{ cm}^{-2} \text{ s}^{-1}$	~0.1 (<i>d</i> - <i>d</i>)			~10 (<i>p</i> - <i>p</i>)	
Physics run	>2025	running	>2030	>2025	>2025

In the dîdî mode we are unique

Detector overview

Central detector

Goals:

- Reconstruction of secondary vertices for Dmesons decay
- Participation in track reconstruction and momentum measurement

Requirements:

- Spatial resolution <100 μm
- Low material budget
- Has to be installed as close as possible to the IP

Micromegas-based central tracker for Phase-I

MAPS option DSSD option $D0 \rightarrow \pi^+ + K^-$: secondary vertex x-resolution 0.09 MAPS : σ, ~ 58 μ DSSD : σ. ~ 80 μ 0.08 Micromegas : σ. ~ 435 μ 0.07 0.06 0.05 0.04 0.03 0.02 0.01 -0.02 -0.010 0.01 0.02 0.03

Alexey Zhemchugov on behalf of SPD Collaboration

 σ_{v} (cm)

Straw tracker

Goals:

- Track reconstruction and momentum measurement
- Participation in PID via dE/dx measurement

Requirements:

- Spatial resolution ~150 µm
- Low material budget
- Operation in magnetic field of about 1 T

Alexey Zhemchugov on behalf of SPD Collaboration

Particle identification systemMRPC-based TOF systemAerogel cout

Aerogel counters in endcaps

Light

Goals:

- π/K separation up to ~1.5 GeV
- K/p separation
- t_o determination

Requirements:

Time resolution ~60 ps

Goals:

- *π/K* separation up to 2.5 GeV range *Requirements:*
 - We should have enough light!

Aerogel

Wavelength shifter

Electromagnetic calorimeter

190 layers Sc/Pb =1.5/0.5 mm

Goals:

- Detection of prompt photons, photons from π^{0} , η and χ_{c} decays
- Identification of electrons and positrons, participation in muon identification

Requirements:

- Granularity ~4 cm
- Low energy threshold (~50 MeV)
- Energy resolution

Range (muon) system

SPD as a data source

- Bunch crossing every 76.3 ns = crossing rate 13 MHz
- ~ 3 MHz event rate (at 10³² cm⁻ ²s⁻¹ design luminosity)
- 20 GB/s (or 200 PB/year (raw data), 3*10¹³ events/year)
- Selection of physics signal requires momentum and vertex reconstruction → no simple trigger is possible

The SPD detector is a medium scale setup in size, but a large scale one in data rate!

Free running DAQ

No trigger = No classical events anymore

Alexey Zhemchugov on behalf of SPD Collaboration

Data workflow

Alexey Zhemchugov on behalf of SPD Collaboration

20

Online Data Filter

High-performance heterogeneous computing cluster

- Partial reconstruction
 - Fast tracking and vertex reconstruction
 - Fast ECAL clustering
- Event unscrambling
- Software trigger
 - several data streams

Monitoring and Data quality assessment

Local polarimetry

Machine learning is a key technology

Control of systematics?

Example: TrackNETv3 for track recognition

https://arxiv.org/abs/2210.00599

- Network predicts an area at the next detector layer where to search for the track continuation
- If continuation is found the hit is added to the track candidate and the procedure repeats again
- Essentially reproduces the idea of the Kalman filter: track parameters are predicted by synaptic weights determined by network training
- Generalization? Stability? Missing hits?

	Single events	Time slices of 40 events		
		t a		
Track efficiency (recall) (%)	99,62	1NAK 96,78		
Track purity (precision) (%)	99,52	88,02		
Time slices / sec	48,70	43,52 (*40 = 1741,19)		

After the online filter

Distributed computing system

By 2030:

- up to 30 PB of storage
- up to 1.5 Pflops of computing power

All basic components are already available from LHC experiments:

- Workload management: likely PANDA
- Data management: RUCIO and FTS
- Software distribution: CVMFS

Adaptation to operate with the SPD event model and offline software is needed

Summary

- The Spin Physics Detector at the NICA collider is a universal facility for comprehensive study of polarized and unpolarized gluon content of proton and deuteron; in polarized high-luminosity p-p and d-d collisions at Vs < 27 GeV
- Complementing main probes such as charmonia (J/ ψ and higher states), open charm and prompt photons will be used for that;
- SPD can contribute significantly to investigation of
 - gluon helicity;
 - gluon-induced TMD effects (Sivers and Boer-Mulders);
 - unpolarized gluon PDFs at moderate and high-x in proton and deuteron;
 - gluon transversity in deuteron.
- Dedicated physics program for Phase-I with reduced luminosity and beam energy.
- The SPD gluon physics program is complementary to the other intentions to study the gluon content of nuclei (RHIC, AFTER, EIC) and mesons (AMBER, EIC).
- SPD CDR is available as *arXiv:2102.00442* for more details.
- SPD TDR is about to be completed.
- More information could be found at *http://spd.jinr.ru*

This work is supported by the Russian Science Foundation under contract No. 22-12-00109, https://rscf.ru/project/22-12-00109.