

Recent results from heavy ion collisions with ATLAS

LIP, FCUL

Helena Santos on behalf of the ATLAS Collaboration

KRUGER 2022

Discovery Physics at the LHC, 4-9 December, South Africa

Dijet asymmetry in PbPb and pp collisions

LIDO captures globally the x_J distributions

Nuclear Modification Factor - RAA

Nuclear thickness **Cross section in pp** collisions (in vacuum) function $< N_{coll} > /\sigma_{NN}$

- nuclear thickness function, T_{AA} , accounts for the nuclear orverlap
- the production in vacuum

* any deviation from 1 points to suppression or enhancement of the Pb+Pb yields (jets, particles)

Yields in Pb+Pb collisions, (in

nuclear modification factor quantifies the change of yields, relatively to

γ -tagged jets: probing the colour charge of the initiating parton

- in scenarios of radiative energy loss quarks and gluons are expected to lose their energy proportionally to their colour factor
- against a photon are more likely to be quark-initiated

measure R_{AA} for photon-tagged jets and for inclusive jets and compare

• at LHC energies inclusive jet production is dominated by gluon-initiated jets, but jets recoiling

$$R_{\rm AA} = \frac{N_{\rm AA}}{\langle T_{\rm AA} \rangle \times \sigma_{pp}}$$

quark-initiated jets are less suppressed than gluon-initiated jets

γ -tagged jets: probing the colour charge of the initiating parton

- colour factor
- at LHC energies inclusive jet production is dominated by gluon-initiated jets, but jets recoiling against a photon are more likely to be quark-initiated

measure R_{AA} for photon-tagged jets and for inclusive jets and compare

reproduce the inclusive jet one

• in scenarios of radiative energy loss quarks and gluons lose their energy proportionally to their

models overestimate the suppression of photon-tagged jets and

Jet substructure

recent studies have shown an emergence of a critical angle between hard splittings, above which the jet loses energy incoherently

• it can tell us about the nature of the jet energy loss and so infer the properties of the quark gluon plasma

 $Z_{cut} = 0.2,$

$$\frac{\min(p_{\rm T}^{sj_1}, p_{\rm T}^{sj_2})}{p_{\rm T}^{sj_1} + p_{\rm T}^{sj_2}} > z_{\rm cut} \left(\frac{\Delta R_{12}}{R}\right)^{\beta} \Delta R_{12} = \sqrt{\Delta \eta_{12}^2 + \Delta \phi}$$

Groomed jet

 $r_{\rm g} = \Delta R_{12}$ between sub-jets satisfying the soft drop condition

 $\beta = 0$

Jet substructure

- jets get narrower with increasing p_{T} , independently on centrality
- result points to decoherent energy loss

• jets with wider hard splittings are significantly more suppressed in central collisions

Reclustered large jets (R = 1.0)

R = 0.2 jets with $p_T > 35$ GeV reclustered into anti-k_t R = 1.0

Recluster jets and remove soft contributions

- then R_{AA} is not dependent on $\sqrt{d_{12}}$
- result points to decoherent energy loss

$$R_{\rm AA} = \frac{N_{\rm AA}}{\langle T_{\rm AA} \rangle \times \sigma}$$

The lowest $\sqrt{d_{12}}$ interval is populated with jets with single "isolated" sub-jet, SSJ ($\sqrt{d_{12}=0}$).

significant change of the R_{AA} magnitude between jets with SSJ and those with more complex substructure

R_{AA} for *b*-jets and inclusive jets

peripheral collisions

- b- and inclusive R=0.2 jets compatible in peripheral collisions
- b-jets less suppressed in central and mid-central
- R_{AA} slightly increases with p_T in the measured range
- LIDO describes relatively well the RAA
- results support the dead cone effect

central collisions

mid-central collisions

Upsilon suppression

J/psi anomalous suppression by Debye colour screening (Matsui and Satz, 1986) \rightarrow one of the most striking signatures of the QGP

further theoretical work predicted the weaker the bound state the sooner the suppression → explore this to probe the temperature of the QGP

invariant dimuon mass spectra of Upsilon mesons

R_{AA} as a function of dimuon p_T

R_{AA} as a function of N_{part}

data well described by the models in the whole p_T range and centrality

Upsilon R_{AA}

excited Υ states significantly more suppressed than the ground state

no dependence with dimuon p_{T}

steady increase of suppression as a function of the number of the nucleon participants, Npart

An 80 years old prediction - Light by Light

modifications of the Maxwell's equations...

Evidence of LbyL scattering (Nature Physics 13, 852-858(2017)): 4.4 (3.8) σ $\sigma_{fid} = 70 \pm 24$ (stat) ± 17 (syst) nb, in agreement with SM predictions.

Pb

Heisenberg, W., Euler, H. Folgerungen aus der Diracschen Theorie des Positrons. Z. Physik 98, 714–732 (1936). The fact that electromagnetic radiation can be transformed into matter and vice versa leads to

LbyL may be sensitive to BSM

- exotic charged particles
- extra dimensions
- axion-like particles ALP

Most recent analysis (JHEP 03 (2021) 243)

acoplanarity, A_{ω}

 $p_{\rm T}^{\gamma} > 2.5 \text{ GeV}; |\eta| < 2.4;$ $m_{\gamma\gamma} > 5 \text{ GeV}; p_T^{\gamma\gamma} < 1 \text{ GeV}$

Xsection for $\gamma\gamma \rightarrow \gamma\gamma$ $\sigma_{\rm fid} = 120 \pm 17$ (stat) ± 13 (syst) ± 4 (lumi) nb

predicted: 80 ± 8 nb

 $A_{\omega} < 0.01$ defined as the signal region

$\gamma\gamma \rightarrow \gamma\gamma$ in UPC

kinematic distributions are consistent with SM

$\gamma\gamma \rightarrow \gamma\gamma$ in UPC - search for axion-like particles

[dn] (۲۲ ATLAS Pb+Pb $\sqrt{s_{NN}}$ = 5.02 TeV, 2.2 nb⁻¹ 10² ---- Expected Limit Observed 95% CLs limit on $\sigma(\gamma\gamma$ 2σ unc. 1σ unc. 10 E 6 7 8 9 1 0 40 50 60 70 20 30 m_a [GeV] Existing constraints from JHEP 12 (2017) 044 1///_a [TeV⁻¹] 10¹ CDF LHC $Y \rightarrow \gamma + inv$ LEP (pp)Belle I 10⁰ e+e− →γ+inv LEP PrimEx CMS $\gamma\gamma \rightarrow$ [PLB 797 (2019) 134826] ATLAS 10⁻¹ ATLAS $\gamma\gamma \rightarrow \gamma\gamma$ (this paper) Beam-dump 10³ 10^{-2} 10⁻¹ 10¹ 10^{2} 10⁻³ 10^{0} m_a [GeV]

important contribution of ATLAS to the exclusion limits for $6 < m_a < 100$ GeV

limits set on the cross section $\sigma_{\gamma\gamma \to a \to \gamma\gamma}$ for an axion with mass of 6 – 100 GeV from 70 nb to 2 nb.

95% CL upper limit for $\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$

JHEP 03 (2021) 243

constraints on $1/\Lambda a$ from 0.3 TeV $^{-1}$ to 0.06 TeV⁻¹

 $p_{T}^{e} > 2.5 \text{ GeV}; |\eta| < 2.5;$ $m_{ee} > 5 \text{ GeV}; p_{T}^{ee} < 2 \text{ GeV}$

backgrounds: dissociative e-pair production; Υ -meson; exclusive $\tau\tau$

Xsection for $YY \rightarrow ee$ $\sigma_{fid} = 215 \pm 1 \text{ (stat)}^{+23}_{-20} \text{ (syst)} \pm 4 \text{ (lumi) } \mu \text{b}$ predicted: STARLIGHT 196.9 μ b; SUPERCHIC 235.1 μ b

differential Xsections well described by STARLIGHT and SUPERCHIC, with exception for high $|y_{ee}|$ and $|\cos\theta^*|$

$\gamma\gamma \rightarrow ee$ in UPC

Xsection as a function of m_{ee} , $\langle p_{\tau}^{e} \rangle$, $|y_{ee}|$ and $|\cos\theta^{*}|$

Messages from Runs 1 & 2 data

- \checkmark dijet p_T balance is recovered at large leading jet p_T
- \checkmark jet suppression is sensitive to the Casimir colour factor of the initial parton
- \checkmark reclustered R=1.0 jets with single sub-jet less quenched than those with complex substructure; jets with wider hard splittings are significantly more suppressed in central collisions suggesting decoherent energy loss
- \checkmark b-jets less suppressed (20%) in central and mid-central collisions at the same reconstructed p_{T} as expected from the dead-cone effect
- \checkmark increase of suppression of the Υ states with centrality. Excited states significantly more suppressed
- \checkmark important contribution of ATLAS to axion exclusion limits for 6 < m_a < 100 GeV
- $\checkmark \gamma \gamma \rightarrow ee$ cross-sections confirm Standard Model predictions

Good progress in the interpretation of the data

Stay tuned to Run 3 data (first run postponed to 2023)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults

Outlook

backup

Jet reconstruction in Pb+Pb collisions

Collisions centrality

Dijet asymmetry in PbPb and pp collisions

dijet distributions as a function of $x_J = p_{T_2}/p_{T_1}$

Figure 1: Fraction of photon-tagged jets (filled markers) and inclusive jets (open markers) initiated by a quark, as a function of p_T^{jet} , in the PYTHIA (red), HERWIG (black), and SHERPA (blue) event generators.

Quark jet fraction

ATLAS-CONF-2022-019

How do particles redistribute within the jet and beyond? 23

Study *FF* as a function of the angular distance between the charged particle and the jet axis.

In central collisions $R_{D(pT,r)}$ is above unity at all r for all $p_T < 4 \text{ GeV} \longrightarrow$ Energy lost by jets is being transferred to particles with $p_T < 4$ GeV with larger radial distance.

Modification much lower in peripheral collisions.

Jet core remains unmodified.

PRC 100 (20

019)	064901
013)	004901

Jet substructure uncertaitnties

ATLAS-CONF-2022-026

(second and third panels). The legend applies to all the panels.

Figure 3: The relative systematic uncertainties on inclusive r_g cross-section and per-event jet yield measurements in pp collisions at $\sqrt{s} = 5.02$ TeV (left) and for different event centralities in Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV (second and third panels) shown for soft-drop parameters $z_{cut} = 0.2$ and $\beta = 0$. The legend applies to all the panels.

Figure 2: The relative systematic uncertainties on inclusive p_{T}^{jet} cross-section and per-event jet yield measurements in pp collisions at $\sqrt{s} = 5.02$ TeV (left) and for different event centralities in Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

Reclustered large jets (R = 1.0)

R = 0.2 jets with $p_T > 35$ GeV reclustered into anti-k_t R = 1.0

Recluster jets and remove soft contributions

removed) are increasingly suppressed with centrality.

Helena Santos, on behalf of ATLAS Coll. – Kruger 2022

 $R_{AA} =$

b-jets and inclusive jets cross section in pp collisions

Cross-section of R=0.2 b- and inclusive jets in pp collisions at 5.02 TeV

- Ratio of cross sections is flat in the measured range in pp
- ATLAS and CMS consistent
- Good agreement with Pythia8

b-jet to inclusive jet cross-section ratio

Ratio of R_{AA} between *b***-jets and inclusive jets**

- At the same reconstructed $p_T R_{AA}$ of *b*-jets is 20% higher
- Consistent in peripheral collisions
- Dai et al. captures the ratios of R_{AA}

Systematic uncertainties on *b*-jets R_{AA}

<u>چ</u>

£,

trality 50-80%	
TeV -	
-	
e-jet Fitting pit Others(b-jet)	
-	
	-
220 240 260 280	
$P_{_{T}}$ [GeV	/]
	F
trality 20-50%	
lev	
e.iet Fiting	
pēt — Others(b-jet)	
-	
20 240 260 280	
ρ _⊤ [GeV]
·····	Э
trality 0-20%	
-	1
e-jet Fitting	
pēt — Others(2-jet)	
-	
20 240 260 280	1

p_ [GeV]

Upsilon analysis

arXiv:2205.03042 [nucl-ex]	Table 1: Summary of the sources of systematic uncertainty.				
Collision type	Sources	γ(1S) [%]	γ(nS) [%]	γ(nS)/γ(1S) [%]	
	Luminosity	1.6	1.6	-	
	Acceptance	0.3–9.3	0.2–4.1	-	
pp collisions	Efficiency	2.7–7.0	2.8-4.0	3.0–7.1	
	Signal extraction	3.1-10.2	4.3–11.9	4.5–12.2	
	Bin migration	<1	<1	-	
	Primary-vertex association	2.0	2.0	-	
	$\langle T_{\rm AA} \rangle$	0.8-8.2	0.8-8.2	-	
	Acceptance	0.3–9.3	0.2–4.1	-	
Pb+Pb collisions	Efficiency	4.0–15.0	3.9–25.3	4.4–28.8	
	Signal extraction	3.8–16.3	14.6–28.7	16.6-31.5	
	Bin migration	<2	<2	-	
	Primary-vertex association	3.4	3.4	-	

Upsilon R_{AA}

excited Υ states significantly more suppressed than the ground state • no dependence with dimuon p_{T}

- steady increase of suppression as a function of the number of the nucleon participants, Npart.
- data well described by the models in the whole p_T range and centrality

$\gamma\gamma \rightarrow \gamma\gamma$ in Ultra Peripheral Collisions

Detector calibrated with $\gamma\gamma \rightarrow e^+e^-$

STARlight MC describe kinematics well, in general

Figure 5: Breakdown of relative systematic uncertainties in the differential cross-section as a function of m_{ee} (left) and $|y_{ee}|$ (right). arXiv:2207.12781 [nucl-ex]

$\gamma\gamma \rightarrow ee$ in UPC

 $p_{\rm T}^{\ \mu} > 4 \text{ GeV}; |\eta| < 2.4;$ $m_{\mu\mu} > 10 \text{ GeV}; p_{\tau}^{\mu\mu} < 2 \text{ GeV}$

backgrounds: HF decays, DY, dissociative µ-pair production; Υ -meson; exclusive $\tau\tau$

Xsection for $YY \rightarrow \mu\mu$ $\sigma_{fid} = 34.1 \pm 0.3 \text{ (stat)} \pm 0.7 \text{ (syst)} \, \mu \text{b}$ predicted: STARLIGHT 32.1 μ b; STARLIGHT+PYTHIA8 30.8 μ b

$\gamma\gamma \rightarrow \mu\mu$ in UPC

Xsection as a function of the acoplanarity, α

differential Xsection fairly consistent with STARLIGHT+PYTHIA8

