

Higgs boson property measurements at the ATLAS experiment

on behalf of the ATLAS Collaboration

Discovery Physics at the LHC - KRUGER 2022 Dec. 2022

Brookhaven Science Associates

George Iakovidis

Introduction

- Higgs is essential in the Standard Model.
 - Discovery during Run 1 by ATLAS and CMS (PLB, Sept. 2012)
 - ➡ 2022 marks the 10th anniversary of the discovery (Nature 607, 52–59 (2022))
- LHC "Run-2" provided significantly more statistics to the ATLAS detector allowing for precise measurements of:
 - ➡ Properties (CP, mass)
 - ➡ Cross-sections,
 - → Couplings to individual particles and self coupling,
- Higgs *serves as an important portal* to either probe new physics beyond the Standard Model or constrain it !
 - <u>This talk</u>: Measurements of Higgs boson properties using the full Run-2 dataset of 139 fb⁻¹

Higgs Production and Decays - complete picture

- Production **processes** at the LHC
 - All major observed !

Brookhaven

National Laboratory

- Rare/difficult production modes are **important** for beyond the SM (BSM) scenarios
- Higgs boson **decays** ~90% via eight decay modes

- SM compatibility (*p*-value): 72%
- Already less than 10% precision in a few individual ggF channels
- Still several channels **dominated** by the statistical **uncertainty**

[•] Ratio of observed rate to predicted SM event rate for different combinations of Higgs boson production and decay processes

Global H Signal strength

- The Higgs boson production rates are probed by the likelihood fit to observed signal yields
- Global signal strength measured for all production processes and decays together
- Expressed in terms of a single signal-strength modifier μ :

$$\mu = \frac{\sigma \times B}{(\sigma \times B)_{SM}} = 1.05 \pm 0.06 -$$

- Systematic uncertainty reduced by factor of 2 since the discovery
- Total measurement **uncertainty decreased** by ~30%
- SM compatibility (*p*-value): 39%

Mass Measurement $H \rightarrow ZZ^* \rightarrow 4\ell$

- The $H \to ZZ^* \to 4\ell$ ($\ell = e \text{ or } \mu$) provides good discrimination of signal over background with fully reconstructed final states
- New analysis is based on improved momentum scale calibration (statistical uncertainty reduced 50%, systematics by 20%) - MUON-2022-01
 - Employ analytical **per event** model with deep neural network to discriminate signal over background

maic	signal o	vei backgi	ouna			
Final state	Higgs	ZZ, tXX, VVV	Reducible backgrounds	Expected total yield	Observed yield	S/B
4μ	78 ± 5	38.7 ± 2.2	2.84 ± 0.17	120 ± 5	115	1.89
$2e2\mu$	53.4 ± 3.2	26.7 ± 1.4	3.02 ± 0.19	83.1 ± 3.5	94	1.80
$2\mu 2e$	41.2 ± 3.0	17.9 ± 1.3	3.4 ± 0.5	62.5 ± 3.3	59	1.93
4e	36.2 ± 2.7	15.7 ± 1.6	2.83 ± 0.35	54.8 ± 3.2	45	1.95
Total	209 ± 13	99 ± 6	12.2 ± 0.9	321 ± 14	313	1.88

- The m_H measurements of individual channels are **compatible** with the combined measurement with a *p*-value of 82%
- Run 2 (all chan. combined): $m_{4\ell} = 124.99 \pm 0.18(\text{stat.}) \pm 0.04(\text{syst.}) \text{ GeV}$
- Run 1 + 2 combined

 $: m_{\Delta \ell} = 124.94 \pm 0.17 (\text{stat.}) \pm 0.03 (\text{syst.}) \text{ GeV}$

k-Framework

• Event rates for Higgs production and decay processes can be expressed in terms of coupling modifiers (κ) multiplying the SM Higgs coupling strengths to other particles.

$$\sigma(i \to H \to f) = \sigma_i B_f = \frac{\sigma_i^{\rm SM} \kappa_i^2 \cdot \Gamma_f^{\rm SM} \kappa_f^2}{\Gamma_H^{\rm SM} \kappa_H^2} \to 0$$

- Three classes of models with progressively fewer assumptions:
 - 1. Single modifier for vector bosons $\kappa_V (= \kappa_W = \kappa_Z)$ and single modifier for fermion couplings κ_F :

best-fit values: $\kappa_V = 1.035 \pm 0.031$, $\kappa_F = 0.95 \pm 0.05$, *p*-value: 14%

→ Compatible with SM predictions ($\kappa_V = \kappa_F = 1$)

- 2. Coupling strength modifiers for W, Z, t, b, c, τ and μ are treated independently (only SM particles assumed, loop processes resolved)
- 3. Same as 2) but allows for the presence of non-SM particles in the loopinduced processes with coupling modifiers κ_{g} , κ_{γ} , $\kappa_{Z\gamma}$

Couplings to individual particle

All measured coupling strength modifiers are compatible with their SM **predictions**

2nd Model

Simplified template cross section (STXS)

- STXS framework partitions the Higgs cross section measurements separately in several bins of kinematic regions in an optimized way
 - Split phase space of Higgs production processes into 36 kinematic regions
 - **Optimise** signal and BSM sensitivity
 - **Reduce** theoretical uncertainties that are directly folded into the measurements.
 - Allowing the combination of measurements in different decay channels and eventually between experiments.
 - The *p*-value for compatibility of the combined measurement and the SM prediction is **94%**

All measurements are consistent with the SM predictions

8

$H \rightarrow \gamma \gamma$ channel (STXS)

- Best-fit values STXS parameters in each of the 28 regions normalized to their SM predictions:
 - splitting bins based on kinematics
 - **non-overlapping** fiducial regions
- Uncertainties of 10% for ggF + $b\bar{b}H$, 22% for VBF, and 35% for WH and $t\bar{t}H$.
- Upper limit of ten times the SM prediction is set for the *tH* process
- Compatible with their SM predictions, with a *p*-value of 93%

Process	Value	ue Uncertainty [fb]			SM pred.
$(y_H < 2.5)$	[fb]	Total	Stat.	Syst.	[fb]
ggF+bbH	106	+10 -10	+8 -8	+6 -6	102^{+6}_{-6}
VBF	9.5	+2.2 -1.9	+1.5 -1.4	+1.7 -1.4	$7.9^{+0.2}_{-0.2}$
WH	4.2	+1.5 -1.4	+1.5 -1.4	+0.4 -0.2	$2.8^{+0.1}_{-0.1}$
ZH	-0.4	+1.1 -1.0	$^{+1.1}_{-1.0}$	+0.2 -0.3	$1.8^{+0.1}_{-0.1}$
$t\bar{t}H$	1.0	+0.4 -0.3	+0.3 -0.3	+0.1 -0.1	$1.1^{+0.1}_{-0.1}$
tH	0.5	+0.8 -0.6	+0.7 -0.6	+0.3 -0.2	$0.19^{+0.01}_{-0.02}$

arXiv:2207.00348

- better granularity especially at high m_{ii})
- - **Individually measured** c_k with others set to zero
- **EVn** with PDF approx. **Gaussian**: $C_{\text{SMEFT}}^{-1} = P^T C_{\text{STXS}}^{-1} P$

Differential x-section

- Joint analysis $H \to ZZ^* \to 4\ell$ ($\ell = e \text{ or } \mu$) and $H \rightarrow \gamma \gamma$ channels
- Measure differential cross-sections as a function of the following variables: $p_{\rm T}^H$, $|y_H|, N_{jets}, p_T^{lead.jet}$

 $H \rightarrow ZZ^* \rightarrow 4\ell$: 53.0^{+5.3}_{-5.1} pb $H \rightarrow \gamma \gamma$: 58.1^{+5.7}_{-5.4} pb

- Total: $55.5^{+4.0}_{-3.8}$ pb (SM: 55.6 ± 2.8 pb)
 - Analysis ggF $H \rightarrow WW^* \rightarrow ev\mu v$ to measure differential cross-sections (0 and 1 jets)
 - Measurements in a fiducial phase space minimizes extrapolations and therefore the model dependence of the results
 - Transverse mass $m_{\rm T}$ as a function : $p_{\rm T}^H$, $|y_{i0}|$, $p_{\rm T}^{l0}$, $p_{\rm T}^{ll}$, m_{ll} , y_{ll} , $\Delta \phi_{ll}$, $\cos \theta^*$
 - **Compatibility** with SM (*p*-value) **93-97%**

 $d\sigma/d(p_T^H)[pb/G]$

0.6

0.4

0.2

⁻heory/Data

Back to κ - Adding $VH(c\bar{c})$, VH(bb) dataset

- **Combined fit** with the measurement of Higgs bosons produced in **association** with a W or Zboson decaying to *b*- or *c*-quark pairs
 - Allows for a more stringent constraints of the **coupling modifiers** κ_c and κ_b without any assumption on the bottom quark coupling
- Total Higgs width is resolved with κ_c , κ_b and $B_{\rm BSM} = B_{\rm invis.} + B_{\rm und.}$
 - other couplings set to SM
- Two scenarios $B_{\text{BSM}} = 0$ or B_{BSM} is a free parameters
- Ultimate sensitivity to κ_c and κ_b at the price of a larger model dependency.
- Upper limit on κ_c of 4.8×SM at 95% CL

Scenario	Observed 68% confidence interval	Observed 95% confidence interval
$B_{\rm BSM} = 0$	[-1.61, 1.70]	[-2.47, 2.53]
No assumption on B_{BSM}	[-2.63, 3.01]	[-4.46, 4.81]

CP property: VBF $H \rightarrow \gamma \gamma$

- SM Higgs Spin 0 and positive parity ($J^{CP} = 0^{++}$) established with Run 1 data (spin 1 and 2 excluded >99.9% CL)
- Test of CP invariance using two effective field theory bases (dim-6) :
 - \tilde{d} in the **HISZ** basis (further **tightened** through **combination** with results from the $H \rightarrow \tau \tau$ channel) _{Phys. Lett. B 805 (2020) 135426}
 - $c_{H\tilde{W}}$ in the Warsaw basis (for future combinations)

SM Contribution term

CP-odd (c_i Wilson coefficient)

Optimal Observable: $OO = 2 \cdot \text{Re}(\mathcal{M}_{\text{SM}}^* \cdot \mathcal{M}_{\text{CP-odd}}) / |\mathcal{M}_{\text{SM}}|^2$ Phys. Lett. B 805 (2020) 135426

	68% (exp.)	95% (exp.)	68% (obs.)	95% (obs.)
\tilde{d} (inter. only)	[-0.027, 0.027]	[-0.055, 0.055]	[-0.011, 0.036]	[-0.032, 0.059]
\tilde{d} (inter.+quad.)	[-0.028, 0.028]	[-0.061, 0.060]	[-0.010, 0.040]	[-0.034, 0.071]
\tilde{d} from $H \rightarrow \tau \tau$	[-0.038, 0.036]	_	[-0.090, 0.035]	-
Combined \tilde{d}	[-0.022, 0.021]	[-0.046, 0.045]	[-0.012, 0.030]	[-0.034, 0.057]
$c_{H\tilde{W}}$ (inter. only)	[-0.48, 0.48]	[-0.94, 0.94]	[-0.16, 0.64]	[-0.53, 1.02]
$c_{H\tilde{W}}$ (inter.+quad.)	[-0.48, 0.48]	[-0.95, 0.95]	[-0.15, 0.67]	[-0.55, 1.07]

Result compatible with SM and no sign of CP violation is observed in data

CP mixing angle

• Probing the *CP* nature of the top-Higgs Yukawa coupling in $t\bar{t}H$ and *tH* events with a **Higgs** boson **decaying** to a **pair of** b quarks: $H \rightarrow bb$

$$\mathscr{L}_{t\bar{t}H} = -\kappa'_t y_t \phi \bar{\psi}_t (\cos \alpha + i\gamma_5 s)$$

best fit value : $\alpha = 11^{\circ} + 55^{\circ}_{-77^{\circ}}, \kappa'_{t} = 0.83 + 0.30_{-0.46}$

 \rightarrow Pure *CP*-odd coupling is **disfavoured** by the data at 1.2 σ CL

• Measuring *CP* properties of Higgs boson through interactions with τ leptons using $H \rightarrow \tau \tau$

$$\mathscr{L}_{H\tau\tau} = -\frac{m_{\tau}}{v}\kappa_{\tau}(\cos\phi_{\tau}\bar{\tau}\tau + \sin\phi_{\tau}\bar{\tau}i\gamma_{5}\tau)H$$

Obs. : $\phi_{\tau} = 9 \pm 16^{\circ}$ at the 68 % CL, $\phi_{\tau} = 0^{\circ}(CP - \text{even hypothesis})$ • Pure CP-odd hypothesis is disfavoured by the data at 3.4σ CL

Results are compatible with the SM expectation within the measured uncertainties

Off-shell production of the *H*

- Search of **off-shell** production of the Higgs boson has been performed with the full Run-2 dataset
- Two decay states: $ZZ \rightarrow 4\ell$ ($\ell = e \text{ or } \mu$), and $ZZ \rightarrow 2\ell 2\nu$

$$\sigma_{gg \to H \to VV}^{\text{on-shell}} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{m_H \Gamma_H} \qquad \sigma_{gg \to H \to VV}^{\text{off-shell}} \sim \frac{g_{ggH}^2}{m_H \Gamma_H}$$

- $\mu_{\text{off-shell}} = 1.1 \pm 0.6$, upper limit 2.3 at 95% CL
- The background-only hypothesis is rejected with an obs. (exp.) significance of 3.2 σ obs. (2.4 σ exp.)
 - Marks the experimental evidence of off-shell Higgs production.
- The measured total width (combination with on-shell $H \to ZZ^* \to 4\ell$) of the Higgs is: $4.6^{+2.6}_{-2.5}$ MeV (Exp. SM(Γ_H^{SM}) is 4.1 MeV)
- Upper limit on the total width is found to be 9.7 MeV obs. (10.2 MeV exp.) at 95% CL

No deviations from the SM prediction are observed

 $\Gamma_{\rm H}\!/\Gamma_{\rm H}^{\rm SM}$

H self coupling - theory

- Search is the **double Higgs** production and **self Higgs coupling**
- The Higgs boson self-interactions are characterised by the **trilinear self-coupling** λ_{HHH}

• Results are reported in terms of the coupling modifier κ_{λ} defined as the ratio of the Higgs boson self-coupling to its SM value

 $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{HHH}^{SM}$

t	
Η	
\overline{t}	

H self coupling - results

- Single- and double-Higgs boson analyses based on the complete Run 2
- Investigate the Higgs boson self-interaction and shed more light on the Higgs boson potential, the source of **EW symmetry breaking** in the SM.

ggF HH and VBF HH directly sensitive to the Higgs boson self-coupling constraint

Combination assumption	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1\sigma}_{-1\sigma}$	
<i>HH</i> combination	$-0.6 < \kappa_{\lambda} < 6.6$	$-2.1 < \kappa_{\lambda} < 7.8$	$\kappa_{\lambda} = 3.1^{+1.9}_{-2.0}$	
Single- <i>H</i> combination	$-4.0 < \kappa_{\lambda} < 10.3$	$-5.2 < \kappa_{\lambda} < 11.5$	$\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$	
<i>HH</i> + <i>H</i> combination	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$	
<i>HH</i> + <i>H</i> combination, κ_t floating	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$	
<i>HH</i> + <i>H</i> combination, κ_t , κ_V , κ_b , κ_{τ} floating	$-1.4 < \kappa_{\lambda} < 6.1$	$-2.2 < \kappa_{\lambda} < 7.7$	$\kappa_{\lambda} = 2.3^{+2.1}_{-2.0}$	

model independent limit

double-Higgs decay channels are combined with single-Higgs boson cross-section measurements assuming κ_{λ} is the only source of physics beyond the SM

- Using the **combined** measurement (assuming κ_{λ} only source of physics BSM), values outside $-0.4 < \kappa_{\lambda} < 6.3$ are excluded at 95% CL (exp. $-1.9 < \kappa_{\lambda} < 7.6$)
- This study provides the most stringent constraints on Higgs boson self-interactions to date

arXiv:2211.01216

Conclusions

- We are 10 years after the Higgs boson discovery
 - Most up to date results of its properties were presented
- Gauge couplings to vector bosons (W, Z) and γ and Yukawa couplings to 3^{rd} generation fermions (t, b, τ) are experimentally confirmed
- Achieved less than 10% precision (total uncertainties) in a few individual channels but others still dominant by statistical uncertainties
 - Improvement in Run3
 - Aiming for percent-level precision at HL-LHC

- STXS regions allows stronger constraints on BSM & SMEFT well advanced • The best constraints on *HH* signal strength and κ_{λ} to date from ATLAS • So far, <u>Higgs complies with SM predictions</u>

Backup

Run 2

- Run2 data-taking successfully finished in 2018
- 139 fb⁻¹ of 13 TeV proton-proton collision data collected by ATLAS in total after data quality (DQ) requirements thanks to the excellent LHC performance

Run 3

Slightly higher CM energy, double luminosity of Run 2

Channel	13.6 / 13 TeV	14 / 13.6 TeV
H (ggF)	7%	6%
HH	11%	7%
tt	11%	6%
ttH	13%	7%
tttt	19%	11%
SUSY stop (1.2–1.5 TeV)	20–30%	14–19%
Z' (5–6 TeV)	50–70%	30–40%
QBH (9.5 TeV)	250%	100%

LHC risk analysis found training to 7 TeV unreasonable \rightarrow 6.8 TeV was decided in 2021

Calendar Year	2022	2023 / 2024			
Machine efficiency	25 %	50 %			
Bunch population [10 ¹¹] at FT	1.4	1.8			
Collisions at IP1 and IP5	2736	2736 248		84	
Norm. emittance at FT $[\mu m]$	1.8	1.8	2.5	1.8	2.5
Levelling time [h]	5.3	12.1	11.4	10.2	9.3
Optimal fill length [h]	10.7	15.5	15.0	13.7	13.3
Integrated luminosity/year [fb ⁻¹]	35.4	84.4	83.6	81.2	80.1

Table 3: Performance estimate at 6.8 TeV for 2022 and 2023/2024, considering various possible beam parameters in 2023/2024, assuming a turn around time of 4.5 h, 130 days of pp run per year, and an effective cross-section of 100 mb. The impact of the finite β^* steps during β^* -levelling is neglected, degrading at the percent level or less the performance of each year (e.g. corresponding to a reduction of the 2022 and 2023/2024 performance by 0.3 - 0.4 fb⁻¹ and 1.1 - 1.2 fb⁻¹, respectively, assuming a β^* step of the order of 5 %, see [34] for more details).

CERN-ACC-2021-0007

