Heavy-flavour production measurements in ALICE

Shreyasi Acharya, On behalf of the ALICE Collaboration

Laboratoire de Physique de Clermont, Clermont-Ferrand, France

Kruger 2022: Discovery physics at the LHC 04-09 DEC 2022 – KRUGER GATE, SOUTH AFRICA

Heavy quarks (charm, beauty), due to their large masses (m $_{\rm c}\sim 1.3~GeV/c^2$, m $_{\rm b}\sim 4.2~GeV/c^2$)

- $\triangleright\,$ produced at the early stages of the collision via hard scattering
- $\triangleright\,$ production cross-section calculated using factorization theorem

 $\begin{array}{c} d\sigma^{hard}_{AB \rightarrow C} = \sum_{a,b} f_{a/A}(x_a,Q^2) \otimes f_{b/B}(x_b,Q^2) \otimes d\sigma^{hard}_{ab \rightarrow c}(x_a,x_b,Q^2) \otimes D_{c \rightarrow C}(z,Q^2) \\ \\ \text{Parton Distribution Function} \\ \text{(PDF)} \\ \begin{array}{c} \text{Partonic hard scattering} \\ \text{cross-section} \\ \end{array} \\ \begin{array}{c} \text{Fragmentation} \\ \text{Function (FF)} \end{array}$

Heavy quarks (charm, beauty), due to their large masses (m $_{\rm c}\sim 1.3~GeV/c^2$, m $_{\rm b}\sim 4.2~GeV/c^2$)

- $\triangleright\,$ produced at the early stages of the collision via hard scattering
- $\,\triangleright\,$ production cross-section calculated using factorization theorem

 $\begin{array}{c} d\sigma^{hard}_{AB \rightarrow C} = \sum_{a,b} f_{a/A}(x_a,Q^2) \otimes f_{b/B}(x_b,Q^2) \otimes d\sigma^{hard}_{ab \rightarrow c}(x_a,x_b,Q^2) \otimes D_{c \rightarrow C}(z,Q^2) \\ \\ \text{Parton Distribution Function} \\ \text{(PDF)} \\ \begin{array}{c} \text{Partonic hard scattering} \\ \text{cross-section} \\ \end{array} \\ \begin{array}{c} \text{Fragmentation} \\ \text{Function (FF)} \end{array}$

Pb–Pb collisions:

- Heavy quark interaction with the medium constituents
- Study hadronization mechanisms in presence of a medium
 - Studied through ratios of particle species

Heavy quarks (charm, beauty), due to their large masses (m $_{\rm c}\sim 1.3~GeV/c^2$, m $_{\rm b}\sim 4.2~GeV/c^2$)

- $\,\triangleright\,$ produced at the early stages of the collision via hard scattering
- $\triangleright\,$ production cross-section calculated using factorization theorem

 $\begin{array}{c} d\sigma^{hard}_{AB \rightarrow C} = \sum_{a,b} f_{a/A}(x_a,Q^2) \otimes f_{b/B}(x_b,Q^2) \otimes d\sigma^{hard}_{ab \rightarrow c}(x_a,x_b,Q^2) \otimes D_{c \rightarrow C}(z,Q^2) \\ \\ \text{Parton Distribution Function} \\ \text{(PDF)} \\ \begin{array}{c} \text{Partonic hard scattering} \\ \text{cross-section} \\ \end{array} \\ \begin{array}{c} \text{Fragmentation} \\ \text{Function (FF)} \end{array} \end{array}$

pp collisions:

- Test perturbative QCD calculations
- Baseline reference for heavy-ion studies
- Study hadronization mechanisms in vacuum

Pb–Pb collisions:

- Heavy quark interaction with the medium constituents
- Study hadronization mechanisms in presence of a medium
 - Studied through ratios of particle species

Heavy quarks (charm, beauty), due to their large masses (m $_{\rm c}\sim 1.3~GeV/c^2$, m $_{\rm b}\sim 4.2~GeV/c^2$)

- $\triangleright\,$ produced at the early stages of the collision via hard scattering
- $\,\triangleright\,$ production cross-section calculated using factorization theorem

 $\begin{array}{c} d\sigma^{hard}_{AB \rightarrow C} = \sum_{a,b} f_{a/A}(x_a,Q^2) \otimes f_{b/B}(x_b,Q^2) \otimes d\sigma^{hard}_{ab \rightarrow c}(x_a,x_b,Q^2) \otimes D_{c \rightarrow C}(z,Q^2) \\ \\ \text{Parton Distribution Function} \\ \text{(PDF)} \end{array} \begin{array}{c} \text{Partonic hard scattering} \\ \text{cross-section} \\ \text{Fragmentation} \\ \text{Function (FF)} \end{array}$

pp collisions:

- Test perturbative QCD calculations
- Baseline reference for heavy-ion studies
- Study hadronization mechanisms in vacuum
 - \rightarrow Main focus of this presentation

Pb–Pb collisions:

- Heavy quark interaction with the medium constituents
- Study hadronization mechanisms in presence of a medium
 - Studied through ratios of particle species

• High multiplicity pp, p-Pb events at LHC energy have revealed unexpected features similar to heavy-ion collisions, such as:

- High multiplicity pp, p–Pb events at LHC energy have revealed unexpected features similar to heavy-ion collisions, such as:
 - ▷ Ridge formation [CMS, JHEP 09 (2010) 091]

• High multiplicity pp, p–Pb events at LHC energy have revealed unexpected features similar to heavy-ion collisions, such as:

▷ Ridge formation [CMS, JHEP 09 (2010) 091]

 \implies collectivity

▷ Anisotropic flow [CMS, Phys. Lett. B 765 (2017) 193]

- High multiplicity pp, p–Pb events at LHC energy have revealed unexpected features similar to heavy-ion collisions, such as:
 - ▷ Ridge formation [CMS, JHEP 09 (2010) 091]

- \Rightarrow collectivity
- ▷ Anisotropic flow [CMS, Phys. Lett. B 765 (2017) 193] .
- ▷ Strange baryon enhancement [Nature Physics 13 (2017) 535-539]

• High multiplicity pp, p–Pb events at LHC energy have revealed unexpected features similar to heavy-ion collisions, such as:

- ▷ Ridge formation [CMS, JHEP 09 (2010) 091]
- ▷ Anisotropic flow [CMS, Phys. Lett. B 765 (2017) 193] .
- ▷ Strange baryon enhancement [Nature Physics 13 (2017) 535-539]

These are typical signatures for quark-gluon plasma formation in heavy-ion collisions

Open question: In small systems, are mechanisms similar to those observed in heavy-ion collisions at play?

> collectivity

▷ Strange baryon enhancement [Nature Physics 13 (2017) 535-539]

These are typical signatures for quark-gluon plasma formation in heavy-ion collisions

Open question: In small systems, are mechanisms similar to those observed in heavy-ion collisions at play?

• Give insight into multiple-parton-interaction (MPI) and color reconnection (CR) in the hadronization mechanisms

Open question: In small systems, are mechanisms similar to those observed in heavy-ion collisions at play?

- Give insight into multiple-parton-interaction (MPI) and color reconnection (CR) in the hadronization mechanisms
- Understand the interplay of hard and soft processes
 - \rightarrow to search possible connections between small and extended interacting systems.

[P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)]

Open heavy-flavor production discussed in this talk via:

 $D^0 \rightarrow K^- \pi^+$ $D_{\epsilon}^+ \rightarrow K^- K^+ \pi^+$ $\mathbf{D}^+ \rightarrow \mathbf{K}^- \pi^+ \pi^+$ $\mathbf{D}^* \rightarrow \mathbf{D}^0 \pi^+$ $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$ $\Lambda_c^+ \rightarrow p K_s^0$ $\Xi_{\mathbf{c}}^{\mathbf{0}} \rightarrow \Xi^{-} \mathbf{e}^{+} \nu_{\mathbf{e}}$ $\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}$ $\Xi_{c}^{+} \rightarrow \Xi^{-} \pi^{+}$ $\Omega_{
m c}^{0}
ightarrow \Omega^{-} \pi^{+}$ $\mathbf{B}, \mathbf{D} \rightarrow \mathbf{e} \nu_{\mathbf{e}} \mathbf{X}$

D-meson and Λ_c^+ production cross section in pp collisions

• Precise measurement down to $p_{\rm T} = 0$ for prompt D⁰, D⁺

- FONLL (Fixed Order with Next-to-Leading Log resummation): [FONLL: JHEP 1210 (2012) 137]
 - \rightarrow Factorization approach with universal fragmentation functions from $\rm e^+e^-$ of LEP $_{\rm [EPJC 75 (2015) 1, 19]}$
 - \rightarrow For non-prompt D^{0,+} & Λ_c^+ : **PYTHIA8** used to describe $H_b \rightarrow D$ (Λ_c^+)+X decays and branching ratio

Charm fragmentation in pp collisions : Meson-over-meson ratio

 $D_{s}^{+}/(D^{0}+D^{+})$:

• Meson-to-meson ratios independent of $p_{\rm T}$ and collision system

[FONLL: JHEP 1210 (2012) 137]

- Agreement with FONLL calculations which assumes universal fragmentation function [EPJC 75 (2015) 1, 19]
- $D_s^+/(D^0 + D^+)$ higher for non prompt mesons \rightarrow substantial B_s^0 decay contribution

Charm fragmentation in pp collisions : Baryon-over-meson ratio (Λ_c^+/D^0)

 Λ_c^+/D^0 :

• Strong $p_{\rm T}$ dependence

Data is well described by models :

- PYTHIA 8 CR-BLC (Mode 2): Color reconnection beyond the leading color approximation [JHEP 1508 (2015) 003]
 - \rightarrow Enhances production of baryons thanks to new CR topologies
 - Catania Model [arXiv:2012.12001]
 - \rightarrow Mixed hadron formation: fragmentation + coalescence
 - SHM + RQM : Statistical Hadronization Model and Relativistic Quark Model [PLB 795 (2019) 117-121]

 \rightarrow Statistical hadronisation models with augmented set of (not yet observed) excited charm baryon states

• Higher than value measured in e^+e^- collisions \rightarrow fragmentation not universal among different collision systems ?

Charm fragmentation in pp collisions : $\Xi_c^{0,+}/D^0$ and Ω_c^0/D^0

 $p_{\rm T}$ dependence underestimated by models describing $\Lambda_{\rm c}^+/{\rm D}^0$

 $\rm D_s^+/(\rm D^0+\rm D^+)$ compatible with e^+e^- expectations \rightarrow what about strange-charm baryon hadronization ?

Ω_c^0/D^0 : [ALICE Collaboration, arXiv:2205.13993]

No clear $p_{\rm T}$ dependence in BR× Ω_c^0/D^0 BR($\Omega_c^0 \rightarrow \pi^+\Omega^-$) = (0.51 ± 0.07)% from theory calculations [Y. Hsiao et al. EPJC 80, 1066 (2020)]

ightarrow Catania model predictions gets close to the measurements

ightarrow Baryon-enhanced models underestimate the data

[PYTHIA8+CR: JHEP 1508 (2015) 003] [SHM+RQM: PLB 795 (2019) 117-121] [QCM: EPJ C78 no. 4 (2018) 344] [Catania: arXiv:2012.12001]

[ALICE Collaboration, Phys. Rev. D 105 (2022) L011103]

[B factories: EPJC 76 no. 7 (2016) 397] [LEP: EPJC 76 no. 7 (2016) 397] [HERA: EPJC 76 no. 7 (2016) 397]

- Charm Fragmentation Fractions are not universal !!
- First measurement of $f(c \rightarrow \Xi_c^0)$

H_c	$f(\mathbf{c} \rightarrow \mathbf{H_c})[\%]$
\mathbf{D}^0	$39.1 \pm 1.7 (stat)^{+2.5}_{-3.7} (syst)$
\mathbf{D}^+	$17.3 \pm 1.8(\mathrm{stat})^{+1.7}_{-2.1}(\mathrm{syst})$
$\mathbf{D}_{\mathrm{s}}^{+}$	$7.3 \pm 1.0(\text{stat})^{+1.9}_{-1.1}(\text{syst})$
$\Lambda_{ m c}^+$	$20.4 \pm 1.3 (\text{stat})^{+1.6}_{-2.2} (\text{syst})$
$\Xi_{\rm c}^0$	$8.0 \pm 1.2(\text{stat})^{+2.5}_{-2.4}(\text{syst})$
\mathbf{D}^{*+}	$15.5 \pm 1.2(\mathrm{stat})^{+4.1}_{-1.9}(\mathrm{syst})$

($D^{*,+}$ feeds into the D^0 and D^+ mesons)

Beauty fragmentation in pp collisions : Baryon-over-meson ratio

Access to the fragmentation of beauty quark via non-prompt ratio

- FONLL + Pythia 8 and fragmentation fraction $f(b \rightarrow \Lambda_b^0)$ measured by LHCb
- ightarrow Predictions with f(b $ightarrow \Lambda_b^0$) measured at e^+e^- underestimate data

[FONLL: JHEP 1210 (2012) 137]

[LHCb Collaboration, Phys. Rev. D 100, 031102(R)]

• Similar trend vs $p_{\rm T}$ as for prompt $\Lambda_{\rm c}^+/{\rm D}^0 \to$ hint of larger enhancement at low $p_{\rm T}$

cc and bb cross section in pp collisions

[ALICE Collaboration, Phys. Rev. D 105 (2022) L011103]

[ALICE Collaboration, JHEP 05 (2021) 220]

Production cross section in pp collisions at 5.02 TeV at mid rapidity

 $(d\sigma^{c\bar{c}}/dy)_{|y|<0.5} = 1165 \pm 44(\text{stat.}) \pm 134(\text{syst.})\mu b$

Results barely on the upper edge of FONLL and NNLO calculation

Measurements **described well** by FONLL and NNLO calculations

 $(d\sigma^{b\bar{b}}/dy)_{|y|<0.5} = 34.5 \pm 2.4(\text{stat.}) \pm 2.5(\text{syst.})\mu b$

[FONLL: JHEP10(2012) 137], [NNLO: arXiv:1612.05582] [CDF: arXiv:hep-ex/0412071] [PHENIX: arXiv:1005.1627] [STAR: arXiv:1204.4244] [UA1: PLB256(1991)121-128]

D_s^+/D^0 , and Λ_c^+/D_0 in Pb–Pb and pp collisions

[ALICE Collaboration, arxiv:2110.10006]

- Ratio is higher in $2 < p_T < 8 \text{ GeV}/c$
 - \rightarrow Strangeness enhancement in QGP in Pb–Pb
- Agreement with models that include strangeness enhancement, fragmantation + recombination

- At intermediate $p_{\rm T}$: Increasing trend from pp, to semi-central and most central Pb-Pb collisions
- Coalescence? Radial flow?

[TAMU: PRL 124, 042301 (2020)] [PHSD: PRC 93, 034906 (2016)] [LGR: EPJC, 80 7 (2020) 671] [CATANIA: PRC 96, 044905 (2017)]

I GB

TAMU Catania

PHSD

4-9 Dec. 2022

[TAMU: PRL 124, 042301 (2020)]; [PHSD: PRC 93, 034906 (2016)]; [LGR: EPJC, 80 7 (2020) 671]; [CATANIA: PRC 96, 044905 (2017)]

- No evidence of multiplicity dependence, from low (pp) to high (central Pb-Pb) multiplicity
- No enhancement of total yield in Pb-Pb with respect to to pp collisions
 - Reproduced by fragmentation + recombination and SHM predictions
- Is the $p_{\rm T}$ -differential enhancement a consequence of radial flow and recombination only ?

Multiplicity dependent yields of heavy flavour particles in pp collisions

Faster than linear increasing trend and p_T dependence, influenced by momentum dependence of :

 \rightarrow jet fragmentation affecting the measured multiplicity

High momentum partons ightarrow accompanied by larger number of fragments ightarrow contribute to high multiplicity

Comparison of self-normalized D-meson yield with model expectations

- EPOS3 without hydro
 → underestimates data
- EPOS3 + Hydro
 → fairly reproduces data
- 3-Pomeron CGC prediction
 - \rightarrow overestimates the yield compared to data

3-Pomeron CGC[arXiv:1910.13579] EPOS [Phys. Rev. C 89, 064903 (2014)]

ALI-PREL-488879

Summary

- Precise measurements of charm and beauty cross sections
- \bullet Charm fragmentation function calculated in pp collisions and compared to e^+e^- collisions
 - \rightarrow Non-universality of the fragmentation functions
- Charm hadronization studied in Pb–Pb collisions and pp collisions
 - \rightarrow Models containing hadronization mechanism with recombination+ fragmentation tend to describe data well
 - ightarrow More studies are needed to discriminate among different theoretical descriptions
- HF self-normalised yield vs. multiplicity in pp collisions
 - ightarrow Faster than linear increasing trend, with strong p_{T} dependence
 - \rightarrow Compared with model expectation, more studies required
 - PYTHIA 8.2 (includes MPI and CR),
 - EPOS3.4 (with and without hydro calculation)
 - 3-Pomeron CGC (includes multigluon fusion mechanism) models

Back-up

Colour Reconnection (CR) scenario

- strings rearranged between partons, so as to reduce the total string length
- Partons from different PI can become connected to each other

Partons created in different MPIs do not interact each other

partons from lower $p_{\rm T}$ MPI systems are added to the dipoles defined by the higher $p_{\rm T}$ MPI system \rightarrow in a way that minimizes the total string length

Old CR

(Monash tune)

Minimization of string length over all possible configurations Reconnections of dipoles \rightarrow junctions structure produces \rightarrow enhances production of baryons

(CR Mode 'X' tune) CR Mode 2 (Gluon-move model) : Similar to default but only gluons are considered for reconnection. For each gluon all the reconnections to all MPI systems are considered. [ATL-PHYS-PUB-2017-008]

New CR Junction \bar{q}_2