BSM SEARCHES IN CMS

Kruger 2022: Discovery Physics at the LHC

Greg Landsberg

06.12.2022

Disclaimer

- Given the audience of this conference, I don't want this talk to turn into a shopping list of searches done at the LHC in general and in CMS in particular
 - **★** Even if I wanted to, I'd not fit in anywhere close to 50 minutes!
- Instead, I'll focus on things, which I believe may be more interesting to the broad experimental and theoretical community attending this conference
- I'll talk about new ideas, new search tools, and of course! about some new and not so new excesses we have seen in the LHC data
- You can find many more search results on public Web pages of the <u>ATLAS</u>, <u>CMS</u>, and <u>LHCb</u> experiments, as well as in the talks by Eric Chabert (this afternoon), Mohamed Zaazoua (tomorrow morning), and Ethan Lewis Simpson, Phuti Rapheeha, Andrea Coccaro, Anza-Tshilidzi Mulaudzi (tomorrow afternoon)

- Looking for Unknown
- New Tools for the New Paradigm
- Towards Low Masses and Small Couplings
- Towards Long Lifetimes
- Flavor Anomaly Inspired Searches
- Run 2 Excesses
- Conclusions

LHC Run 2: Big Success

- Up to 160 fb⁻¹ has been delivered by the LHC in Run 2 (2015–2018), at a c.o.m. of 13 TeV, exceeding the original integrated luminosity projections
- About 140 fb⁻¹ of physics-quality data recorded by each ATLAS & CMS; about 6 fb⁻¹ has been recorded by the LHCb
- Thank you, LHC, for a spectacular Run 2 and looking forward to even more exciting Run 3!
 CMS Integrated Luminosity, pp, √s = 13 TeV

LHC Run 2: Big Success

- Up to 160 fb⁻¹ has been delivered by the LHC in Run 2 (2015–2018), at a c.o.m. of 13 TeV, exceeding the original integrated luminosity projections
- About 140 fb⁻¹ of physics-quality data recorded by each ATLAS & CMS; about 6 fb⁻¹ has been recorded by the LHCb
- Thank you, LHC, for a spectacular Run 2 and looking forward to even more exciting Run 3! CMS Integrated Luminosity, pp, $\sqrt{s} = 13$ TeV

Looking for Unknown

- The LHC has been successfully operating for over 13 years, transforming the entire landscape of searches for new physics
- Despite a number of tantalizing hints seen by ATLAS, CMS, and LHCb over the years, apart from the observation of the Higgs boson and a number of QCD states, none of them raised to the discovery level yet; many are now gone
- So, why are we still looking for new physics at the LHC and where should we look for it if we continue?

The Why

- Why are we still covering something like a territory of Brazil with the Brazilian flag exclusion plots?
 - ★ Many things are missing from the standard model (SM), hinting that it is likely incomplete
 - * Physics issues: no gravity; no dark matter; no connection between the three generations of quarks and leptons; no quantitative explanation of the matter-antimatter asymmetry in the universe; no neutrino oscillations
 - Math issues: naturalness, which became a real problem since the discovery of the Higgs boson; "arbitrary" fermion masses; strong CP problem
 - Most of viable SM extensions that cure some of the above problems require new particles, dimensions, symmetries
 - ★ Many lead to the phenomenology within the reach of the LHC, although there is no guarantee anymore
 - Many exclusions, while appear strong, are based on simplifying assumptions, which are often arbitrary (e.g., Br = 1) - read the fine print!

6

>Read the fine print!

The Where

- Given that the LHC has reached its ultimate energy, looking for heavy particles is a game of a diminishing return - it will take many years to discover something in this regime, if we haven't seen a hint so far
 - * No more low-hanging fruit!
- The focus shifts to much more complicated signatures, which haven't been exploited thus far, as well as significantly more sophisticated analyses than we pursued during the earlier years
 - Doubling time has doubled since Run 2; it is now about three years

★ Compatible with a "lifetime" of a graduate student in an LHC experiment, allowing for a well-designed and sophisticated analysis rather than a "luminosity chase"

Greg Landsberg - BSM Searches in CMS - Kruger 2022 - 6.12.2022

The Where

- Given that the LHC has reached its ultimate energy, looking for heavy particles is a game of a diminishing return - it will take many years to discover something in this regime, if we haven't seen a hint so far
 - * No more low-hanging fruit!
- The focus shifts to much more complicated signatures, which haven't been exploited thus far, as well as significantly more sophisticated analyses than we pursued during the earlier years
 - Doubling time has doubled since Run 2; it is now about three years

★ Compatible with a "lifetime" of a graduate student in an LHC experiment, allowing for a well-designed and sophisticated analysis rather than a "luminosity chase"

Greg Landsberg - BSM Searches in CMS - Kruger 2022 - 6.12.2022

The Where

- Given that the LHC has reached its ultimate energy, looking for heavy particles is a game of a diminishing return - it will take many years to discover something in this regime, if we haven't seen a hint so far
 - * No more low-hanging fruit!
- The focus shifts to much more complicated signatures, which haven't been exploited thus far, as well as significantly more sophisticated analyses than we pursued during the earlier years
 - Doubling time has doubled since
 Run 2; it is now about three years

★ Compatible with a "lifetime" of a graduate student in an LHC experiment, allowing for a well-designed and sophisticated analysis rather than a "luminosity chase"

Stairway to Hell

The paradigm shift

New Tools for the New Paradigm

- Use of new triggers not available earlier in the LHC running
 - ★ A variety of triggers optimized for long-lived particles ATLAS, CMS, LHCb
 - ★ Trigger-level analysis (TLA), aka data scouting ATLAS and CMS, and triggerless design with real-time alignment and calibration (LHCb)
 - * Extensive use of GPU in the trigger (CMS, LHCb)
 - ★ ISR-based triggers with jet substructure and mass-decorrelated subjet taggers (ATLAS, CMS)
- Data parking (ATLAS, CMS)
- Novel approaches with machine learning (ML) techniques including weakly supervised and unsupervised ML
- Clever use of existing detectors beyond their original design goals
- In what follows I'll illustrate these concepts using a mix of older analyses, where the techniques were established, and some new results

Toward Small Masses: Scouting

Greg Landsberg - BSM Searches in CMS - Kruger 2022 - 6.12.2022

10

Trigger efficiency

0.8

0.6

0.4

0.2

1.2 - CMS

Scouting analyses are based only on the high-level trigger (HLT) objects resulting in a very compact event size and vastly increased rate per bandwidth for the scouting data stream

★ Avoids the use of (large) trigger prescales

Scouting data

500

27 fb⁻¹ (13 TeV)

1000

Dijet mass [GeV]

efficiency

Trigger (

0.8

0.6

0.4

0.2

n

.2-CMS

Toward Small Masses: ISR

Greg Landsberg - BSM Searches in CMS - Kruger 2022 - 6.12.2022

11

- Use high-p_T single-photon or single jet triggers to record the events, require a substructure in the recoiling AK8 jet, and search for narrow resonances in the recoiling jet trimmed mass spectrum
- Allows to go as low as 10 GeV in the resonance mass!

Toward Small Masses: ISR

Greg Landsberg - BSM Searches in CMS - Kruger 2022 - 6.12.2022

11

- Use high-p_T single-photon or single jet triggers to record the events, require a substructure in the recoiling AK8 jet, and search for narrow resonances in the recoiling jet trimmed mass spectrum
- Allows to go as low as 10 GeV in the resonance mass!

p_T(ISR) ~ 100 GeV m(X) ~ 25 GeV γ ~ 4, α ~ 0.5 - a single jet

Toward Small Masses: ISR

803

က

ົດ

ዲ

CMS,

- Greg Landsberg BSM Searches in CMS Kruger 2022 6.12.2022
- Use high-p_T single-photon or single jet triggers to record the events, require a substructure in the recoiling AK8 jet, and search for narrow resonances in the recoiling jet trimmed mass spectrum
- Allows to go as low as 10 GeV in the resonance mass!

Toward Low Masses: ISR+Scouting

- One could also combine the two techniques, adding extra sensitivity
 - ★ The idea behind a CMS search for dijet resonances in three-jet events collected by a low-H_T scouting trigger (4 kHz @ 10³⁴ cm⁻²s⁻¹) available for ~half of 2016 data taking (18 fb⁻¹)
 - ***** Use large-R (1.1) jets offline to improve resolution and acceptance
 - ★ Limits set in the 350-700 GeV range as low as 1/3 of EM coupling

12

Toward Low Masses: ISR+Scouting

- One could also combine the two techniques, adding extra sensitivity
 - ★ The idea behind a CMS search for dijet resonances in three-jet events collected by a low-H_T scouting trigger (4 kHz @ 10³⁴ cm⁻²s⁻¹) available for ~half of 2016 data taking (18 fb⁻¹)
 - ***** Use large-R (1.1) jets offline to improve resolution and acceptance
 - ★ Limits set in the 350-700 GeV range as low as 1/3 of EM coupling

Scouting and LLPs

062

04 (2022)

CMS, JHEP

- Search for long-lived particles decaying to a pair of muons, using displaced dimuon vertices at the HLT
- Uses the same dimuon scouting triggers (they do not require muons to be prompt)
- Requiring displaced vertices drastically reduces SM backgrounds, making the search quite sensitive to variety of models with LLPs decaying to a dimuon pair

6.12.2022

- Kruger 2022 -

Fractionally Charged Particles

- Small couplings could lead to small charges
- While dedicated small experiments MilliQan, FORMOSA are being proposed for dedicated searches for fractionally charged particles (FCPs) possibly produced at the LHC, even the present detectors have strong capabilities in
- Is silicon track we have a to a signal (M = 100 GeV) has a to a signal (M = 100 GeV) have a lows to [§]use dE/dx ~ q² signal³ to se arch for FCPs^{2=0.5} e
- Search focused on Drell-Yan production of FCP pairs
- Count the number of hits on a track with dE/dx less than a layer-dependent threshold; signal region has 1 or 2 tracks w/1ange number of low-dE/dx hits
- 10 12 14 16 Background can be reliably predicted from Z(µµ) events

CMS <u>PAS-EXO-19-006</u>

600

138 fb⁻¹ (13 TeV

Observed

--- Expected

Upper limits at 95% CL

± 1σ

CMS 23.8 fb⁻¹ (7+8 TeV)

1000

Mass (GeV)

CMS 5.0 fb⁻¹ (7 TeV) OPAL 74 pb⁻¹ (91 GeV)

800

± 2σ

Toward Long Lifetimes

• Plethora of models and experimental results Will highlight just a few in this talk

Overview of CMS long-lived particle searches

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The v-axis tick labels indicate the studied long-lived particle.

γsυ

RPC

Search for LLPs via Muon Detector

- First search at the LHC, which uses a muon detector as a sampling calorimeter (speaking of going way beyond TDR!)
- Focuses on H → SS scenario, with a scalar S decaying into a pair of quarks or τ leptons
- Reconstruct hadronic showers in the CMS endcap muon system, based on the number of hits
- Spectacular signature, and largely model-independent

Search for Displaced Jets

- Displaced jets is a powerful signature for long-lived particles in a variety of models from twin Higgs to SUSY
- Typically requires dedicated triggers, as otherwise the rate of inclusive dijet events is too high
- CMS has invested in several such triggers in Run 2, and achieved superior sensitivity in this type of searches
- A typical displaced jet trigger requires a large scalar sum of jet p_T (H_T > 430-650 GeV) and ≥2 jets with a limit on a maximum number of prompt tracks
- Offers sensitivity to a large set of models, including models with pair-produced dijet resonances

CMS Search for Displaced Jets

The latest CMS search is based on 2017-2018 data and is combined

 λ'_{x33}

 λ'_{x33}

Machine Learning as a Tool

Broad use of (deep) machine learning (ML) is to use it as a tool for discriminating complicated signatures from backgrounds

----and its Application

Greg Landsberg - BSM Searches in CMS - Kruger 2022 - 6.12.2022

Based on this regression technique, a dedicated analysis for a very light pseudoscalar a in a 0.1-1.2 GeV mass range has been conducted

 Look for an excess in the plane of two reconstructed yy masses, for the overall mass in the H boson window

• Sensitivity exceeds that from the generic limits based on $H \rightarrow \gamma \gamma$ decays, demonstrating the power of the technique

CL upper limit on B(H

95%

Lepton Flavor Anomalies

- Recently, a number of lepton flavor anomalies have been observed in various channels, largely driven by the LHCb experiment:
 - ★ ~3 σ tension in R(D/D*), the ratio of $\mathcal{B}(b \rightarrow c\tau v)/\mathcal{B}(b \rightarrow clv)$ [tree-level/process]
 - * ~2σ deficit in various b → sµ+µtransitions, compared to theory predictions, both in inclusive and differential measurements [loop-level process]
 - ★ ~3σ tension in R(K), R(K*), the ratio of $\mathcal{B}(b \rightarrow s\mu^+\mu^-)/\mathcal{B}(b \rightarrow se^+e^-)$ [loop-level process]

Arguably, the strongest hints of new physics to date that survived a dozen of years of the LHC program

Lepton Flavor Anomalies

- Recently, a number of lepton flavor anomalies have been observed in various channels, largely driven by the LHCb experiment:
 - ★ ~3 σ tension in R(D/D*), the ratio of $\mathcal{B}(b \rightarrow c\tau v)/\mathcal{B}(b \rightarrow clv)$ [tree-level/process]
 - ★ ~2σ deficit in various b → sµ+µtransitions, compared to theory predictions, both in inclusive and differential measurements [loop-level process]
 - ★ ~3σ tension in R(K), R(K*), the ratio of $\mathcal{B}(b \rightarrow s\mu^+\mu^-)/\mathcal{B}(b \rightarrow se^+e^-)$ [loop-level process]

Arguably, the strongest hints of new physics to date that survived a dozen of years of the LHC program

Common Explanations?

- Greg Landsberg BSM Searches in CMS Kruger 2022 6.12.2022
- Interestingly, there are theoretical ways to reconcile several of these (and potentially other) anomalies simultaneously, including the observed effect in trees vs. loops
- Theoretically preferred solutions:
 - ★ Pati-Salam leptoquarks (LQs) with flavor non-diagonal couplings
 - ★ Z'/W' with non-universal couplings

Credit: A. Crivellin

Enter ATLAS & CMS

- ATLAS and CMS are pursuing:
 - Direct searches for LQs, Z', and vector-like leptons proposed to explain flavor anomalies
 - ***** Tests of (charged) lepton flavor universality (LFU) will highlight those
 - * Evidence for H($\mu\mu$) clearly demonstrated LFU in Higgs Yukawa
 - Direct test of flavor anomalies using special triggers (ATLAS, CMS) and parked data (CMS)
 - ***** Searches for (charged) lepton flavor violation (LFV)
 - * Searches for flavor changing neutral current processes (FCNC)
- Depending on the model, they may or may not be connected to one the other:
 - * LFUV without LFV (e.g., via a heavy Z' boson)
 - ***** LFUV with LFV (e.g., in LQ models)
 - **★** LFV without FCNC (e.g., via R-parity violating SUSY)
 - ***** LFV via FCNC (e.g., $\mu \rightarrow eee$ via FCNC Z exchange)
- Consequently, it's important to study them all to get a full picture
 - **\star** Also, keeping in mind possible connection to (g-2)_µ

25

Lepton Universality & W Boson

- Long-standing puzzle from LEP era:
 - * The W($\tau\nu$) branching fraction is measured consistently higher in all four experiments w.r.t. the W($e\nu$) or W($\mu\nu$) branching fractions
 - **★** Combined result: $R_{\tau/\mu} = 1.070 \pm 0.026$, 2.7 σ from unity

★ Possible hint of lepton non-universality or statistical fluctuation?

	Lepton			W Leptonic Branching Ratios	
	non-universality			ALEPH DELPHI	10.78 ± 0.29 10.55 ± 0.34
Experiment	$\mathcal{B}(W \to e\overline{\nu}_e)$	$\mathcal{B}(W \to \mu \overline{\nu}_{\mu})$	$\mathcal{B}(W \to \tau \overline{\nu}_{\tau})$	L3 OPAL	- 10.78 ± 0.32 - 10.71 ± 0.27
	[%]	[%]	[%]	LEP W→ev	10.71 ± 0.16
ALEPH	10.78 ± 0.29	10.87 ± 0.26	11.25 ± 0.38	DELPH L3	$\begin{array}{c} 10.87 \pm 0.26 \\ 10.65 \pm 0.27 \\ 10.03 \pm 0.31 \end{array}$
DELPHI	10.55 ± 0.34	10.65 ± 0.27	11.46 ± 0.43	OPAL LEP W→uν	10.78 ± 0.26 10.63 ± 0.15
L3	10.78 ± 0.32	10.03 ± 0.31	11.89 ± 0.45		11.25 ± 0.38 11.46 ± 0.43
OPAL	10.71 ± 0.27	10.78 ± 0.26	11.14 ± 0.31	L3 OPAL	$\begin{array}{c}$
LEP	10.71 ± 0.16	10.63 ± 0.15	11.38 ± 0.213	LEP W→τν	+ 11.38 ± 0.21
$\chi^2/{ m dof}$	6.3/9			LEP W→lv	10.86 ± 0.09
ADLO, <u>Ph</u>		$\chi^2/ndf = 15.4 / 11$ 10 11 12			
	-	Br(W→Iv) [%]			

Greg Landsberg - BSM Searches in CMS - Kruger 2022 - 6.12.2022

CMS Test of LFU

- Inclusive analysis targeting simultaneous extraction of
 β = {β_e, β_µ, β_τ, β_h} W boson branching fractions, using
 both leptonic and hadronic τ lepton decays
 - ★ Search includes W+jets, WW, tW, and tt production
 - ★ Categorizes events in multiple classes depending on the leptonic and jet content (e.g., μτ_h + 2 b jets) and uses global fit to simultaneously extract the branching fractions
 - ★ Uses kinematic information in dilepton events to separate leptons coming directly from the W boson decay from those coming from the intermediate τ lepton decays
 - ★ Unlike the analogous ATLAS analysis, does not use the lepton displacement to separate direct and τ lepton mediated decays

27

Greg Landsberg - BSM Searches in CMS - Kruger 2022 - 6.12.2022

CMS Results

- Results consistent with both LFU and ATLAS [Nature Phys. 17 (2021) 813] results, and complement ATLAS via the inclusion of the electron channel
- Sensitivity to hadronic decays allow to test the CKM matrix unitarity and extract the poorly measured $|V_{cs}|$ element with the precision rivaling the CMS LEP ATLAS world average

LFU in High-Mass Drell-Yan Pairs

- A spin-off of the CMS Z'/compositeness searches in the dilepton channels
- Obtained a ratio of high-mass µ+µ- to e+e- events (via a double-ratio of data/simulation)
- Possible hint for a small deficit around ~2 TeV

Search for LFV $\tau \to 3 \mu$ Decay

- The best limit was set a decade ago by Belle: B($\tau \rightarrow 3\mu$) < 2.1x10⁻⁸ @90% CL
 - **★** At the LHC, ATLAS set a limit of 38 x 10⁻⁸ using W(τv) decays
 - ***** LHCb set a limit of 4.6x10⁻⁸ using τ leptons from B/D_(s) meson decays (HF channel)

33.2 fb⁻¹ 13 TeV

Category A1

······· Signal (B($\tau \rightarrow 3\mu$) = 10⁻⁷) — Background-only fit

Data

CMS

- An analysis from CMS combines the W and HF channels to maximize the sensitivity
 - ★ The HF channel has $D_s \rightarrow \phi \pi \rightarrow \mu \mu \pi$ as the normalization mode: normalized through the inclusive W cross section measurement $\stackrel{\circ}{=}$
- Set the limit at 8.0x10⁻⁸ (6.8x10⁻⁸ expected) @90% CL. in the control two channels, dominated by the HF channel (2:1)
- Finalizing the full Run 2 data analyses with an even more opti expected to approach Belle sensitivity

H(e/μ+τ) Search

Search proceeds in 6 different channels, depending on the τ lepton decay mode (τ_{e_1})

H(e/μ+τ) Search

• Search proceeds in 6 different channels, depending on the τ lepton decay mode (τ_{e_1})

CMS LFV t → eµq Result

- CMS has a recent result in the t → eµu/c channel, using both the effects of this LFV vertex on production and decay
 - **\star** Relies mainly on hadronic decays of the second top quark and on single t production
 - **\star** Uses BDT and b-tag categories for optimal signal extraction
- Considers an EFT formalism with the operators corresponding to scalar, vector, and tensor couplings
- Substantially improves on world's best limit reaching sub ~10-7 sensitivity on the branching fraction

35

Search for LFV Resonances

- One could look for generic high-mass objects decaying via LFV channels: eµ, µт, eт 138 fb⁻¹ (13 TeV)
- Classical examples are R-parity quantum black holes
- **Recent CMS analysis based ful**
- Standard background estimatic MC simulation, reducible from (

 $138 \, \text{fb}^{-1} (13 \, \text{To})$

6.12.2022

FCNC with Top Quarks

- LFV and FCNC processes are often interconnected
- Looking for FCNC in the quark sector is an interesting way of searching for new physics that may also lead to LFV and/or LFU violation
- Top quark is a great laboratory to search for this process
 - ★ Decays before hadronizaton, so theoretical calculations are simpler and cleaner
 - **★** Has a large Yukawa coupling to the Higgs boson
 - ★ Third-generation FCNC operators are generally less constrained than first- and second-generation ones

FCNC in Decays to H Bosons

u/c

Н

u/c

- Promising channels to look are $t \rightarrow Hu, t \rightarrow Hc$
 - Extremely small in the SM (GIM-suppressed, Br ~ 10^{-15...-17}); can be significantly enhanced in 2HDMs allowing possible detection at the LHC
- Can look for utH/ctH vertices in both single and pair production of top quarks
- Use the Higgs boson decay product invariant mass as the sensitive variable

Leptoquark Searches

- Leptoquarks (LQs) remain one of the favorite theoretical models capable of explaining both treelevel anomalies seen in b → cℓv decays and looplevel anomalies seen in b → sℓℓ transitions
- Typically require LQs with cross-generational coupling, often with enhanced
 g
 g
 T
 couplings to the third-generation
 g
 g
 T
 - Motivates searches in the tτ, bτ, tv, bv
 LQ decay channels
 - Can explore both single and pair production (the latter is independent of the LQ-ℓ-q coupling λ

CMS Search for LQ3

2.2

CMS Searches for LQ3

- A new search for Pati-Salam U₁ vector LQ in the $\tau\tau$ channel, a spin-off of the MSSM Higgs search
- Significant interference with the SM DY ττ continuum taken into account
- Started probing interesting parameter space from the point of view of flavor anomalies

CMS Search for VLLs

• Vector-like leptons are predicted in several SM extensions that may explain flavor anomalies, e.g., in the 4321 LQ model

- New CMS analysis in \geq 3b + (0-2) τ final states
- **Complicated analysis relying on DNNs to separate signal from the** dominant QCD and tt backgrounds
- **Observed a mild excess (1-2τh** channels), which unfortunately is hard to associate with any specific mass
 - **★** Important to construct the analysis optimized for discovery, not a limit!

	tau multiplicity	production + decay mode	final state
	-	$EE \rightarrow b(t\nu_{\tau})b(t\nu_{\tau})$	$4b+4j+2\nu_{\tau}$
0	0τ	$EN \rightarrow b(t\nu_{\tau})t(t\nu_{\tau})$	$4b + 6j + 2\nu_{\tau}$
		$NN ightarrow t(t u_{ au}) t(t u_{ au})$	$4b + 8j + 2\nu_{\tau}$
1	-	$EE \rightarrow b(b\tau)b(t\nu_{\tau})$	$4b+2j+\tau+\nu_{\tau}$
	1τ	$EN \rightarrow b(t\nu_{\tau})t(b\tau)$	$4b+4j+\tau+\nu_{\tau}$
	1 ι	$EN \rightarrow b(b\tau)t(t\nu_{\tau})$	$4b+4j+\tau+\nu_{\tau}$
		$NN \rightarrow t(b\tau)t(t\nu_{\tau})$	$4b+6j+\tau+\nu_{\tau}$
2		$EE \rightarrow b(b\tau)b(b\tau)$	$4b + 2\tau$
	2 τ	$EN \rightarrow b(b\tau)t(b\tau)$	$4b + 2j + 2\tau$
		$NN \rightarrow t(b\tau)t(b\tau)$	$4b+4j+2\tau$

High-pt Run 2 Excesses

ATLAS

- Search based on high-p_T and h Dedicated time-dependent c \star dE/dx to β y calibration basec
- Several signal regions, as well background estimation
- An excess of high-dE/dx event (global) significance of 3.6 (3.3
- Excess events very scanned fc
- However, the time-of-flight info is not inconsistent with the dE/dx results for [q]

m [GeV]

GeV

1(cm²

-ص

MeV 120

0.121

Entries /

Data / Pred.

10

10

10

100

20

10

ATLAS

140 SR-Inclusive_Low

> ej

— m(ĝ) = 2.2 TeV, m(χ̃⁰) = 100 GeV, τ(ĝ) = 10 ns

 $-r \cdot m(\tilde{\chi}_{1}^{\pm}) = 1.3 \text{ TeV}, \tau(\tilde{\chi}_{1}^{\pm}) = 10 \text{ ns}$

----- m(τ) = 400 GeV, τ(τ) = 10 ns

2.5

√s = 13 TeV, 139 fb⁻

Observed

Expected

3.5

 $p_{_{
m T}}^{trk}$ > 120 GeV, $|\eta|$ < 1.8

arXiv:2205.06

Greg Landsberg - BSM Searches in CMS - Kruger 2022 - 6.12.2022

What Does ATLAS See?

110

m_x [GeV]

105

CMS Y(bb)H(yy) Excess

Recent preliminary result from CMS on resonant search in the X → Y(bb)H(γγ) channel

* See ~3.5σ (2.8σ globally) excess at M(bb) ~100 GeV, M(X) = 650 GeV

Kruger 2022 - 6.12.2022

Excess in H(WW) Search?

- Curiously, a 650 GeV bump is also observed in the recent CMS high-mass H(WW) search in dilepton channel (low resolution), but only in the VBF category with a 3.8σ (2.8σ global) significance
 - ATLAS Run 2 leptonic H(WW) analysis doesn't see an excess; neither does the Run 2 Z'(WW) semileptonic search; sensitivity is not sufficient to rule out the CMS one
 - **★** However, there is a small VBF H(ZZ \rightarrow 4I + 2I2v) excess at 620 GeV (2.4 σ ; 0.9 σ

Excess in H(WW) Search?

- Curiously, a 650 GeV bump is also observed in the recent CMS high-mass H(WW) search in dilepton channel (low resolution), but only in the VBF category with a 3.8σ (2.8σ global) significance
 - ATLAS Run 2 leptonic H(WW) analysis doesn't see an excess; neither does the Run 2 Z'(WW) semileptonic search; sensitivity is not sufficient to rule out the CMS one
 - **★** However, there is a small VBF H(ZZ \rightarrow 4I + 2I2v) excess at 620 GeV (2.4 σ ; 0.9 σ

Kruger 2022 - 6.12.2022

Excess in H(WW) Search?

- Curiously, a 650 GeV bump is also observed in the recent CMS high-mass H(WW) search in dilepton channel (low resolution), but only in the VBF category with a 3.8σ (2.8σ global) significance
 - ATLAS Run 2 leptonic H(WW) analysis doesn't see an excess; neither does the Run 2 Z'(WW) semileptonic search; sensitivity is not sufficient to rule out the CMS one
 - **★** However, there is a small VBF H(ZZ \rightarrow 4I + 2I2v) excess at 620 GeV (2.4 σ ; 0.9 σ

Excess in H(WW) Search?

- Curiously, a 650 GeV bump is also observed in the recent CMS high-mass H(WW) search in dilepton channel (low resolution), but only in the VBF category with a 3.8σ (2.8σ global) significance
 - ★ ATLAS Run 2 leptonic H(WW) analysis doesn't see an excess; neither does the Run 2 Z'(WW) semileptonic search; sensitivity is not sufficient to rule out the CMS one
 - **★** However, there is a small VBF H(ZZ \rightarrow 4I + 2I2v) excess at 620 GeV (2.4 σ ; 0.9 σ

)()

nun z search looking 101 $H \rightarrow a(bb)a(\mu\mu)$ in highresolution dimuon mass distribution

★ Local (global) significance of 3.3 (1.7) σ at M(a) = 52 GeV

m_a [GeV]

Greg Landsberg - BSM Searches in CMS - Kruger 2022 - 6.12

47

H \rightarrow a(bb)a(µµ) in highresolution dimuon mass distribution

Local (global) significance of
 3.3 (1.7)σ at M(a) = 52 GeV

47

CMS Excess in LQ3 Search

- Another preliminary result from CMS, inspired by the flavor anomalies
- Looks for single, pair, and t-channel production of LQ3 in the $\tau\tau$ +X final states

★ Uses $S_T = \Sigma p_T(\tau) + p_T(j_1) + ME_T$ as a discriminating variable for resonant and $\chi =$ e^{-2y^*} , where $y^* = |y_1 - y_2|/2$ the rapidity separation between two leading (tau) jets

Global fit to multiple search regions for different LQ3 mass and couplings ***** See ~3.5 σ excess peaking in non-resonant production at large VLQ masses and couplings; no excess is seen for resonant production; global σ is hard to

Greg Landsberg - BSM Searches in CMS - Kruger 2022 - 6.12.2022

50

What About CMS?

- No resonant $X \rightarrow H(\tau\tau)H(bb)$ results with full Run 2 data yet
- However, a search was done for H → H₁₂₅(ττ)h_s(bb), with h_s being a scalar in a broad mass range for H and h_s
 - * No excesses seen for $m(h_s) = 125$ GeV, with the cross section times branching fraction (7.3%) limit set ~2 fb, which is very similar to the ATLAS observed limit

Other X \rightarrow **HH Searches**

- Assuming that the H(bb)H(ττ) channel corresponds to the SM Higgs boson decays, the 1 TeV excess in ATLAS is still present at 3.2σ (2.1σ global) level
- However, CMS rules it out by $X \rightarrow HH$ searches in more sensitive channels
- This technically doesn't hold in the case when there is another boson with the mass ~125 GeV decaying into either bb or ττ with branching fraction different from the SM ones

Greg Landsberg - BSM Searches in CMS - Kruger 2022 - 6.12.2022

95% CL Upper Limit on $\sigma_{
m fid}$ × BR [fb]

Greg Landsberg - BSM Searches in CMS - Kruger 2022 - 6.12.2022

52

Excited? - Memento 750!

Greg Landsberg - BSM Searches in CMS - Kruger 2022 - 6.12.2022

Excited? - Memento 750!

Summary

- With the LHC doubling time getting similar to a "lifetime" of a Ph.D. student in a collaboration, we see a gradual shift to more sophisticated analyses that take several years to complete
 - ★ Those rely on advanced techniques, dedicated triggers, and sophisticated models and analysis methods
- I showed just a very few selected examples in several areas of searches
- At the end of Run 2, there are a few hints of excesses left will be cross-checked by the LHC experiments with Run 2 and Run 3 data
- While none of them are very significant, there is a certain alignment of several excesses, which makes it exciting to follow them up in coupled channels and across the experiments!
 - ***** Stay tuned, but don't rush to the printing press yet!

NON SEQUITUR

Thank You!