

ALICE upgrades

perspectives for heavy-ion physics at the LHC

Kruger 2022 Discovery Physics at the LHC

December 6, 2022

Jochen Klein (CERN) for the ALICE Collaboration

High-luminosity era for heavy-ions era at the LHC

- prospects for luminosity
- experimental programmes
- ALICE 2 (Run 3 & 4)
 - detector upgrades
 - physics projections

ALICE 3: next-generation upgrade

- requirements and detector concept
- physics performance and prospects

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

de cept oects

LHC experiments

0, 00, Pb-Pb	pp, pPb, Pb-Pb	pp, pA?, AA	pp, pA?, AA		
Run 3 2 - 2025	Run 4 2029 - 2032	Run 5	Run 6		
minosity S	HL-LHC	Higher luminosities	s for ions		
ICE 2 grade	ALICE 2.1 upgrade	ALICI phase IIb u	E 3 pgrades		
HCb ade I(a)	LHCb upgrade lb	LHCb phase IIb upgrades			
LAS upgrades		ATLAS phase II upgrades			
grades	CMS phase II upgrades				

→ evolution of LHC and the experiments

intermediate upgrade

major upgrade

intermediate upgrade

major upgrade

5

- High interaction rate: 50 kHz Pb-Pb, 1 MHz pp \rightarrow no gating of TPC with limited ion backflow
- **GEM-based Time Projection** Chamber

- Reconstruction of heavy-flavour decay vertices
 - → improve pointing resolution
- Large statistics of untriggerable probes → continuous readout
- Skimming based on reconstructed events \rightarrow online reconstruction

Consolidation and readout upgrade of all subsystems

MAPS-based Inner Tracking System and **Muon Forward Tracker**

Integrated online/offline processing

New **Fast Interaction Trigger**

- High interaction rate: 50 kHz Pb-Pb, 1 MHz pp \rightarrow no gating of TPC with limited ion backflow
- **GEM-based Time Projection** Chamber

- Reconstruction of heavy-flavour decay vertices
 - → improve pointing resolution
- Large statistics of untriggerable probes → continuous readout
- Skimming based on reconstructed events \rightarrow online reconstruction

Consolidation and readout upgrade of all subsystems

MAPS-based Inner Tracking System and **Muon Forward Tracker**

Integrated online/offline processing

New **Fast Interaction Trigger**

Inner Tracking System (ITS2) Improved resolution, Inner Barrel reduced material, Beam pipe faster readout 400 (En 400 350 ALICE

- Requirements
 - improve pointing resolution by a factor ~3 in $r\varphi$, ~5 in z
 - improve efficiency and resolution at low p_T
 - increase readout rates 100 kHz Pb-Pb, 1 MHz pp

• Concept

- smaller and thinner beampipe first layer: 39 mm \rightarrow 23 mm
- reduce material of detection layers ~1.14 % \rightarrow ~0.35 % X₀ (per inner layer)
- increase position resolution $11 \times 100 \ \mu m^2 \rightarrow 5 \times 5 \ \mu m^2$
- Monolithic Active Pixel Sensors
- 7 layers arranged in inner (3), middle (2), outer (2) layers

ALICE Pixel Detector (ALPIDE)

Technology

- TowerJazz 180 nm CMOS Imaging Process
- high-resistivity (> 1k Ω cm) p-type epitaxial layer on p-type substrate
- small n-well diode (2 μ m diameter) \rightarrow low capacitance (~fF)
- reverse bias voltage (-6 V < V_{BB} < 0 V) to substrate to increase depletion zone around NWELL collection diode
- deep PWELL shields NWELL of PMOS transistors

Key features

- in-pixel amplification and shaping, discrimination and Multiple-Event Buffers (MEB)
- in-matrix data sparsification
- on-chip high-speed link (up to 1.2 Gbps)
- low total power consumption < 40 mW/cm2

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

ALICE ITS2 development

Module

Outer Barrel

Power Bus Flexible PCB 2 x 7 sensors

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

ITS2 integration

ITS2 installation

Date

Nuon Forward Tracker

• **Requirements**

- propagate muon tracks to primary vertex (prompt vs. non-prompt)
- handle high readout rates 100 kHz Pb-Pb, 1 MHz pp
- < 300 krad, < 2 x 10^{12} 1 MeV n_{eq}/cm^2

Concept

- ALPIDE as sensor (936 chips, 0.4 m²)
- 10 half-disks, 2 detection planes each $(2.5 < \eta < 3.6)$

11

Time Projection Chamber

- Requirements
 - continuous readout \rightarrow ion back-flow < 1 %
 - preserve particle identification performance $\rightarrow \sigma_E / E < 12\%$ (55Fe), nominal gain ≈ 2000
 - stable operation with Run 3 rates (50 kHz Pb-Pb, few MHz pp)

• Concept

- Stack of 4 GEM foils with standard (140 µm) and large pitch (280 µm)
- no gating grid
- operation with Ne-CO₂-N₂ (90-10-5)

Readout chambers

Large-size single-mask foils from CERN PCB workshop

- SAMPA ASIC (130 nm TSMC CMOS) **Integrated Pre-Amp** Shaper (t_{peak}=160 ns)

 - 10-bit ADC

3276 Front-End Cards (FEC)

transmission of ADC data at 5 MHz through optical links

Transport

Lowering to cavern

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

TPC installation

Insertion

Final position

14

Fast Interaction Trigger

- Requirements
 - fast interaction trigger (latency < 425 ns)
 - collision time determination
 - Iuminosity monitoring
 - multiplicity measurement

- Concept
 - FT0: quartz radiators + MCP
 - FV0: scintillators. + clear fibres + PMT
 - FDD: scintillators + wavelength shifter + clear fibres + PMT

Fast Interaction Trigger

- Requirements
 - fast interaction trigger (latency < 425 ns)
 - collision time determination
 - luminosity monitoring
 - multiplicity measurement

- Concept
 - FT0: quartz radiators + MCP
 - FV0: scintillators. + clear fibres + PMT
 - FDD: scintillators + wavelength shifter + clear fibres + PMT

read-out

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

Data analysis

RLI-PERF-520125 Ъ TOF 0.9E 0.8 0.7 0.6 0.5 0.4E 0.3 0.2ⁱ 0.5

Run 3 pp

p/|z| (GeV/c)

ALI-PERF-528877

ALI-PERF-529185

17

Run 3 Pb-Pb pilot

ALICE Pb-Pb 5.36 TeV

LHC22s period 18th November 2022 16:52:47.893

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

16:52:47.893

ALI-PERF-529714

ALI-PERF-529729

New Forward Calorimeter

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

ALICE 2.1

Truly cylindrical pixel layers

Forward Calorimeter (FoCal)

- **Objectives**
 - direct photon detection to probe gluon density at small x
 - forward π^0 in pp, pPb, PbPb
- **Requirements**
 - good two-photon separation
- Concept
 - forward coverage $3.4 < \eta < 5.8$
 - highly granular ECal
 - conventional HCal

22 modules each a stack of 20 layers (~20 X₀)

- ~3.5 mm tungsten absorber (~1 X₀, $R_M \approx 1$ cm)
- 18 layers of silicon pad sensors
- 2 layers of silicon pixel sensors (ALPIDE)
- Prototype validated in test beam campaigns

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

- Array of copper tubes with BCF12 scintillating fibres
- Full tower prototype validated in test beam (Nov '22 @ SPS)

Improve vertexing performance for:

- Heavy flavour probes: charm baryons, beauty
- low-mass dielectrons
- by
 - moving closer to the interaction point
 - reducing material budget

- Replace Inner Barrel with truly cylindrical layers
 - bending of silicon sensors \rightarrow thinning, mechanics \checkmark
 - avoid support structures and services \rightarrow air cooling \checkmark
 - power consumption, radiation hardness → sensor design in TPSCo 65 nm process √
 - wafer-scale sensors → development of stitched sensors

TS3 - bent sensors

- in beam tests at various facilities
- Handling and bending of wafer-scale sensors established
- Cooling concept demonstrated and being optimised

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

[arXiv:2105.13000]

Functionality of 50 µm ALPIDEs bent to radii down to 1.8 cm demonstrated

ITS3 - sensor technology

- Extensive R&D run with 55 different prototypes in TPSCo 65 nm process within ALICE ITS3 and CERN EP R&D
 - full functionality of digital front-end verified: 100% detection efficiency
 - even after 10^{15} 1 MeV n_{eq} /cm² (NIEL): >99% detection efficiency even at room temperature

APTS

- matrix: 6x6 pixels
- readout: direct analog readout of central 4x4
- **pitch:** 10, 15, 20, 25 µm

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

DPTS

- matrix: 32x32 pixels
- readout: async. digital with ToT
- **pitch:** 15 µm

ITS3 - stitched sensors

- First engineering run with stitched digital pixels submitted
 - sensor unit repeated along a stripe, readout circuitry in the endcaps
 - processed wafers expected back mid 2023 (final milestone for TDR) Endcap L **Repeated Sensor Unit Endcap** R "MOSS" chip wafer Peripheral circuits Pads Pads Pads $(\emptyset = 300 \text{ mm})$ N ~ 10 2 HALF UNIT TOP 14 mm HALF UNIT BOTTOM → 1.5 mm 2.39 mm 25.5 mm Peripheral circuits Pads

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

Prospects for Run 3 & 4

- - nuclear PDFs
 - thermal radiation
 - heavy-flavour transport
 - emergence of collectivity from small to large systems

Understanding of QGP will remain incomplete after Run 3 and 4

Runs 3 & 4 will allow new measurements and bring new insights, e.g.

 Constrain gluon densities down to low x → measurements of isolated photons in p-Pb collisions → FoCal

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

Nuclear PDFs

Measure temperature of plasma phase at LHC energies → measurements of direct photons and dileptons \rightarrow statistics; reduced, well-known material; heavy-flavour rejection

Thermal radiation

Heavy-flavour transport

Measure spatial diffusion coefficient in the QGP → precision measurements of R_{AA} and v₂ for charm → statistics and vertexing

Precise R_{AA} for c and b mesons

v₂ for charm hadrons

 R_{AA} and $v_2 \rightarrow D_s$

Understand evolution from small to large systems

→ systematic measurements of flow and particle production

 \rightarrow large high-multiplicity pp sample, new collision systems

Small systems

Questions beyond Run 4

- Fundamental questions will remain open after LHC Run 3 & 4 → next-generation heavy-ion programme for LHC Run 5 & 6
 - What is the nature of interactions between highly energetic quarks and gluons and the quark-gluon plasma?
 - To what extent do quarks of different mass reach thermal equilibrium?
 - How do quarks and gluons transition to hadrons as the quark-gluon plasma cools down?
 - What are the mechanisms for the restoration of chiral symmetry in the quark-gluon plasma?
- Heavy-ion programme for Run 5 & 6 opens many more opportunities

Measurements beyond Run 4

- Further progress relies on
 - precision measurements of dileptons
 - evolution of the quark gluon plasma
 - mechanisms of
 chiral symmetry restoration
 in the quark-gluon plasma
 - systematic measurements of (multi-)heavy-flavoured hadrons
 - transport properties in the quark-gluon plasma
 - mechanisms of hadronisationfrom the quark-gluon plasma
 - hadron correlations
 - interaction potentials
 - fluctuations

. . .

Electromagnetic radiation ($\propto T^2$)

Hadron momentum distributions, azimuthal anisotropy

Hadron abundances 'hadrochemistry'

Hadron correlations, fluctuations

Heavy-ion collisions exhibit rich phenomenology and give access to many more topics, e.g. collective effects, BSM searches, ...

Novel and innovative detector concept

- **Continuous read-out and online processing**

- Pointing resolution $\propto r_0 \cdot \sqrt{x/X_0}$ (multiple scattering regime) → 10 µm @ p_T = 200 MeV/c
 - radius and material of first layer crucial
 - minimal radius given by required aperture: $R \approx 5 \text{ mm at top energy}$, $R \approx 15 \text{ mm at injection energy}$ → retractable vertex detector
- 3 layers within beam pipe (in secondary vacuum) at radii of 5 - 25 mm
 - wafer-sized, bent Monolithic Active Pixel Sensors
 - $\sigma_{pos} \sim 2.5 \ \mu m \rightarrow 10 \ \mu m \ pixel \ pitch$
 - 1 ‰ X₀ per layer

Vertexing

5x better than ALICE 2.1 (ITS3 + TPC)

Conceptual study

- wafer-sized, bent MAPS (leveraging on ITS3 activities)
- rotary petals for sensors and secondary vacuum
- matching of petals to beam pipe parameters
- feed-throughs for power, cooling, data
- R&D challenges on mechanics, cooling, radiation tolerance

Vertex Detector

Vertex detector (mechanics)

extruded aluminium (procedure also used in beampipe)

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

3d-printed aluminum

Module mock-up

• 0.3mm Aluminum foil welded and formed (similar process done at CERN with AI bellow 0.2 mm - R&D)

- **Relative** p_T resolution \propto $B \cdot I$ (limited by multiple scattering) \rightarrow ~1 % up to $\eta = 4$
 - integrated magnetic field crucial
 - overall material budget critical
- ~11 tracking layers (barrel + disks)
 - MAPS
 - $\sigma_{pos} \sim 10 \ \mu m \rightarrow 50 \ \mu m \ pixel \ pitch$
 - $R_{out} \approx 80 \text{ cm}$ and $L \approx 4 \text{ m} (\rightarrow \text{magnetic field integral } \sim 1 \text{ Tm})$
 - timing resolution ~100 ns (\rightarrow reduce mismatch probability)
 - material ~1 % X₀ / layer \rightarrow overall $X/X_0 = ~10$ %

Tracking

η

- MAPS on modules on water-cooled carbon-fibre cold plate
- carbon-fibre space frame for mechanical support
- R&D challenges on
 - powering scheme (\rightarrow material)
 - industrialisation

Outer Tracker

Total silicon surface ~60 m²

- Separation power \propto $\sigma_{\rm tof}$
 - distance and time resolution crucial
 - larger radius results in lower p_T bound
- 2 barrel + 1 forward TOF layers
 - outer TOF at $R \approx 85$ cm
 - inner TOF at $R \approx 19$ cm
 - forward TOF at $z \approx 405$ cm
- Silicon timing sensors ($\sigma_{TOF} \approx 20 \text{ ps}$)
 - R&D on monolithic CMOS sensors with integrated gain layer

Time of flight

Total silicon surface ~45 m²

Ring-Imaging Cherenkov

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

Electromagnetic calorimeter

- Large acceptance calorimeter \rightarrow sampling calorimeter (à la EMCal/DCal): e.g. O(100) layers (1 mm Pb + 1.5 mm plastic scintillator)
- Additional high energy resolution segment at midrapidity or forward → PbWO₄-based

ECal module	Barrel sampling	Endcap sampling
acceptance	$\Delta arphi = 2\pi,$ $ \eta < 1.5$	$\Delta \varphi = 2\pi,$ $1.5 < \eta < 4$
geometry	$R_{\rm in} = 1.15 {\rm m},$ $ z < 2.7 {\rm m}$	0.16 < R < 1.8 m, z = 4.35 m
technology	sampling Pb + scint.	sampling Pb + scint.
cell size	$30 \times 30 \text{ mm}^2$	$40 \times 40 \text{ mm}^2$
no. of channels	30 000	6 000
energy range	$0.1 < E < 100 { m GeV}$	0.1 < E < 250 GeV

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

Barrel high-precision

 $\Delta \varphi = 2\pi$, $|\eta| < 0.33$ $R_{\rm in} = 1.15$ m, |z| < 0.64 m PbWO₄ crystals $22 \times 22 \text{ mm}^2$ 20000 0.01 < E < 100 GeV

- Hadron absorber outside of the magnet
 - ~70 cm non-magnetic steel

Muon chambers

- search spot for muons ~0.1 x 0.1 (eta x phi) \rightarrow ~5 x 5 cm² cell size
- matching demonstrated with 2 layers of muon chambers
 - scintillator bars with SiPM read-out
 - resistive plate chambers

Muon ID

Forward conversion tracker

- Thin tracking disks to cover $3 < \eta < 5$
 - few ‰ of a radiation length per layer
 - position resolution $< 10 \, \mu m$
- Research & Development
 - Large area, thin disks
 - Minimisation of material in front of FCT
 - Operational conditions

Layer	<i>z</i> (m)	r_{\min} (m)	r _{max}
0	-4.50	0.05	(
1	-4.54	0.05	(
2	-4.58	0.05	(
3	-4.62	0.05	(
4	-4.66	0.05	(
5	-4.70	0.05	(
6	-4.90	0.05	(
7	-5.10	0.05	(
8	-5.30	0.05	(
9	-5.50	0.05	(
10	-5.70	0.05	(

44

Silicon pixel sensors

- thinning and bending of silicon sensors \rightarrow expand on experience with ITS3
- exploration of new CMOS processes \rightarrow first in-beam tests with 65 nm process
- modularisation and industrialisation

Silicon timing sensors

- characterisation of SPADs/SiPMs \rightarrow first tests in beam
- monolithic timing sensors → implement gain layer

Photon sensors

 monolithic SiPMs → integrate read-out

Detector mechanics and cooling

- mechanics for operation in beam pipe → establish compatible with LHC beam
- minimisation of material in the active volume \rightarrow micro-channel cooling

Strategic R&D

Unique technologies \rightarrow also relevant for LHC, FAIR, EIC, FCC, ...

- Monolithic pixels sensors \rightarrow see ITS3
- Monolithic timing sensor
 - demonstrator with gain layer submitted to L-foundry process
 - sensors expected back in January

SiPMs for charged particle detection

- characterisation in beam tests
- Cherenkov radiation in protection layer
- multiple hits improve time resolution

Recent R&D

BRAKKARIS				BREAME	
IS SIS S		SSS	SSSS	SSSS	SSSS
					a solet at st
		T T			
	States and the second second				
ليسط		-			

With protection layer, front-side beam shows large clusters

- Early stages: temp
 - Di-lepton and photc
 - Electric conductivity ALI-PREL-320238

- **Chiral symmetry** restoration: ρa_1 mixing
- Heavy flavour diffusion and thermalisation in the QGP
 - Beauty and charm flow
 - Charm hadron correlations
- **Hadronisation**, final state interactions in heavy-ion collisions
 - Multi-charm baryon production: thermal processes/quark recombination
 - Quarkonia and exotic mesons: dissociation and regeneration

Structure of exotic hadrons

- Momentum correlations (femtoscopy)
- Production yields dissociation in final state scattering
- Decay studies in ultra-peripheral collisions
- New nuclear states: charm nuclei
- **Susceptibilities**

. . .

- **Ultra-soft photons:** experimental test of Low's theorem
- **BSM searches**: ALPs, dark photons

 T/T_c

[CERN-LHCC-2022-009]

% Y. Kamiya et al. arXiv:2108.09644v1

Understand time evolution and mechanisms of chiral symmetry restoration \rightarrow high-precision measurements of dileptons, also multi-differentially → further reduced material; excellent heavy-flavour rejection

Invariant mass

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

Time evolution & chiral symmetry

Heavy flavour transport

- Heavy quarks: access to quark transport at hadron level
 - Expect beauty thermalisation slower than charm smaller v₂
- Need ALICE 3 performance (pointing resolution, acceptance) for precision measurement of e.g. Λ_c and Λ_b v_2

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

DD azimuthal correlations

- Angular decorrelation directly probes QGP scattering
 - Signal strongest at low p_T
- → heavy-ion measurement only possible with ALICE 3

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

Very challenging measurement: need good purity, efficiency and η coverage

Multi-charm baryons

Expected enhancement of multi-charm states provides high sensitivity to equilibration strangeness tracking

Timeline of upgrades

ITS3 FoCal ALICE 3

ALICE 2

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

ITS3 **ALICE 3 FoCal**

- LHC has entered the era of high luminosity for heavy ions
- ALICE 2 completed in time and on budget
 - data taking with pp and Pb-Pb collisions successfully started
 - excellent prospects for new results with Run 3 and 4
- ALICE 3 is needed to address remaining questions
 - properties of the QGP and much more:
 - innovative detector concept with R&D activities in several strategic areas

... in a great place of searches and discoveries!

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

Conclusions

Status and planning

- Physics case and detector concept developed in the course of 2020-2021 → Letter of Intent
 - endorsed by Collaboration Board in January 2022
 - **LHCC** review concluded in March 2022
 - \rightarrow very positive evaluation [LHCC-149]
 - Exciting physics program
 - Detector well matched with physics program and strategically interesting R&D opportunities
 - R&D activities have started
- Timeline
 - 2023-25: selection of technologies, small-scale proof of concept prototypes
 - **2026-27**: large-scale engineered prototypes → Technical Design Reports
 - 2028-30: construction and testing
 - **2031-32**: contingency
 - **2033-34**: Preparation of cavern and installation of ALICE 3

Letter of intent for ALICE 3

VERSION 1

[CERN-LHCC-2022-009] [arXiv:2211.02491]

Component	Observables	η < 1.75 (barrel)	1.75 < η < 4 (forward)	Detectors
Vertexing	Multi-charm baryons, dielectrons	Best possible DCA resolution, $\sigma_{DCA} \approx 10 \ \mu m$ at 200 MeV/c	Best possible DCA resolution, $\sigma_{DCA} \approx 30 \ \mu m$ at 200 MeV/c	Retractable silicon pixel tra $\sigma_{pos} \approx 2.5 \ \mu m$, $R_{in} \approx 5 \ mm$, X/X ₀ $\approx 0.1 \ \%$ for first layer
Tracking	Multi-charm baryons, dielectrons	σ _p т / рт	~1-2 %	Silicon pixel tracker: $\sigma_{pos} \approx 10 \ \mu m$, $R_{out} \approx 80 \ cm$ X/X ₀ $\approx 1 \ \%$ / layer
Hadron ID	Multi-charm baryons	π/K/p se up to a fe	eparation ew GeV/c	Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: aerogel, $\sigma_{\theta} \approx 1.5 \text{ mrs}$
Electron ID	Dielectrons, quarkonia, χ _{c1} (3872)	pion rejection by 1000x up to ~2 - 3 GeV/c		Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: aerogel, $\sigma_{\theta} \approx 1.5 \text{ mra}$ possibly preshower detect
Muon ID	Quarkonia, χ _{c1} (3872)	reconstruction i.e. muons fre	of J/Ψ at rest, om 1.5 GeV/c	steel absorber: L \approx 70 cm muon detectors
Electromagnetic	Photons, jets	large ac	ceptance	Pb-Sci calorimeter
calorimetry	χc	high-resolution segment		PbWO ₄ calorimeter
Ultrasoft photon detection	Ultra-soft photons		measurement of photons in p _T range 1 - 50 MeV/c	Forward Conversion Tracker based on silicon pixel sens

Detector requirements

Probes and detector

- Heavy-flavour hadrons (p_T → 0, wide η range)
 w vertexing, tracking, hadron ID
- Dileptons (p_T ~0.1 3 GeV/c, M_{ee} ~0.1 4 GeV/c²)
 Ultrasoft photons (p_T = 1 50 MeV/c)
 w→ dedicated forward detector
- Photons (100 MeV/c 50 GeV/c, wide η range)
 electromagnetic calorimetry
- Quarkonia and Exotica $(p_T \rightarrow 0)$ muon ID

• Jets

tracking and calorimetry, hadron ID

Nuclei

• identification of z > 1 particles

Installation of ALICE 3 around nominal IP2

- L3 magnet can remain, ALICE 3 to be installed inside
- Cryostat of ~8 m length, free bore radius 1.5 m, magnetic field configuration to be optimised

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

Running scenario

Baseline approach for heavy-ion programme

- maximise statistics for rare probes identify species best suited for physics programme
- 6 running years with 1 month / year with that species
- Complemented with high-rate **pp running** (3 fb⁻¹ / year) at 14 TeV
- Consider **special runs** (low B field, pp reference, small systems), also based on insights from Run 3 & 4

	optimistic scenario	0-0	Ar-Ar	Ca-Ca	Kr-Kr	In-In	Xe-Xe	Pb
Nucleon-nucleon luminosity: $\mathscr{L}_{NN} = A^2 \cdot \mathscr{L}_{AA}$	⟨L _{AA} ⟩ (cm ⁻² s ⁻¹)	9.5·10 ²⁹	2.0·10 ²⁹	1.9·10 ²⁹	5.0·10 ²⁸	2.3·10 ²⁸	1.6·10 ²⁸	3.3.
	⟨L _{NN} ⟩ (cm-² s-1)	2.4 · 1032	3.3 · 1032	3.0 · 1032	3.0·10 ³²	3.0 · 1032	2.6·10 ³²	1. 4·
	L _{AA} (nb ⁻¹ / month)	1.6·10 ³	3.4·10 ²	3.1·10 ²	8.4 · 10 ¹	3.9·10 ¹	2.6·10 ¹	5.6
	ℒ _{NN} (pb-1 / month)	409	550	500	510	512	434	24

new ideas under study, e.g. charge states and bunch splitting

[https://indico.cern.ch/event/1078695/]

Strength of QGP effects (e.g. charm abundance, quenching, also background)

Rates and radiation

- Design to handle available heavy-ion luminosities, with current estimates hit rates similar across collision systems
- **First layer at 5 mm** \rightarrow challenging hit rates and radiation load: ~1.5 10¹⁵ 1 MeV n_{eq} / cm² per operational year (comparable to first layer in ATLAS/CMS)
- Moderate hit rates and radiation load in other layers, already at R = 20 cm (inner TOF) down to ~10¹² 1 MeV n_{eq} / cm² per operational year

		рр	Ar-Ar	Kr-Kr	Xe-Xe	Pb-Pb
	n ⁻² s ⁻¹)	3.0·10 ³²	3.2·10 ²⁹	8.5·10 ²⁸	3.3·10 ²⁸	1.2·10 ²⁸
$\langle L_{AA} \rangle$ (cm ⁻² s ⁻¹)	3.0·10 ³²	2.0·10 ²⁹	5.0·10 ²⁸	1.6·10 ²⁸	3.3·10 ²⁷
R _{hit} (cr	n ⁻² s ⁻¹)	9 . 4 · 10 ⁷	6.9·10 ⁷	5.3·10 ⁷	4.6·10 ⁷	3.5·10 ⁷
R = 0.5 cm NIEL ((1 MeV n _{eq} / cm ² / month)	1.8 ·10 ¹⁴	8.6 · 10 ¹³	6.0 · 10 ¹³	4.1 · 10 ¹³	1.9·10 ¹³
TID (F	ad / m)	5.8·10 ⁶	2.8·10 ⁶	1.9·10 ⁶	1.3·10 ⁶	6.1·10 ⁵
R _{hit} (cr	n-2 s-1)	5.9·10 ⁴	4.3·10 ⁴	3.3·10 ⁴	2.8·10 ⁴	2.2 ·10 ⁴
R = 20 cm NIEL	(1 MeV n _{eq} / cm ² / month)	1.1 ·10 ¹¹	5.4 · 10 ¹⁰	3.7 · 10 ¹⁰	2.6·10 ¹⁰	1.2 ·10 ¹⁰
TID (F	ad / m)	3.6 · 10 ³	1.7 · 10 ³	1.2·10 ³	8.2·10 ²	3.8·10 ²
R _{hit} (cr	n-2 s-1)	2.4 · 10 ³	1.7 · 10 ³	1.3·10 ³	1.1 · 10 ³	8.8·10 ²
R = 100 cm NIEL	(1 MeV n _{eq} / cm ² / month)	4.5·10 ⁹	2.1 · 10 ⁹	1.5·10 ⁹	1.0·10 ⁹	4.7·10 ⁸
TID (F	ad / m)	1.4·10 ²	6.9·10 ¹	4.8·10 ¹	3.3 · 10 ¹	1.5·10 ¹

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

Understand mass and time dependence as well as onset in small systems \rightarrow precision measurements, also with new probes and in intermediate systems

 \rightarrow statistics and new collision systems (OO, pO, also high-multiplicity pp)

Run 3 & 4

Quenching

Run 3 (pp HM, OO, p-Pb)

61

Nature of exotic states

See Y. Kamiya et al. arXiv:2108.09644v1

- Study interaction between hadrons trough momentum correlation
- Carries information about existence
 of bound states

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

DD* momentum correlation

- Characteristic sign-change between pp and Pb-Pb in case of bound T_{cc} state
- Effect clearly visible within experiment precision

le¥ 17), 2nd

t 4th order LQCD shows a deviation from Hadron Resonance Gas (HRG)

Low's theorem — soft photons

• Low's theorem: production of soft photons linked to charged final state (not to "blob")

$$\frac{\mathrm{d}N^{\gamma}}{\mathrm{d}^{3}\vec{k}} = \frac{\alpha}{(2\pi)^{2}} \frac{-1}{E_{gamma}} \int \left(\mathrm{d}^{3}\vec{p}_{1}\ldots\mathrm{d}^{3}\vec{p}_{N}\right) \left(\sum_{\mathrm{Particle}} \frac{\eta_{i}e_{i}\mathsf{P}_{i}}{\mathsf{P}_{i}\mathsf{K}}\right)$$

Observational question: Photon excess in association with hadrons seen in previous experiments (not in $e^+e^- \rightarrow \mu^+\mu^-$)

Observable: (ultra-)soft photons (p_T < 50 MeV/c) at forward rapidity

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

$\mathrm{d}N^{\mathrm{H}}$

signal and decay

S/B best at large rapidity, very low p_T

Full functionality of digital front-end verified in silicon

100% detection efficiency easily achieved

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

TS3 - sensors

DPTSOW22B7

Not irradiated

split: 4 (opt.)

 $I_{reset} = 35 \, pA$ $I_{bias} = 100 \, \mathrm{nA}$

 $I_{biasn} = 10 \, \mathrm{nA}$

 $V_{casn} = 300 \,\mathrm{mV}$

 $I_{db} = 50 \,\mathrm{nA}$

 $V_{pwell} = V_{sub}$

T =ambient

version: O

TPSCo 65 nm digital pixel test structure (from MLR1 run)

Even after 10¹⁵ 1 MeV n_{eq}/cm² (NIEL), >99% detection efficieny

• NB: at +20°C

Kruger 2022 - ALICE upgrades | Dec 6, 2022 | jkl

TS3 - sensors

