

BSM searches at CMS: Highlights and prospects

Introduction
Highlights
Prospects
Conclusion

Eric Chabert On behalf the CMS collaboration

- Complement the panorama of BSM searches given by Greg Landsberg showing <u>selected</u> CMS results
- Highlight some recent results sometimes with (*mild*) excesses
- Show how CMS increase its model coverage
- Trends of reconstruction methods
- Include few SUSY-motivated searches

<u>Remarks:</u>

- Do not cover BSM-Higgs
- Do not review current limits
- Due to lack of time, I won't cover bkg estimation methods which are datadriven for the main contributions in all analyses presented

More results in <u>SUSY</u> (5) – <u>EXO</u> (17) – <u>B2G</u> (8) (new results in 2022)

http://cms-results.web.cern.ch/cms-results/public-results/publications/

DeepAK8 jet tag - BSM – Eric.Chabert@cern.ch

VLL: Vector-like lepton

Search in the context of 4321 model: SU(4)xSU(3)'xSU(2)_LxU(1)
 → UV-complete model motivated by B physics excess

Е

- Search for a VLL doublet (N,E) L = N|E
- VLL production through EW processes
- Coupling to SM via vector leptoquark U

- **Final states**: ≥ 3 **b-jets** 0,1,2 *τ* ≥ 4 jets MET
- Signal Region per $\#\tau$ and year (2017-2018)
- Use of a Graphical NN (10 objects/event)
 - Inputs: η,φ,log(p_T), log(m), Q, DeepJet score

B2G-21

 W^+

 γ/Z

(neutral)

(charged)

96.5 fb⁻¹ (13 TeV)

900

VLL mass [GeV]

1000

• HLN = RH Dirac or Majorana (\rightarrow lepton number violation) neutrinos

Heavy Neutral Lepton

July 202

Prompt

Displaced

12

EXO-20-009

l1

Ν

prompt

 $W^{\pm(*)}$

 W^{\pm}

 $\bar{\mathbf{q}}'$

- Motivations: v mass (seesaw) DM candidate (anti-)matter asym.
- Sterile = only interact through kinetic mixing with SM v
- Decay through W* or Z*
- For m_{HLN}<20 GeV & HLN- ν mixing within 10⁻⁷ -10⁻² \rightarrow Displaced vertex resolved by silicon tracker $\tau \propto \sum_i |V_{iN}|^{-2} m_N^{-5}$
- Final state: ≥ 3I, 0 b-jets, 2,3-bodies angular and mass constraints
- Categorization as function of lepton flavor/charge m(II) Δ(PV-SV)_{2D}

Extended gauge sector

First search for di-jet pairs production

Background-fit in various α bins (=<m_{X=ii}>/m_{Y=4i})

Four-jet mass [TeV]

lune

Extended gauge sector: di-boson pairs

- Search for heavy resonances decaying into VV or VH (V=W or Z)
- Interpretation in bulk graviton model, spin-2 graviton, spin-0 radion, spin 1 W' or Z'

B2G-20-009

Search for heavy resonances decaying into VV or VH (V=W or Z)

Interpretation in bulk graviton model, spin-2 graviton, spin-0 radion, spin 1 W' or Z'

Extended gauge sector: di-boson pairs

B2G-20-00

Local (global) excess of 3.6 σ (2.3 σ) for mass 2.1 & 2.9 TeV

Kruger 2022 – BSM – Eric.Chabert@cern.ch

3000

4000

5000 m_{w'} (GeV)

Extended gauge sector

Leptoquarks

EXO-

- LQ couple to both leptons & quarks: can be scalar or vector bosons
- Can be source of Lepton Flavor Universality Violation
 → interest is related to anomalies observed in B-physics
- Search focused on 3^{rd} generation LQ coupling to b and τ
- Productions modes

- Final states depends on production mode
- Results depends on LQ **spin** (scalar or vector), λ (LQ,b, τ), β (BR in Iq), κ (non-minimal coupling for vector LQ)

.eptoquarks

EXO-

- Event selection rely on $\ge 1 \tau$ (e $\nu \mu \nu$ or hadr) and ≥ 1 b-jet
- Categorization in τ decays 0 jet / 0/1 b-jet \geq 1 jet / m_{vis}
- Use of discriminating variables: $S_{T}^{MET} = p_{T}^{\tau_{1}} + p_{T}^{\tau_{2}} + p_{T}^{j} + MET$ discriminating variable: $\chi = e^{\Delta \eta}$
 - Limits on scalar with scalar & vectors LQs with various coupling λ and M

Extended gauge sector

SUS-21-

 $\widetilde{\chi}_1^0$

 $\widetilde{\chi}_1^0$

 \overline{q}'

- Gluino search w or w/o intermediate chargino
- Signature: 1 e or μ (+veto) + ≥ 3 jets heavy object tagging + $\Delta \phi$
- Δφ(I,W_{reco}) cut suppress dominant W/tt+j
- \rightarrow collimated for SM 2 sources of MET in signal
- AK8 PUPPI jets with multiclass CNN (V & top-tagging)
 - top(W)-tagging: ε = 68% (62%) fake rate = 8% (7%)

SUSY: stop in 4-body - compressed spectra

- Target 4-body decay for $\Delta m(\text{stop}, \chi^0) < m_W$
- Selection: one soft e (5<p_T<30) or μ (3.5<p_T<30), ISR jet (p_T>120 GeV), MET>200 GeV
- Signal regions based on 8 BDT adapted to Δm
 - 21 input variables: $p_T(I)$, $p_T(j)$, H_T , MET, ...
 - Eff ~ 5% bkg rejection: 5.10³

59.8 fb⁻¹ (13 TeV

June 2021

SUS-21-003

SUSY: stop with τ

- Search for stop pair production with one hadronically decaying tau
- Highly sensitive to high tan β or higgsino-like scenarios
- \rightarrow charginos are mainly couple to 3rd generation
- Study intermediate staus or sneutrino (+mixte)
- Hypotheses on masses and $BR(\chi^{\pm})$ for interpretation

b \tilde{t}_{1} \tilde{t}_{1} \tilde

Ex: diagram with intermediate stau & sneutrimo

 $m_{ ilde{\chi}_1^\pm}$

 $m_{\tilde{t}_1}$

 ${m_{ ilde{ au}_1^\pm} \over (x=0.25)} {m_{ ilde{ au}_1^\pm} \over m_{ ilde{ au}_1^\pm} \over (x=0.75)}$

 $m_{ ilde{\chi}_1^0}$

- Selection: τ_h (DeepTau), e, μ , b-jets (DeepJet), MET, H_T or S_T
- Categorization for $\tau_h \tau_{h,} e \tau_h$, $\mu \tau_h$, with 15 SR using M_{T2} and MET

SUSY: neutral LLP > trackless/delayed

191

Timing layer

EXO-21-0

Oct. 20

- Search for LLP decaying in outer regions of tracker or in calorimeters
- Novel technique using trackless and delayed jet information combined in a DNN

delay from slow-moving LLPs and path length increase due to displacement

Interpretation in GMSB

• DNN uses 21 variables such as energy fractions, number of constituents, jet time, ...

Trigger/offline selection based on MET + jets (QCD remove through Δφ cut,

 Cosmic rays & beam halo are remaining backgrounds suppressed through dedicated cuts and estimated from data

SUSY: neutral LLP→ trackless/delayed jet

Cosmic muons tangentially grazing the calorimeter

EXO-21

- Interpretation in GMSB
- \rightarrow Sensitivity in "intermediate" c τ
- → Complementary to displaced tracks & search in muon chambers

Extended gauge sector

Dark matter: WIMP SIMP

First collider search of DM arising from a strongly coupled hidden sector EXO-19-0

 Coupling through a heavy leptophobic Z' which decay in 2 "semivisible" jets contain SM matter (from decay of unstable dark hadrons) and DM (stable dark hadrons)

Assumptions in benchmark model used: n=2, 2 flavors, mass degenerated, ...

- 4 parameters: m_{Z'}, m_{dark}, α_{dark}, r_{inv}
- R_{inv} is fraction of invisible (stable) dark-hadron: [0-1]

Detectable particles

Dark matter: WIMP SIMP

- Signature based on 2 high p_T AK8 PUPPI dijet transverse mass (M_T) moderate MET aligned with the jets (Δφ)
- Split data into 2 bins in $R_T = MET/M_T$
- 2 versions of the analysis: cut-based & **BDT-based**
- SV-jet BDT with 15 variables using jet substructure variables such as m_{SD}(J_{1,2}) or D_{pT}(J_{1,2}) used to distinguish semivisible jet to SM jets as well as pf energy fractions

- Generic search of CMS and CMS-TOTEM precision proton spectrometer
- Search for an additional unspecified massive particle in proton tagged events

LHC

CMS

V=Z.y

CMS-Totem Preliminary

PPS

Other

EXO-19-0

37.2 fb⁻¹ (13 TeV)

Observed

- **Reconstruct the missing mass spectrum** $m_{\text{miss}}^2 = \left[(P_{p_1}^{\text{in}} + P_{p_2}^{\text{in}}) (P_V + P_{p_1}^{\text{out}} + P_{p_2}^{\text{out}}) \right]$
- Use 2017 data: 37 pb⁻¹
- Selection: $Z \rightarrow ee$ or $\mu \mu \parallel \gamma$ in CMS 1 p in each PPS arm
- Bump search in multiple possible final states
- Validation of shape in CR
- No excess generic interpretations

<u>ය</u> 0.16

Kruger 2022 – BSM – Eric.Chabert@cern.ch

Prospects for run

Energy

Luminosity

Detector

Reconstruction

Detector upgrade:

- Maintain performance
- Prepare HL-LHC conditions
- Detector improvements \rightarrow object reconstruction

Improvements can be expected in trigger / reconstruction / machine-learning

Prospects for HL-LHC

Energy: 13.6-14 TeV

Luminosity: 3ab-1

Detector

Reconstruction

Energy: 13.6-14 TeV

Luminosity: 3ab-1

Detector

Prospects for HL-LHC

Reconstruction

Prospect for HL-LHC: dilepton mass

CMS-PAS-FTR-21-005 (22/03): new phenomena at high dilepton mass

- Example or interpretation with Z'_{SSM} 95%CL mass limit:
 - Current mass limit: 5.15 TeV HL-LHC projection: 6.83 TeV
 - Forward acceptance increased: |η_µ|< 2.4→2.8 |η_e|< 2.5→3.0 (+5-10% in signal acceptance for ee)</p>
- Test Lepton Flavor Universality through flavor ratio measurement

CMS-PAS-FTR-18-037 (2019): searches for new physics in hadronic final states with boosted W bosons or top quarks using razor variables

Prospect for HL-LHC: SUSY: gluinos/stops

- Study done in 2019 based on 2016 analysis
- Give an idea of sensitivity in term of significance & exclusion

Prospect for HL-LHC: leptophobic Z'

CMS-PAS-FTR-21-011 (22/03):): leptophobic Z' decaying into charginos in the dilepton + MET final state

Study ee,µµ,eµ channels – Use of a DNN

CMS continues to increase its model coverage

 Beyond prompt/high-mass searches, it covers broader range of lifetime, low mass/momenta, ...

Conclusions

- Use of ML-based objects and event reconstruction technics allow to reach sensitivity beyond initial projections
- Few *mild* excess are reported which need to be confirmed (complementary searches - run III data)
- Thanks to higher sqrt(s) & higher luminosity & and few detector upgrades, improvements are expected for run III
- A bigger jump will arrive at HL-LHC !
- Meanwhile some run 2 analyses have not yet fully released and should appear soon