## Frequentist Approach to Quantify Fake Signals when using Semi-Supervised Machine Learning Classifiers By Benjamin Lieberman

### Kruger 2022: Discovery Physics at the LHC

Institute for Collider Particle Physics



UNIVERSITY OF THE WITWATERSRAND



# Overview

- **1. Introduction**
- 2. Semi-Supervised DNN Classifier
- 3. Frequentest Study Methodology
- 4. Pseudo-Experiment Breakdown
- 5. Results
- 6. Data Generator/Sampler
- 7. WGAN as machine learning data generator

## Introduction

SM is unable to explain various phenomena which explain • substantial evidence, such as:

➡Dark Matter

The matter-anti-matter asymmetry

➡The origin of neutrino mass

The search for new bosons is therefore motivated by these experimental discrepancies with the SM.



### **Context of Presentation:**

- Conduct BSM searches for Zy resonances
- Our Use weakly or semi-supervised machine learning classifier.
  - Reduce model dependencies
- Expose internal error generated by using semi-supervised machine classifiers





## Introduction to Machine Learning Classification and Anomaly Detection

### **Neural Networks**



### **Response Distributions**



# **Machine Learning Classifiers**

### **Machine Learning Semi-Supervision**



- Uses a fully labelled dataset
- Well defined "signal" and "background"
- Best Results

- Good Results



 Uses a partially labelled dataset Well defined "background"

#### Why would we use semisupervision?

#### **Reduce Model dependencies**

Decreases biases caused by known physics. Reduces constraints placed on what "signal" must look like



## **Semi-Supervised DNN Classifier Deep Neural Network Classifier**

### **Model Architecture**



#### **The optimised DNN hyper-parameters:**

Learning Rate =  $1*10^{-3}$ Batch size = 256Optimiser = Adam

During the training of neural networks, overtraining/over-fitting can cause background events to be incorrectly classified as signals.

How often does the semisupervised DNN model classify background processes as signal?



## Zy Resonance Searches



### Quantification of False Signals Generated in the Training of Semi-Supervised DNN Classifiers

#### **Frequentest Approach: Pseudo Experiment**



#### **Why Frequentest Approach?**

When conducting kinematic scans and/or resonance searches within a given mass range, the significance of observing a local excess of events, must consider the probability of observing the excess elsewhere within the range. This is known as the "look elsewhere effect".

#### **Study Setup:**

Fixed Mass:

- Center of mass = 150GeV
- Mass-window region = [144, 156] GeV
- Sideband region = [132, 144) & (156, 168] GeV

## **Pseudo-Experiment**

- A frequentest study consists of the repetition of a pseudo-experiment sufficient times to produce a statistically accurate distribution of results.
- In this study, each pseudo-experiment is used to measure the local signal significances resulting from the training of the semi-supervised DNN model.









### **Pseudo-Experiment: Data Sampling/** Generation

#### **Data Sampling using:**

Kernal Density Estimation, **KDE**, method.

Excellent sampling method for synthesising events.



#### **Example of Generated training dataset using:**



The semi-supervised DNN is trained on a generated/sampled Zy dataset.

**Sample 0** (background / side-band region):

 $(132 \le m_{\ell\ell\gamma} < 144)$  and  $(156 < m_{\ell\ell\gamma} \le 168)$ 

**Sample 1** (Signal / mass-window region):

 $(144 \le m_{\ell\ell\gamma} \le 156)$ 



### **Pseudo-Experiment: DNN Training and Response Distribution**

### **DNN Outputs**





#### **SHAP Feature Ranking**





## **C** Pseudo-Experiment: <u>Background Rejection Scan</u>

- 1. Scan response distribution extracting batches of events.
- 2. Each batch excludes percentages of events considered background (closer to zero).
- 3. Each batch of events is mapped to their corresponding invariant mass.
- 4. Each batches invariant mass distribution can therefore be used to extract a local significance





### **Fitting**

- 1. Data (Background) is fit with exponential, f(x)
- 2. Background + Signal is fit with exponential + gaussian, g(x)
  - Exponential component of g(x) uses fixed parameters from f(x)
  - Mean,  $\mu$ , is the centre of mass = 150GeV
  - Sigma.  $\sigma$ , is the resolution = 2.4

### **Pseudo-Experiment:** Invariant Mass Background Fits



ExampleSignificanceFit:  $\sigma = 3.5446$ 



BR50 – SignificanceFit:  $\sigma = 0.99138$ 



## **Pseudo-Experiment:** Fake Signal Significance Calculation

- $\bullet$ physics analysis.
- $\bullet$ the **Asimov data set** to compute expected significances or limits.

#### **Parameter of interest:** number of signal events

**Observable:** Invariant Mass, mlly

Null (background) Hypothesis: no signal events will be found in signal region

Using Signal and background fits, the signal significance is calculated using **ROOT**, CERN's library designed for particle

The AsymptoticCalculator used, performs hypothesis tests using the asymptotic formula for the profile likelihood, and uses





## **Example Pseudo-Experiment**









## **Frequentest Study Initial Results**



|            | 1σ    | 2σ   | 2.5σ | 3σ   | 3 |
|------------|-------|------|------|------|---|
| Local Runs | 3154  | 721  | 267  | 71   |   |
| Pvalue [%] | 39.51 | 9.03 | 3.34 | 0.89 | ( |



![](_page_15_Figure_4.jpeg)

0.19

![](_page_15_Picture_7.jpeg)

## **Pseudo-Experiment:** <u>Data Sampling/Generation</u>

### **Problem:**

- For each pseudo-experiment a statistically independent dataset is needed.
- **±200,000 events** is ideal for the training and evaluation of the DNN for each pseudo-experiment.
- In order to complete the frequentest study, the pseudo-experiment must be run more than **50,000** times.
- Monte Carlo event generation of sufficient events is computationally excessive and will take take excessive time

#### Therefore the study requires ±10x10<sup>9</sup> events

### **Solutions:**

- 1. **Event Sampling:** Bootstrap or other event sampling methods can enable batches of events to be sampled while maintaining statistics.
- 2. Machine Learning Generators: GANs, VAE and other machine learning data generators can learn to generate statistically accurate events at scale

### **Data Generator: Wasserstein Generative Adversarial Network**

![](_page_17_Figure_1.jpeg)

![](_page_17_Picture_3.jpeg)

## **Data Generator: Wasserstein Generative Adversarial Network**

#### **Generator Model**

![](_page_18_Picture_2.jpeg)

#### **Critic Model**

![](_page_18_Figure_4.jpeg)

![](_page_18_Picture_6.jpeg)

### Data Generator: Wasserstein Generative Adversarial Network Generated Data Feature Distributions

![](_page_19_Figure_1.jpeg)

### Data Generator: Wasserstein Generative Adversarial Network Generated Data Feature Distributions

![](_page_20_Figure_1.jpeg)

### **Data Generator: Wasserstein Generative Adversarial Network Generated Data Feature Correlation**

![](_page_21_Figure_1.jpeg)

- 0.06 - 0.02

# Thank You

## References

von Buddenbrock S, Chakrabarty N, Cornell A S, Kar D, Kumar M, Mandal T, Mellado B, Mukhopadhyaya B and Reed R G 2015
von Buddenbrock S, Chakrabarty N, Cornell A S, Kar D, Kumar M, Mandal T, Mellado B, Mukhopadhyaya B, Reed R G and Ruan X 2016 Eur. Phys. J.
Crivellin A, Fang Y, Fischer O, Kumar A, Kumar M, Malwa E, Mellado B, Rapheeha N, Ruan X and Sha Q 2021
von Buddenbrock S, Cornell A S, Fadol A, Kumar M, Mellado B and Ruan X 2018 J. Phys. G 45 115003
Hernandez Y, Kumar M, Cornell A S, Dahbi S E, Fang Y, Lieberman B, Mellado B, Monnakgotla K, Ruan X and Xin S 2021 Eur. Phys. J. C 81 365
Beck G, Kumar M, Malwa E, Mellado B and Temo R 2021 (Preprint 2102.10596)
Sabatta D, Cornell A S, Goyal A, Kumar M, Mellado B and Ruan X 2020 Chin. Phys. C 44 063103
Abi B et al. (Muon g-2) 2021 Phys. Rev. Lett. 126 141801 (Preprint 2104.03281)