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Introduction
• SM is unable to explain various phenomena which explain 

substantial evidence, such as:


➡Dark Matter


➡The matter-anti-matter asymmetry


➡The origin of neutrino mass


• The search for new bosons is therefore motivated by these 
experimental discrepancies with the SM.
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Context of Presentation: 

๏ Conduct BSM searches for Zy 
resonances 


๏ Use weakly or semi-supervised machine 
learning classifier.


➡Reduce model dependencies


๏ Expose internal error generated by using 
semi-supervised machine classifiers



Introduction to Machine Learning
Classification and Anomaly Detection

Neural Networks Response Distributions
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Machine Learning Classifiers
Machine Learning Semi-Supervision

• Uses a fully labelled dataset 
• Well defined “signal” and “background” 
• Best Results

• Uses a partially labelled dataset 
• Well defined “background” 
• Good Results

Decreases biases caused by 
known physics. Reduces 

constraints placed on what 
“signal” must look like

Why would we use semi-
supervision?
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Reduce Model dependencies



Semi-Supervised DNN Classifier
Deep Neural Network Classifier 

Model Architecture

Output Layer [0,1]Input Layer  
(Features)

The optimised DNN hyper-parameters: 
Learning Rate = 1*10-3


Batch size = 256

Optimiser = Adam

How often does the semi-
supervised DNN model classify 

background processes as 
signal? 

During the training of neural networks, over-
training/over-fitting can cause background 
events to be incorrectly classified as signals.
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Zγ Resonance Searches

pp → H → Zγ→ (ℓ+ℓ−)γ

Fast Simulation Monte Carlo Zy Data generated: 
Using Madgraph5 with NNPDF3.0 parton distribution function. 
Parton level generation is done using Pythia and detector level 
simulation is done using Delphes(v3) 
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• Model Used: 2HDM+S where S is a singlet scalar [Stefan von Buddenbrock et al 2017 J. Phys.: Conf. Ser. 889 012020]
• Heavy scalar, H, decays predominantly into SS and Sh, where h is the SM Higgs boson.
• Model exposes, in multi-lepton anomalies and astro-physics anomalies when complimented by a Dark Matter Candidate.
• Certain models considered in this study, predicted the decay of the new heavy scalar to  Zy final state.



Quantification of False Signals Generated in the Training of Semi-
Supervised DNN Classifiers 

Frequentest Approach: 
Pseudo Experiment

Why Frequentest Approach?
When conducting kinematic scans and/or resonance searches within a 
given mass range, the significance of observing a local excess of 
events, must consider the probability of observing the excess elsewhere 
within the range. This is known as the “look elsewhere effect”.

Study Setup:
Fixed Mass:

• Center of mass = 150GeV
• Mass-window region  = [144, 156] GeV
• Sideband region = [132, 144) & (156, 168] GeV
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Pseudo-Experiment

• A frequentest study consists of the 
repetition of a pseudo-experiment 
sufficient times to produce a statistically 
accurate distribution of results.


• In this study, each pseudo-experiment is 
used to measure the local signal 
significances resulting from the training of 
the semi-supervised DNN model.
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Pseudo-Experiment: 
Data Sampling/
Generation

Example of Generated training dataset using: 

Data Sampling using: 
Kernal Density Estimation, KDE, 
method. 

Excellent sampling method for 
synthesising events.
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Pseudo-Experiment: DNN Training and Response Distribution

The semi-supervised DNN is trained on a generated/sampled 
Zy dataset. 


Sample 0 (background / side-band region):


(132 ≤ mℓℓγ < 144) and (156 < mℓℓγ ≤ 168)

Sample 1 (Signal / mass-window region):


(144 ≤ mℓℓγ ≤ 156)

Zy Training Dataset Feature Distributions

Response Distribution

ROC Curve SHAP Feature Ranking

DNN Outputs
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Pseudo-Experiment: Background Rejection Scan

1. Scan response distribution extracting batches of 
events.


2. Each batch excludes percentages of events 
considered background (closer to zero).


3. Each batch of events is mapped to their 
corresponding invariant mass.


4. Each batches invariant mass distribution can 
therefore be used to extract a local significance

50% Bkg Rejection

40% Bkg Rejection

30% Bkg Rejection

20% Bkg Rejection

10% Bkg Rejection
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Pseudo-Experiment: Invariant Mass Background Fits

μ

Fitting
1. Data (Background) is fit with exponential, f(x)


2. Background + Signal is fit with exponential + 
gaussian, g(x)

• Exponential component of g(x) uses fixed 

parameters from f(x)

• Mean, μ, is the centre of mass = 150GeV

• Sigma. σ, is the resolution = 2.4
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Pseudo-Experiment:  
Fake Signal Significance Calculation

• Using Signal and background fits, the signal significance is calculated using ROOT, CERN’s library designed for particle 
physics analysis.


• The AsymptoticCalculator used, performs hypothesis tests using the asymptotic formula for the profile likelihood, and uses 
the Asimov data set to compute expected significances or limits.

Parameter of interest: number of signal events


Observable: Invariant Mass, mlly


Null (background) Hypothesis: no signal events will 
be found in signal region
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Example Pseudo-Experiment
Sample Training Data Distributions

Train Semi-
Supervised DNN
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10% Background 
Rejection

20% Background 
Rejection

30% Background 
Rejection

40% Background 
Rejection

50% Background 
Rejection



Frequentest Study Initial Results
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1σ 2σ 2.5σ 3σ 3.5σ

Local Runs 3154 721 267 71 15

Pvalue [%] 39.51 9.03 3.34 0.89 0.19



Pseudo-Experiment: Data Sampling/Generation

Problem: 
• For each pseudo-experiment a statistically independent dataset is needed.  


• ±200,000 events is ideal for the training and evaluation of the DNN for each pseudo-experiment.


• In order to complete the frequentest study, the pseudo-experiment must be run more than 50,000 times.


• Monte Carlo event generation of sufficient events is computationally excessive and will take take excessive time


Therefore the study requires ±10x109 events


Solutions: 
1. Event Sampling: Bootstrap or other event sampling methods can enable batches of 

events to be sampled while maintaining statistics.


2. Machine Learning Generators: GANs, VAE and other machine learning data 
generators can learn to generate statistically accurate events at scale
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Data Generator: Wasserstein Generative Adversarial Network

Generator

Critic

Real Data

Latent
Space

Gradient
Penalty

 Generator Loss

 Critic Loss
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Data Generator: Wasserstein Generative Adversarial Network
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Generator Model Critic Model



Data Generator: Wasserstein Generative Adversarial Network 
Generated Data Feature Distributions
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Data Generator: Wasserstein Generative Adversarial Network 
Generated Data Feature Distributions
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Data Generator: Wasserstein Generative Adversarial Network 
Generated Data Feature Correlation
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Thank You
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