

Institute of High Energy Physics Chinese Academy of Sciences

Future Colliders

Jin Wang, Yaquan Fang and Xinchou Lou High Energy Physics Institute, Beijing, China

Outline

- Introduction
- Status and development of future colliders
 - Circular Electron Positron Collider (CEPC)
 - International Linear Collider (ILC)
 - Future Circular Collider (FCC)
- > Summary

Introduction

SM cannot explain

- neutrino mass
- dark matter
- dark energy
- baryon asymmetry

Etc....

Higgs is at the center of the Standard Model, unique and special

- the only particle that talks to everybody
- the only particle that doesn't spin
- the only particle that is condensed in the universe
- the source of all masses of elementary particles
- the lowest order coupling to new physics

Higgs portal to BSM

- Supersymmetry
 - Higgs just one of many scalar bosons
 - Superpartners

• Composite

- spins cancel among constituents
- condensate by a strong attractive force
- top partner, vector-like quarks etc.
- Extra dimension
 - Higgs spinning in extra dimensions
 - new forces from particles running in extra dimension
 - KK particles
- Etc...

Precise understanding of Higgs boson properties gives hints of BSM

Higgs measurements at the LHC

The Large Hadron Collider(LHC) discovered the Higgs and made possible of many measurements Coupling of to the Higgs : mass of final state particles

Highly consistent with the Standard Model of Particle Physics → origin of fermion mass indeed from the Higgs No clear evidence of BSM so far

Paths to new physics

Proton-proton collision ~1 TeV, discovery of the top quark

LEP, LHC (Europe)

Proton-proton collision ~13 TeV, discovery of the Higgs boson

 Precision measurements of neutral current predicted *mW*, *mZ* UA1/UA2 discovered *W/Z* particles

3. Precision measurements of *W* and *Z* at LEP + Tevatron predicted *mt* and *mH*

4. Tevatron discovered top, LHC discovered *a Higgs particle*

We need precision measurement of Higgs boson to pave ways to BSM

Huge breakthrough with Higgs: the center of the Standard Model, most unique and special particle

Lepton collider vs. hadron collider

Advantage of lepton collider

- Much less noise and backgrounds
- Simpler kinematics
- No loss of the longitudinal momentum
- Can make use of all final states and capture all information for a given event
- Increase precision on H by X10
- Increase precision on W,Z by X10-100
- Search for new physics ~10 TeV

Combined measurements of Higgs, top, W/Z allow us to understand various operations that could be added to SM in EFT

Discovery Physics at the LHC

Linear Accelerator

particle beam

(Diagram: resourcefulphysics.org)

Reach High Energy Can't Store Beam Low Intensity

CERN LHC tunnel

Can Store Beams High Intensity Limit on Energy circumference=27km (LHC tunnel) E=500GeV, I=10mA

Need much bigger tunnel

```
\Rightarrow P(power)=13 GW (e<sup>+</sup>e<sup>-</sup> collider)
```

Proposed Future Colliders

Future colliders with top priority

The scientific importance and strategical value of an electron positron Higgs factory is clearly identified.

ICFA

In April 2022, the International Committee for Future Accelerators (ICFA) "reconfirmed the international consensus on the importance of *a Higgs factory as the highest priority for realizing the scientific goals of particle physics*", and expressed support for the above-mentioned Higgs factory proposals. Recently, the United States also proposed a new linear collider concept based on the cool copper collider (C3) technology [31].

Future High Energy Colliders Status and Development

Circular Electron Positron Collider CEPC

Acknowledgement

Additional inputs from João Guimarães da Costa et. all

Circular Electron-Positron Collider (CEPC)

- CEPC is an e+e- Higgs factory producing Higgs, W and Z bosons aims at discovering new physics beyond the Standard Model
 - Proposed in Sept. 2012
 - Circumference ~100 km
 - Centre-of-mass energy 90-240 GeV
 - upgradable to 360 GeV (t quark)
- Continuation of expertise in electron accelerator (BEPC under operation)
- New application: world's first γ synchrotron light source, (high energy ~ 300 MeV),

Circular Electron Position Collider (CEPC) - TDR Layout

CEPC TDR Parameters (upgrade version)

Main Parameters: Cost optimization vs. circumference High luminosity as a Higgs Factory total cost (H + Z + TOP)50MW_1M higgs+1TZ Higgs W Z ttbar 1800 total cost_H/Z/top(100million) Number of IPs 2 30MW 2M higgs+1TZ 1600 30MW 1M higgs+1TZ Circumference [km] 100.0 4IP 30MW 2M higgs+1TZ+1M top SR power per beam [MW] 50 1400 30MW 2M higgs+1TZ+1M top 180 30MW 1M higgs+1TZ+1M top Energy [GeV] 120 80 45.5 1200 50MW_1M higgs+1T Z+1M top(50MW) Bunch number 415 2161 19918 59 1000 Emittance (ɛx/ɛy) [nm/pm] 0.64/1.3 0.87/1.7 0.27/1.4 1.4/4.7Beam size at IP ($\sigma x/\sigma y$) [um/nm] 13/4239/113 15/366/35 800 2.3/3.92.2/2.9 Bunch length (SR/total) [mm] 2.5/4.92.5/8.7600 0.015/0.11 0.012/0.113 0.004/0.127 Beam-beam parameters ($\xi x/\xi y$) 0.071/0.1 400 RF frequency [MHz] 650 60 200 220 20 80 160 180 Luminosity per IP[10³⁴/cm²/s] 192 8.3 27 0.83 **Circumference** (km) D. Wang et al 2022 JINST 17 P10018

50 MW and 100 km ring a cost effective solution for a higgs, W, Z and top machine

100km accelerator design for all operation modes - completed

CEPC accelerator technical performance

Ultrahigh accelerating gradient and quality factor of CEPC 650 MHz superconducting radio-frequency cavity

CEPC accelerator key technologies under R&D

✓ Specification Met

Prototype Manufactured

	Accelerator	Cost (billion CNY)	Ratio
1	Magnets	4.47	27.3%
~	Vacuum	3.00	18.3%
	RF power source	1.50	9.1%
~	Mechanics	1.24	7.6%
-	Magnet power supplies	1.14	7.0%
1	SCRF	1.16	7.1%
~	Cryogenics	1.06	6.5%
1	Linac and sources	0.91	5.5%
~	Instrumentation	0.87	5.3%
	Control	0.39	2.4%
	Survey and alignment	0.40	2.4%
1	Radiation protection	0.17	1.0%
	SC magnets	0.07	0.4%
1	Damping ring	0.04	0.2%

Device	Accelerator	Quantity	CEPC specification	R&D status
1.3 GHz SRF cavity (9-cell)	Booster	96	$Q=3 \times 10^{10}$ @ 24 MV/m	Specification met
650 MHz SRF cavity (2-cell)	Collider	240	$Q=4\times 10^{10}@22~{\rm MV/m}$	Specification met
650 MHz	Collider	120	Efficiency: 80%	Prototype
klystron			Power: 800 kW	manufactured
C-band NC accelerating tube	Linac	292	Gradient: 45 MV/m	Prototype manufactured
S-band bunch compressor	Linac	35	Peak power gain: 7 dB	Prototype manufactured
Positron source flux concentrator	Linac	1	Central peak magnetic field >6 T	Specification met
Dual-aperture dipole magnet	Collider	2384	Field: 140 Gs-560 Gs aperture: 70 mm length: 28.7 m; harmonic< 5×10^{-4} relative field difference<0.5%	Specification met
Dual-aperture quadrupole magnet	Collider	2392	Gradient: $3.2-12.8$ T/m length: 2 m; harmonic< 5×10^{-4} aperture: 76 mm relative field difference<0.5%	Specification met
Weak field dipole	Booster	16320	Field error $\leq 10^{-3}$ @60 Gs	Specification met
Electrostatic separator	Collider	32	Electric field: 2.0 MV/m field uniformity: 5×10^{-4} good field region: 46 mm*11 mm	Specification met by prototype
Cryogenic refrigerator	Collider/ Booster	4	18 kW @ 4.5 K	Collaboration with IPC CAS, a refrigerator system of 2.5 kW @ 4.5 K has been developed
Ceramic vacuum chamber and coating	Transport lines	~ 20	$75\times56\times5\times1200\mathrm{mm}$	Prototype in production
MDI SCQ	Collider	8	Gradient: 136T/m; length: 2m Aperture: 40mm; included angle: 33mrad	Prototype in manufacture
Visual instrument	All	11	Image accuracy: 5μ m+(5μ m/m) horizontal angle: 1.8 arc-second wartised angle: 2.2 arc-second	Prototype complete

Device type	Accelerator	Quantity	CEPC specifications
S-band copper accelerating tube	Linac	111	~30 MV /m
vacuum chamber	Collider/	Total length	Length: 6 m
and coating	Booster	200 km	aperture: 56 mm
			vacuum: 3×10^{-10} Torr
			NEG coating pump speed for H_2 :
			0.5 L/s- cm ²
BPM and	All	~ 5000	Closed orbit
electronics			resolution: 0.6 µm
kicker & fast pulser	Transport	~ 25	Pulse width <10 ns (strip-line)
	line		trapezoidal pulse width <250 ns (slotted-pipe)
Lambertson septum	Transport line	~ 20	Septum thickness ≤3.5 mm (in-air)
			thickness ≤2 mm (in-vacuum)
Power supply	All	9294	Stability 100-1000 ppm
RF-shielded	Collider	24000	Contact force 125±25 g/finger
bellows	Booster	/12000	

Figure 12.3: Cost breakdown of the CEPC accelerator technical systems.

CEPC TDR: R&D Status of Key Technologies

High maturity of key accelerator technologies

Innovations and technology breakthroughs

Innovative Design	 > 100km Full/Partial Double Rings > Switchable operation for Higgs, W and Z > Flexible injection modes to satisfy different energies > World's 1st design of a high energy/flux gamma-ray synchrotron light (300 MeV)
Technical Performance	 High efficiency Klystron (aim at highest transfer efficiency) High performance SRF cavities (state-of-the-art Q and gradient) Novel magnets: Weak field dipole, dual aperture magnets (First Qualified Prototype)
Major Technology Breakthrough	 Plasma wakefield acceleration for Injector (New Acceleration Principle) High field superconducting magnet (Iron based HTS proposal)

CEPC: World first high energy-high intensity γ synchrotron light source \rightarrow new applications.

Potentially a broad range of important applications

Kruger 2022: Discovery Physics at the LHC

CEPC Detector Concept Designs

The 4th Conceptual Detector Design

CEPC R&D: Silicon Pixel Sensors

Kruger 2022: Discovery Physics at the LHC

CEPC R&D: Vertex Detector Prototype

Full vertex detector prototype test beam planned for DESY December 2022

CEPC R&D: Scintillating Calorimeters

CEPC R&D: High Granularity Crystal ECAL

CEP	C Operation mode	ZH	Z	W+W-	ttbar
		~ 240	~ 91.2	~ 160	~ 360
Run time [years]		7	2	1	-
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	I
CDR (30MW)	[ab-1, 2 IPs]	5.6	16	2.6	_
	Event yields [2 IPs]	1×10 ⁶	7 × 10 ¹¹	2×107	-
F	Run time [years]	10	2	1	5
	<i>L</i> / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	27	0.83
Latest	[ab-1, 2 IPs]	20	96	7	1
	Event yields [2 IPs]	4 ×10 ⁶	4 × 10 ¹²	5×107	5×105

Large physics samples: ~10⁶ Higgs, ~10¹² Z, ~10⁸ W bosons, ~10⁶ top quarks

- Physics potential similar to FCC-ee, ILC, CLIC

- Precision Higgs, EW, flavor physics & QCD measurements
- BSM physics (eg. dark matter, EW phase transition, SUSY, LLP,) up to ~10 TeV scale

Chinese Physics C Vol. 43, No. 4 (2019) 043002

Precision Higgs physics at the CEPC^{*}

Fenfen An(安芬芬)^{4,23} Yu Bai(白羽)⁹ Chunhui Chen(陈春晖)²³ Xin Chen(陈新)⁵ Zhenxing Chen(陈振兴)³ Joao Guimaraes da Costa⁴ Zhenwei Cui(崔振崴)³ Yaquan Fang(方亚泉)^{4,634;1)} Chengdong Fu(付成栋)⁴ Jun Gao(高俊)¹⁰ Yanyan Gao(高艳彦)²² Yuanning Gao(高原宁)³ Shaofeng Ge(葛韶锋)^{15,29} Jiayin Gu(顾嘉荫)¹³²⁾ Fangyi Guo(郭方毅)^{1,4} Jun Guo(郭军)¹⁰ Tao Han(韩海)^{5,31} Shuang Han(韩爽)⁴ Hongjian He(何红建)^{11,10} Xianke He(何显柯)¹⁰ Xiaogang He(何小刚)^{11,10,20} Jifeng Hu(胡继峰)¹⁰ Shih-Chieh IIsu(徐士杰)32 Shan Jin(金山)8 Maoqiang Jing(荆茂强)4.7 Susmita Jyotishmati33 Ryuta Kiuchi4 Chia-Ming Kuo(郭家铭)²¹ Peizhu Lai(赖揞鏡)²¹ Boyang Li(李博扬)² Congqiao Li(李聪乔)³ Gang Li(李刚)¹³¹³⁾ Haifeng Li(李海峰)¹² Liang Li(李亮)¹⁰ Shu Li(李数)^{11,10} Tong Li(李通)¹² Qiang Li(李强)³ Hao Liang(梁浩)⁴⁶ Zhijun Liang(梁志均)⁴ Libo Liao(廖立波)⁴ Bo Liu(刘波)^{4,23} Jianbei Liu(刘建北)¹ Tao Liu(刘涛)¹⁴ Zhen Liu(刘真)^{2630,0} Xinchou Lou(娄辛丑)^{4633,34} Lianliang Ma(马连良)¹² Bruce Mellado^{17,18} Xin Mo(莫欣)⁴ Mila Pandurovic¹⁶ Jianning Qian(钱剑明)^{24:5)} Zhuoni Qian(钱卓妮)¹⁹ Nikolaos Rompotis²² Manqi Ruan(阮曼奇)^{4,0} Alex Schuy³² Lianyou Shan(单连友)⁴ Jingyuan Shi(史静远)⁹ Xin Shi(史欣)⁴ Shufang Su(苏淑芳)²⁵ Dayong Wang(王大勇)³ Jin Wang(王锦)⁴ Liantao Wang(王连涛)^{21,(1)} Yifang Wang(王貽芳)^{4,6} Yuqian Wei(魏彧骞)⁴ Yuc Xu(许悦)⁵ Haijun Yang(杨海军)^{10,11} Ying Yang(杨迎)⁴ Weiming Yao(姚为民)²⁸ Dan Yu(于丹)⁴ Kaili Zhang(张凯栗)^{4,6,8)} Zhaoru Zhang(张照茹)⁴ Mingrui Zhao(赵明锐)² Xianghu Zhao(赵祥虎)⁴ Ning Zhou(周宁)¹⁰

¹Department of Modern Physics, University of Science and Technology of China, Anhui 230026, China ²China Institute of Atomic Energy, Beijing 102413, China School of Physics, Peking University, Beijing 100871, China ¹Institute of High Energy Physics, Beijing 100049, China Department of Engineering Physics, Physics Department, Tsinghua University, Beijing 100084, China ⁶University of Chinese Academy of Science (UCAS), Beijing 100049, China School of Nuclear Science and Technology, University of South China, Hengyang 421001, China ⁸Department of Physics, Nanjing University, Nanjing 210093, China 9 Department of Physics, Southeast University, Nanjing 210096, China ¹⁰School of Physics and Astronomy, Shanghai Juan Tong University, KLPPAC-MoF, SKLPPC, Shanghai 200240, China ¹¹Tsung-Dao Lee Institute, Shanghai 200240, China ¹²Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao 266237, China ¹³PRISMA Cluster of Excellence & Mainz Institute of Theoretical Physics, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany Department of Physics, Hong Kong University of Science and Technology, Hong Kong ¹⁵Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan ¹⁶Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade 11000, Serbia ¹⁷School of Physics and Institute for Collider Particle Physics, University of the Witwatersrand, Johannesburg 2050, South Africa

+ O(100) journal/arXiv papers

Kruger 2022: Discovery Physics at the LHC

	$240\mathrm{GeV}$	$V, 20 \text{ ab}^{-1}$	360	GeV, 1	ab^{-1}	
	ZH	vvH	ZH	vvH	eeH	
inclusive	0.26%		1.40%	1	1	
H→bb	0.14%	1.59%	0.90%	1.10%	4.30%	
$H \rightarrow cc$	2.02%		8.80%	16%	20%	
$H \rightarrow gg$	0.81%		3.40%	4.50%	12%	
$\mathrm{H}{\rightarrow}\mathrm{WW}$	0.53%		2.80%	4.40%	6.50%	
H→ZZ	4.17%		20%	21%		
$H \to \tau \tau$	0.42%		2.10%	4.20%	7.50%	
$H o \gamma\gamma$	3.02%		11%	16%		
$H o \mu \mu$	6.36%		41%	57%		
$H \to Z \gamma$	8.50%		35%			
${ m Br}_{upper}(H o inv.)$	0.07%					
Γ_{H}	1.	65%		1.10%		

Observable	current precision	CEPC prec	ision (Stat. Unc.)	CEPC runs	main systematic
Δm_Z	2.1 MeV [37-41]	0.1 MeV	/ (0.005 MeV)	Z threshold	E_{beam}
$\Delta \Gamma_Z$	2.3 MeV [37-41]	0.025 Me	V (0.005 MeV)	Z threshold	E_{beam}
Δm_W	9 MeV [42-46]	0.5 Me	V (0.35 MeV)	WW threshold	E_{beam}
$\Delta \Gamma_W$	49 MeV [46-49]	2.0 Me	V (1.8 MeV)	WW threshold	E_{beam}
Δm_t	0.76 GeV [50]	0(10) MeV ^a	$t\bar{t}$ threshold	
ΔA_{ϵ}	4.9×10 ⁻³ [37, 51-55] 1.5×10 ⁻	$^{-5}$ (1.5× 10 ⁻⁵)	Z pole $(Z \to \tau \tau)$	Stat. Unc.
ΔA_{μ}	0.015 [37, 53]	3.5×10^{-1}	$^{-5}$ (3.0× 10 ⁻⁵)	Z pole $(Z \rightarrow \mu \mu)$	point-to-point Unc.
ΔA_{τ}	4.3×10 ⁻³ [37, 51–55] 7.0×10 ⁻	(1.2×10^{-5})	Z pole $(Z \rightarrow \tau \tau)$	tau decay model
ΔA_b	0.02 [37, 56]	20×10	⁻⁵ (3×10 ⁻⁵)	Z pole	QCD effects
ΔA_c	0.027 [37, 56]	30×10	$^{-5}$ (6×10 ⁻⁵)	Z pole	QCD effects
$\Delta \sigma_{had}$	37 pb [37-41]	2 pb	o (0.05 pb)	Z pole	lumiosity
δR_b^0	0.003 [37, 57-61]	0.000	$2(5 \times 10^{-6})$	Z pole	gluon splitting
δR_c^0	0.017 [37, 57, 62-65]	0.001	l (2×10 ⁻⁵)	Z pole	gluon splitting
δR_e^0	0.0012 [37-41]	2×10	⁻⁴ (3×10 ⁻⁶)	Z pole	E_{team} and t channel
δR^0_μ	0.002 [37-41]	1×10	⁻⁴ (3×10 ⁻⁶)	Z pole	E_{beam}
$\delta R_{ au}^0$	0.017 [37-41]	1×10	⁻⁴ (3×10 ⁻⁶)	Z pole	E_{bearn}
$\delta N_{ u}$	0.0025 [37, 66]	2×10^{-1}	^{−4} (3×10 ^{−5})	$ZH \operatorname{run}(\nu\nu\gamma)$	Calo energy scale
Measurer	ment Current [126]	FCC [115]	Tera-Z Prelim. [1	27] C	omments
Lifetime	$[sec]$ $\pm 5 \times 10^{-16}$	$\pm 1\times 10^{-18}$		from 3-prong	decays, stat. limited
$\mathrm{BR}(\tau \rightarrow$	$\ell \nu \bar{\nu}$) $\pm 4 \times 10^{-4}$	$\pm 3 imes 10^{-5}$		$0.1 \times$ the A	LEPH systematics
$m(\tau)$ [M	$ eV \pm 0.12$	$\pm 0.004 \pm 0.1$		$\sigma(p_t)$	ack) limited
$BR(\tau \rightarrow$	$(3\mu) < 2.1 \times 10^{-8}$	$O(10^{-10})$	same	1	okg free
$BR(\tau \rightarrow$	$(3e) < 2.7 \times 10^{-8}$	$O(10^{-10})$		1	okg free
${\rm BR}(\tau^\pm \to$	$e\mu\mu) < 2.7 \times 10^{-8}$	$O(10^{-10})$		1	okg free
$BR(\tau^{\pm} \rightarrow$	$(\mu ee) < 1.8 \times 10^{-8}$	$\mathcal{O}(10^{-10})$		1	okg free
$BR(\tau \rightarrow$	$\mu\gamma) \qquad < 4.4\times 10^{-8}$	$\sim\!2\times10^{-9}$	$O(10^{-10})$	$Z \rightarrow \tau \tau \gamma$ b	kg , $\sigma(p_{\gamma})$ limited
$BR(\tau \rightarrow$	$e\gamma$) < 3.3 × 10 ⁻⁸	$\sim 2\times 10^{-9}$		$Z \to \tau \tau \gamma$ b	okg, $\sigma(p_{\gamma})$ limited
$BR(Z \rightarrow$	$(\tau \mu) < 1.2 \times 10^{-5}$	$O(10^{-9})$	same	$\tau\tau$ bkg, $\sigma(p_{\rm trad}$	k) & $\sigma(E_{\text{beam}})$ limited
$BR(Z \rightarrow$	$(\tau c) < 9.8 \times 10^{-6}$	$\mathcal{O}(10^{-9})$		$\tau \tau$ bkg, $\sigma(p_{\rm trad})$	(k) & $\sigma(E_{\text{beam}})$ limited
$BR(Z \rightarrow$	$(\mu e) < 7.5 \times 10^{-7}$	$10^{-8} - 10^{-10}$	$O(10^{-9})$	PI	D limited
${ m BR}(Z ightarrow \tau)$	r ⁺ π ⁻)		$\mathcal{O}(10^{-10})$	$\sigma(ec{p}_{ ext{track}})$ li	mited, good PID
$BR(Z \rightarrow \pi)$	$(\pi^{+}\pi^{-}\pi^{0})$		$O(10^{-9})$		au au bkg
$BR(Z \rightarrow .)$	$J/\psi\gamma)$ < 1.4 × 10 ⁻⁶		$10^{-9} - 10^{-10}$	$\ell\ell\gamma$	$+\tau\tau\gamma$ bkg
$BR(Z \rightarrow$	$(\rho\gamma) < 2.5 \times 10^{-5}$		$O(10^{-9})$	$\tau \tau \gamma$ bkg,	$\sigma(p_{\mathrm{track}})$ limited

CEPC has significantly better detection sensitivity for dark matter and selected Higgs exotic decays than HL-LHC

Kruger 2022: Discovery Physics at the LHC

Budget for CEPC construction

			H	1	1	K	L	N	N
			insk-Resakdown Structure (WBS) - Accelerator						
Tier I	Tier II	Amount (100 M CNY)	other						
	I ICI II		WBS Element Title	Type	Unit	Number	price (10,000.1	Total Price (10,000 Yuan)	WBS Element Description
			TOTAL (secologital)		· ·			*	
	Callidan	00.2	Asselember Division		-			1041073	
	Connder	99.2	Application of a providing studies					1000	
			Code development				-		
			Computing hardware						N
	Booster	30.2	Computing software		-				
	DOOSICI	39.2	Publication		-				- x cQ
			Collider (Ch 4) Collider ring					991767	
	I take and services	0.1	Superconducting RF System (Ch 4.3.1)					95200	
	Linac and sources	9.1	Cavity	650 MHz 2-cell nicbium	one	24	6 180		. 20
			Cryomodule	2 K, for 6 cevities	one	4	0 200		9 °
			Input coupler	650 MHz, single window, w	a one	24	6 40	- A	
	Damping ring	0.44	HOM coupler	coaxial, detachable	one	40	0 15	- , x OY	
	Damping ring	0.44	HOM absorber	room temperature	one	8	0 40		
Accelerator			Tuner	end lever with piezo	one	24	0 2		
Accolution		10.6	Vacuum, valve, cabias, tooling, assembly, etc.		one	4	• •	16800	
	Common: Cryogenics	10.6			-	<u> </u>	-	Nº	
	common. cryogemes	10.0	DE Davies Causes (Ch. 4, 5, 5)		-			<u> </u>	
			Her Power Edulatio (un 4.3.2)	6500 Blo 8000 UV	0.07		్లల్గ	200	
	Current & allographent	4	Riystron DOLL assures	500001051	607	- A	$\partial \nabla^{-}$	40000	
	Survey & angnment	4	Pictulator and dummy load	BODIAN	OLI	<u> </u>		42000	
			LIDE	000.07		1.00	20	3003	
			Waxequide	RODEW	6	\mathcal{N}	100	12099	
	Radiation protection	17	and and a second s	COOKI	- 0/	3 1		12000	
	Radiation protection	1./			$\alpha \nu$		-		
	-				\mathbf{v}_{-}	1			
C		100		·	y				
Conventional facilities	-	102		- x* `					
Conventional facilities		102	Magnets (Ch 4.3.3)	+ _ <u>a</u> v• _ /				304986	
			Dipoles	- CO2 -				178192	
Detectors		40	Dus aperture dipole		one	2384	69	164496	
Detectors	-	40	Cols (main & trim)		m	28.7	0.1	2.87	
			Lamination		m	28.7	0.6	17.22	5
			Stainless sleel		m	28.7	0.4	11.48	Support and
or ray beam lines		2	Lead	1	m	28.7	0.2	5.74	Radiation
y-ray beam miles	-	5	Other materials		m	28.7	0.1	2.87	Ероку,
			Accessories		\$91	1	0.72	0.72	Water cooling, temperature swith, electric conne
			Toolings		one	1	1.2	1.2	Anding former, casting mould, punching dia, stacking to
Project management (1%)	-	3	Machining & assembly		one	1	15	15	
roject munugement (170)		5	Insponion & tost		one		0.5	0.6	
			Processo a convery		one		1.5	9.0	
C		10	Tev		0000		7	7	
Contingency (15%)	-	46						[
Total		358							
IUlal	-	550							

- Cost estimated with two independent methods
 - agrees at 10% level
 - CEPC design relies on well studied, or mature technology
 - reducing uncertainties on cost estimation
 - cost estimation for TDR phase is in progress

CEPC Financial Model

- Total required funding: 36 Billion RMB (5 Billion CHF at today's exchange rate)
- Funding model: Iteration and interaction with relevant entities, especially Local governments (leading contributors)

Funding Sources	Funding Model #1 (B RMB)	Funding Model #2 (B RMB)
Central Government	25	10
Local Government	5	20
International contributions	6	6
Donations	0-3.5	0-3.5

CEPC Sites

Kruger 2022: Discovery Physics at the LHC

CEPC roadmap

- Engineering Design Report (EDR) Phase: Jan. 2023-Dec. 2025
- EDR document completed for government's approval of starting construction around 2026 (the starting of the "15th five year plan" of China)

CEPC longer roadmap

International Linear Collider ILC

Acknowledgement

Inputs from Benno List et. all

ILC in a nutshell

International Linear Collider ILC

To be built in Japan

- Superconducting Cavities, Nb 1.3GHz, 31.5 (35) MV/m
- Klystrons
- 250GeV CME, upgradeable to 500, 1000 GeV
- $L = 1.35 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ (at initial 250GeV)
- 20km length, in Tohoku / Japan
- Polarisation 80%(e-), 30%(e+)

ILC Baseline, extension and upgrades

Quantity	Symbol	\mathbf{Unit}	Initial	\mathcal{L} Upgrade	Z pole	E / L	Upgrad	Upgrades	
Centre of mass energy	\sqrt{s}	${\rm GeV}$	250	250	91.2	500	250	1000	
Luminosity	${\cal L}$	$10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	1.35	2.7	0.21/0.41	1.8/3.6	5.4	5.1	
Polarization for e^-/e^+	$P_{-}(P_{+})$	%	80(30)	80(30)	80(30)	80(30)	80(30)	80(20)	
Repetition frequency	f_{rep}	$_{\rm Hz}$	5	5	3.7	5	10	4	
Bunches per pulse	n_{bunch}	1	1312	2625	1312/2625	1312/2625	2625	2450	
Bunch population	N_e	10 ¹⁰	2	2	2	2	2	1.74	
Linac bunch interval	Δt_b	\mathbf{ns}	554	366	554/366	554/366	366	366	
Beam current in pulse	I_{pulse}	\mathbf{mA}	5.8	8.8	5.8/8.8	5.8/8.8	8.8	7.6	
Beam pulse duration	t_{pulse}	μs	727	961	727/961	727/961	961	897	
Accelerating gradient	G	MV/m	31.5	31.5	31.5	31.5	31.5	45	
Average beam power	P_{ave}	$\mathbf{M}\mathbf{W}$	5.3	10.5	$1.42/2.84^{*)}$	10.5/21	21	27.2	
RMS bunch length	σ_z^*	$\mathbf{m}\mathbf{m}$	0.3	0.3	0.41	0.3	0.3	0.225	
Norm. hor. emitt. at IP	$\gamma \epsilon_x$	$\mu { m m}$	5	5	5	5	5	5	
Norm. vert. emitt. at IP	$\gamma \epsilon_y$	nm	35	35	35	35	35	30	
RMS hor. beam size at IP	σ^*_x	$\mathbf{n}\mathbf{m}$	516	516	1120	474	516	335	
RMS vert. beam size at IP	σ_y^*	$\mathbf{n}\mathbf{m}$	7.7	7.7	14.6	5.9	7.7	2.7	
Luminosity in top 1 $\%$	$\mathcal{L}_{0.01}/\mathcal{L}$		73~%	73%	99%	58.3%	73%	44.5%	
Beamstrahlung energy loss	δ_{BS}		2.6~%	2.6%	0.16%	4.5%	2.6%	10.5%	
Site AC power	P_{site}	$\mathbf{M}\mathbf{W}$	111	138	94/115	173/215	198	300	
Site length	L_{site}	\mathbf{km}	20.5	20.5	20.5	31	31	40	

- 500GeV (31.5 MV/m Q₀=1 x 10¹⁰)
- 1TeV (45 MV/m Q₀=2 x 10¹⁰, 300 MW) more SCRF, tunnel extension
- Kitakami site: 50km long, sufficient for • 1TeV

Kitakami mountains

ILC Accelerator Design and Challenges

ILC Technology Readiness Level

ILC is a mature design. R&D is going on to mitigate the identified risks

Since the publication of the conceptual design report (RDR) in 2007 and the Technical Design Report (TDR) in 2013, the technical development has been progressing steadily toward the start of construction.

ILC Key technology update

- Broad progress over the last 5 years
 - Maturity of key technologies is high
- Positron source remains biggest challenge
- Priority work packages have been identified for the next 4 years

ILC Site Selection and Civil Engineering

ILC Timeline

2020: ICFA set up International Development Team (IDT) 'towards ... timely realisation of ILC'

- International Development Team (IDT) prepares Pre-Lab
- 4 year Pre-Lab (hosted by KEK, Japan) phase for R&D, Engineering Design Report, Construction preparation, on the premise that Japanese Govt. will express an interest to host ILC
 - Interested countries should continue to work on technical issues
 - Decouple technical progress from 'hosting issue'
- ILC Laboratory (international): 10 year construction phase

	IDT	IL	.C Pi	re-La	b	ILC Lab.										
	PP	P1	P2	P3	P4	1	2	3	4	5	6	7	8	9	10	Phys. Exp.
Preparation CE/Utility, Survey, Design Acc. Industrialization prep.																
Construction																
Civil Eng.																
Building, Utilities																
Acc. Systems																
Installation																
Commissioning																
Physics Exp.																

ILC project status

April 2022: ICFA re-stated support for ILC + extended IDT mandate:

- 'IDT will ... further strengthen collaboration among institutes and labs ... and expand the broad support from various stakeholders'.
- 'ICFA continues to encourage inter-governmental discussions between Japan and potential partner nations ... toward realisation of an ILC'.
- IDT has identified 'time-critical' work packages (~ years 1-2 of Pre-lab) and is exploring collaboration among KEK and international partners should significant additional funds appear at KEK in JFY2023.
- IDT initiating 'International Expert Panel' to develop a model for realising a large global project, such as ILC. Panel members will liaise with respective funding agencies.

https://icfa.hep.net/wp-content/uploads/ICFA_Statement_April2022_Final.pdf

ILC Summary

ILC hosted in Japan is a mature design and is set up as international project

- The main accelerator **technologies** have been **demonstrated** (mass production still a challenge)
- The cost and implementation time are similar to LHC (~7B\$)* as well as the power (110 MW)
- The physics case is broad and profound, and being further developed
- The detector concept and detector technologies R&D are well advanced
- ready for start up ~2038

Future Circular Collider FCC

Acknowledgement

Inputs from Michael Benedikt, David d'Enterria et. all

Future Circular Collider in Europe (FCC)

Comprehensive long-term program maximizing physics opportunities

- Stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at highest luminosities
- Stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options
- Complementary physics
- Common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- FCC integrated project allows seamless continuation of HEP after completion of the HL-LHC program

Kruger 2022: Discovery Physics at the LHC

FCC-ee in a nutshell

• High luminosity precision study of Z, W, H, and $t\bar{t}$

- $2 \times 10^{36} \text{ cm}^{-2} \text{s}^{-1}/\text{IP}$ at Z (or total $\sim 10^{37} \text{ cm}^{-2} \text{s}^{-1}$ with 4 IPs)
- 7×10³⁴ cm⁻²s⁻¹ at ZH, 1.3×10³⁴ cm⁻²s⁻¹ at $t\bar{t}$,
- unprecedented energy resolution at Z (<100 keV) and W (<300 keV)

Low-risk technical solution

- based on 60 years of e⁺e⁻ circular colliders and particle detectors
- R&D on components for improved performance, but no need for "demonstration" facilities
- LEP2, VEPP-4M, PEP-II, KEKB, DAΦNE, or SuperKEKB already used many of the key ingredients in routine operation
- Infrastructure will support a century of physics
 - FCC-ee → FCC-hh → FCC-eh and/or several other options (FCC- $\mu\mu$, Gamma Factory ..)
- Utility requirements similar to CERN existing use
- **Strong support** from CERN, partners, and 2020 ESPPU
- Detailed multi-domain feasibility study underway for 2026 ESPPU

Stage 1: updated parameters

Parameter [4 IPs, 91.2 km,T _{rev} =0.3 ms]	Z	ww	Н (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1280	135	26.7	5.0
number bunches/beam	10000	880	248	36
bunch intensity [10 ¹¹]	2.43	2.91	2.04	2.64
SR energy loss / turn [GeV]	0.0391	0.37	1.869	10.0
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.08/0	4.0/7.25
long. damping time [turns]	1170	216	64.5	18.5
horizontal beta* [m]	0.1	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.64	1.49
vertical geom. emittance [pm]	1.42	4.34	1.29	2.98
horizontal rms IP spot size [µm]	8	21	14	39
vertical rms IP spot size [nm]	34	66	36	69
beam-beam parameter ξ_x / ξ_y	0.004/ .159	0.011/0.111	0.0187/0.129	0.096/0.138
rms bunch length with SR / BS [mm]	4.38 / <mark>14.5</mark>	3.55 / <mark>8.01</mark>	3.34 / <mark>6.0</mark>	2.02 / <mark>2.95</mark>
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	182	19.4	7.3	1.33
total integrated luminosity / year [ab ⁻¹ /yr]	87	9.3	3.5	0.65
beam lifetime rad Bhabha + BS [min]	19	18	6	9

K. Oide, D. Shatilov,

FCC-ee Pre-Injector - Swiss CHART 2 program

N FUTURE CIRCULAI

Collaboration between PSI and CERN with external partners: CNRS-IJCLab (Orsay), INFN-LNF (Frascati), KEK/SuperKEKB as observer, INFN-Ferrara – radiation from crystal

Accelerator R&D examples

Eacc (MV/m)

FPC & HOM coupler, cryomodule, thin-film coatings...

energy **efficient** twin aperture **arc dipoles**

under study: CCT HTS quad's & sext's for arcs

Stage 2: FCC-hh (pp) collider parameters

parameter	FC	FCC-hh HL-LHC		LHC
collision energy cms [TeV]	100		14	14
dipole field [T]	~17 (~16 comb.function)		8.33	8.33
circumference [km]	91.2		26.7	26.7
beam current [A]	0.5		1.1	0.58
bunch intensity [10 ¹¹]	1	1	2.2	1.15
bunch spacing [ns]	25	25	25	25
synchr. rad. power / ring [kW]	2700		7.3	3.6
SR power / length [W/m/ap.]	32.1		0.33	0.17
long. emit. damping time [h]	0.45		12.9	12.9
beta* [m]	1.1	0.3	0.15 (min.)	0.55
normalized emittance [µm]	2.2		2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	5 (lev.)	1
events/bunch crossing	170	1000	132	27
stored energy/beam [GJ]	7.8		0.7	0.36

Preparing for FCC stage 2 (FCC-hh)

FUTURE Circular Collider

In parallel to FCC studies, High Field Magnet development program as long-term separate R&D project

CERN budget for high-field magnets doubled in 2020 Medium-Term Plan (~ 200 MCHF over ten years)

Main R&D activities:

- □ materials: goal is ~16 T for Nb₃Sn, at least ~20 T for HTS inserts
- magnet technology: engineering, mechanical robustness, insulating materials, field quality
- production of models and prototypes: to demonstrate material, design and engineering choices,

industrialisation and costs

infrastructure and test stations: for tests up to ~ 20 T and 20-50 kA

Detailed deliverables and timescale being defined through Accelerator R&D roadmap under development

L. Bottura, F. Gianotti, A. Siemko

New layouts & preliminary assignments of straight sections

FUTURE CIRCULAR Collider

Optimized placement and layout

8-site baseline "PA31"		Sergy 5 PA: Experiment Compare	Collonge-Bellerve Gil Menter Vezim
Number of surface sites	8	Torry Meyrin Contrin Le Petit Sztönev	Vandosuvers Che PB: technical
LSS@IP (PA, PD, PG, PJ)	1400 m	Bart Ham de Gowle B84 DI - technical	Puglinge (mm)7 Vile La Grand Chène-Bougeries
LSS@TECH (PB, PF, PH, PL)	2143 m	Peron LitPlane Crange Crange	Annemase Annemase Came Sales Unger Gallard Erenbere Vetra:
Arc length	9.6 km	Auly Secencie Lully Plan-les-Ouates Laconner Perly Port	Veyrer Moneter Morres Bore Moneter Atthateori- Note-Dame Nang/
Sum of arc lengths	76.9 m	Change Avury Bosey ougny Stregaln Sold Saint-Julien- en-Genevos Calorida Subject Vanamos	PD: experiment
Total length	91.1 km	A 40 In Fegeres	la Muraz Science y
 8 sites – less use of land, <40 ha instead 62 ha Possibility for 4 experiment sites in FCC-ee All sites close to road infrastructures (< 5 km of new 		e variete e variete	spee: La Soge: La Sog
road constructions for all sites)		Minzier Chavannaz Copponex D 15	PF: technical

- Vicinity of several sites to 400 kV grid lines ٠
- Good road connection of PD, PF, PG, PH suggest ٠ operation pole around Annecy/LAPP
- Exchanges with ~40 local communes in preparation

PH: technical

J. Gutleber

PF: technical

PG: experiment

FCC tunnel - geological conditions

Tunneling mainly in moraine layer (soft rock), well suited for fast, low-risk TBM construction. Site investigations campaign planned for 2024 – 2025: ~40-50 drillings, 100 km of seismic lines

John Osborne

Status of Global FCC Collaboration

Increasing international collaboration as a prerequisite for success:

links with science, research & development and high-tech industry will be essential to further advance and prepare the implementation of FCC

Timeline of FCC programme

FCC outlook

Comprehensive R&D program and implementation preparation EU co-financed FCC Innovation Study, the Swiss CHART program, and the CERN High-Field Magnet Programme. **Goal: demonstrate FCC feasibility by 2025/26**

The first stage of FCC could be approved within a few years after the 2027 European Strategy Update Tunnel construction could then start in the early 2030s FCC-ee physics program begin in the second half of the 2040s.

Long term goal: world-leading HEP infrastructure for 21st century to push particlephysics precision and energy frontiers far beyond present limits

Plenty of opportunities for collaborations (incl. DAFNE, EIC, SuperKEKB/Belle II,...) and for **joint innovative developments** with int'l partners !

Summary

Summary

Future colliders are discovery machines

- Precision measurements of Higgs, W/Z and top pave paths to BSM
- Development of future collider projects well underway
 - Key accelerator technologies R&D continues and many are put to prototyping
 - Several R&D detector projects reaching a successful conclusion
 - Detailed studies on the site selection, construction and costs
- Roadmaps indicate first operation of future collider as early as 2036.

Back up

Compact Linear Collider in Europe (CLIC)

Accelerator Structure 12 GHz (L~25 cm)

detector

Compact Linear Collider in Europe (CLIC)

The Compact Linear Collider (CLIC)

- Timeline: at CERN (~2035 Technical Schedule)
- Compact: Novel and unique two-beam accelerating technique with high-gradient room temperature RF cavities (~20'500 cavities at 380 GeV), ~11km in its initial phase
- Expandable: Staged program with collision energies from 380 GeV (Higgs/top) up to 3 TeV (Energy Frontier)
- CDR in 2012. Updated project overview documents in 2018 (Project Implementation Plan).
- Cost: 5.9 BCHF for 380 GeV (stable wrt 2012)
- **Power:** 168 MW at 380 GeV (reduced wrt 2012), some further reductions possible
- Comprehensive Detector and Physics studies

CLIC CE, stages and schedules

Technology Driven Schedule from start of construction shown above.

A preparation phase of \sim 5 years is needed before (estimated resource need for this phase is ~4% of overall project costs)

Benno List: ILC and CLIC as Future Higgs Factories | CEPC Workshop

Muon Collider (CERN)

New technology, to be fully developed

Muon collider based on proton driver

Kruger 2022: Discovery Physics at the LHC

69

Need CDR and technology

development

Long way to go

CLIC Physics Program

> 3 steps: 380 GeV (updated from 350 GeV for ttbar coupling measurement), 1.5 TeV, 3.0 TeV.

Physics

- 380 GeV run : Higgs measurement, top mass scan, top coupling measurement. The precisions of Higgs parameters are 1-5% and can reach 1% or better combining 1.5/3 TeV runs Top mass measurement can reach tens of MeV
- 1.5,3 TeV runs : Higgs self coupling, top-Yukawa coupling, search for BSM new physics. Di-Higgs (Heavy Higgs), ttH SUSY, Z', etc.

Muon Collider Physics Program

- Larger mass of the muon allows a smaller foot print and higher energies compared to e⁺e⁻ counterparts, although suffering from major challenges of finite lifetime and cooling.
- > Physics:
 - Higgs factory at ~125 GeV : line-shape scan of the Higgs boson, simultaneous measurement of the Higgs boson mass, width and muon Yakawa at unprecedented precision.

> High Energy runs up to 100 TeV to probe :

Top Yukawa coupling, Multi-Higgs, possible new physics contributed to Muon g-2

Muon has a structure

Vector boson machine

WIMP dark matter

