Probing the Standard Model with Top Quarks, Jets and Photons in the ATLAS Experiment

Ethan Simpson, on behalf of ATLAS

The Particle Safari: ATLAS Tour

Fauna

Top Quarks

- Most massive species
- Population: 180 million
- Elusive gone quickly!

Photons

- Massless
- Colourless
- Probe of QED

Jets

- Powerful tool
- Constant development of techniques

All important in the HEP ecosystem

FCNCs

- Top-gluon
- Top-Z boson
- Top-photon
- Top-Higgs

Charge Asymmetries

 $t\overline{t}W$ ightarrow

Rare Top Cross-Sections

- Single-top photon ullet
- 4-tops

SM Measurements

- Inclusive photon
- Event isotropies ightarrow

N_{iets} ≥ 2

Top Tools

Consider searches or rare processes with large backgrounds

Data-driven backgrounds

- Scale Factors
- Fake Factors

Binned profile likelihood fits

$$\mathcal{L}(\boldsymbol{n}, \boldsymbol{\theta}^{0} \mid \boldsymbol{\mu}, \boldsymbol{\theta}) = \prod_{i \in \text{ bins}} \mathcal{P}(n_{i} \mid \boldsymbol{\mu} \cdot S_{i}(\boldsymbol{\theta}) + B_{i}(\boldsymbol{\theta}))$$

 $\times \prod_{j \in syst} \mathcal{G} \left(\theta_j^0 \mid \theta_j, \Delta \theta_j \right)$

- Signal Regions + Control Regions
- Systematics as nuisance parameters

Top Flavour-Changing Neutral Currents

FCNCs

- In SM, forbidden at tree-level. Suppressed at higher-orders.
- Top FCNC branching ratios: BR ~ $10^{-12} - 10^{-16}$

 Enhanced by many BSM models: SUSY, composite Higgs, warped extra dimensions.

FCNCs

- In SM, forbidden at tree-level. Suppressed at higher-orders.
- Top FCNC branching ratios: BR ~ $10^{-12} - 10^{-16}$

 Enhanced by many BSM models: SUSY, composite Higgs, warped extra dimensions.

FCNC Methods

- 1. Event Selection
- 2. Define regions
- 3. Background Discrimination
 - Data-Driven methods
 - ML techniques
- 4. Binned likelihood fit
- 5. EFT interpretation

FCNC Methods

- 1. Event Selection
- 2. Define regions
- 3. Background Discrimination
 - Data-Driven methods
 - ML techniques
- 4. Binned likelihood fit
- 5. EFT interpretation

Highlight: $tq\gamma$ Neural Net

• Multi-class NN: 37 inputs, 6 hidden layers

FCNC Results

Data consistent with <u>background only:</u> exclusion of FCNC signal

Coupling	BR limits $[10^{-5}]$			
Coupling	Expected	Observed		
$t \rightarrow u\gamma LH$	$0.88^{+0.37}_{-0.25}$	0.85		
$t \rightarrow u\gamma \mathrm{RH}$	$1.20^{+0.50}_{-0.33}$	1.22		
$t \rightarrow c \gamma LH$	$3.40^{+1.35}_{-0.95}$	4.16		
$t \rightarrow c \gamma \operatorname{RH}$	$3.70^{+1.47}_{-1.03}$	4.46		

Branching ratios for u/c + handedness

FCNC Results

- Gluon, photon and Z-boson: consistent with SM
- Higgs: 2.3σ excess over SM background.
- Higgs result dominated by statistical uncertainties
- ATLAS & CMS results begin to reach precision to exclude NP models.

Charge Asymmetry Measurements with Electroweak Bosons

Charge Asymmetries

In LHC pp \rightarrow t \overline{t} , tops more forward; anti-tops more central.

• qq NLO interference:

Charge Asymmetries

In LHC pp \rightarrow tt X, charge asymmetry altered.

New diagrams change qq/gg fraction.

Aim: Measure A_c for various associated production topologies.

- Consider $tt\gamma$ and ttW topologies.
- Use boson as probe.
- Both results are stat-limited..

- tīγ
- Ac of top quarks.
- Semi-leptonic decay.
- Top reconstruction: kinematic likelihood methods
- S/B through NN
- PL unfolding: Ac at particle-level only.

Ac = 0.006 ± 0.024 (stat) ± 0.018 (syst) fb

• Jet/b-tagging major systematic.

tŦW

- Leptonic charge asymmetry
- Dileptonic decays:
 3 tight leptons.
- BDT classifies same-sign leptons from tops (71%)
- Extract Ac at detector-level

Ac = -0.123 ± 0.136 (stat) ± 0.051 (syst) fb

- Also particle-level unfolding
- Modelling uncertainties

4SR + 4CR, based on jet multiplicities (CRs constrain ttZ, ttH, fake leptons)

Rare Top Cross-Sections

Single Top + Photon

First observation of electroweak topphoton production!

Single Top + Photon

First observation of electroweak topphoton production!

Parton result: $\sigma_{tq\gamma} = 580 \pm 19 \text{ (stat)} \pm 36 \text{ (syst)} \text{ fb}$ $\rightarrow 9.1 \sigma \text{ over SM background.}$

4-Tops

Aim: Measurement of 4-tops production

- No 5**σ** observation
- Sensitive to NP (high-scale)
- Sensitive to top-Higgs Yukawa

4-Tops

Aim: Measurement of 4-tops production

- No 5**σ** observation
- Sensitive to NP (high-scale)
- Sensitive to top-Higgs Yukawa

Final States

- High-multiplicity final states
- tt + jets major background
- <u>1 lepton final state OR</u> <u>2 lepton same-sign</u>

g

2LOS

4-Tops Results

Binned profile likelihood fit using $H_T^{
m all}$

Measurement

$$\sigma_{t\bar{t}t\bar{t}} = 26 \pm 8 \text{ (stat.) } ^{+15}_{-13} \text{ (syst.) fb}$$

SM Prediction

$$\sigma_{t\bar{t}t\bar{t}}^{\rm SM} = 12 \pm 2.4 \,\text{fb}.$$

Modelling systematics dominant.

Aim: Differential measurements of inclusive prompt photon cross-section

- Colourless probes of QCD
- Test of NLO MC generators

Aim: Differential measurements of inclusive prompt photon cross-section

- Colourless probes of QCD
- Test of NLO MC generators

Photon selection

- Apply cut on $E_T^{
 m iso}$
- Photon ID requirements

Data-driven background estimate

- Remove fakes from jets
- 2D sideband method (ABCD method)

Unfolding

- To particle-level
- Bin-by-bin method
- Bayesian unfolding cross-check

• Reach extended significantly (increased statistics).

• NLO description is adequate; NNLO superior.

- Different parameterisation of the PDFs
- None agree spectacularly.

Constrain gluon density in PDF?

Multijet Event Isotropies

How isotropic is an event?

Optimal way to redistribute energy to arrive at isotropic?

How isotropic is an event?

Optimal way to redistribute energy to arrive at isotropic?

Energy-Mover's Distance

The reconfiguration which minimises this particular function

Different isotropic baselines define different observables:

Aim: Proof-of-concept of new eventshape observables

Utility:

- Complemetary event-shape observables
- Expose new area of QCD phase-space
- Comparison between MC generators.

Aim: Proof-of-concept of new eventshape observables

Utility:

- Complemetary event-shape observables
- Expose new area of QCD phase-space
- Comparison between MC generators.

Analysis targets dijet and multijet events

2. Measure

Isotropy observables H_{T2} as a function of global N_{jets}

3. Unfold

to particle-level using <u>Iterative</u> <u>Bayesian Unfolding</u>

- MC agreement best for dijet-like events.
- Worse for isotropic events.
- Observables shown here are not well-described by MC

Conclusions

Conclusions

Precision Top

- Observation rare processes
- Exclusion of forbidden processes.
- Statistics-limited
- Modelling-limited

Precision Photons

- Colourless probe
- Precision differential xsecs

Jet Tools

- Ubiquitous
- New event-shape observables

Thank you for listening

Analyses

- 1. FCNC Top-gluon: <u>https://link.springer.com/article/10.1140/epjc/s10052-022-10182-7</u>
- 2. FCNC Top-photon: <u>https://www.sciencedirect.com/science/article/pii/S0370269322005135?via%3Dihub</u>
- 3. FCNC Top-Higgs: <u>https://arxiv.org/abs/2208.11415</u>
- 4. FCNC Top-Z:
- 5. ttW charge asymmetry: <u>https://cds.cern.ch/record/2827435/files/ATLAS-CONF-2022-</u> 062.pdf?version=1
- 6. ttA charge asymmetry: <u>https://cds.cern.ch/record/2816331/</u>
- 7. Single-top-photon: <u>https://cds.cern.ch/record/2805217</u>
- 8. 4-tops: <u>https://link.springer.com/article/10.1007/JHEP11(2021)118</u>
- 9. Isolated photon: <u>https://link.springer.com/article/10.1007/JHEP10(2019)203</u>
- 10. Event isotropies: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-</u> <u>CONF-2022-056/</u>

Auxiliary Material

FCNC EFT

EFT operators with relaxed flavour assumptions.

Branching ratios translated into upper limits on dim-6 Wilson coefficients...

Observable	Vertex	Coupling	Observed	Expected	
$ C_{uW}^{(13)*} $ and $ C_{uB}^{(13)*} $	tZu	LH	0.15	$0.13^{+0.03}_{-0.02}$	
$ C_{uW}^{(31)} $ and $ C_{uB}^{(31)} $	tZu	RH	0.16	$0.14^{+0.03}_{-0.02}$	
$ C_{uW}^{(23)*} $ and $ C_{uB}^{(23)*} $	tZc	LH	0.22	$0.20^{+0.04}_{-0.03}$	
$ C_{uW}^{(32)} $ and $ C_{uB}^{(32)} $	tZc	RH	0.21	$0.19^{+0.04}_{-0.03}$	

tZu analysis probes handedness of FCNC interaction.

		iminary		Tor				
		iiiiiiaiy		ιομ) E F I S		ary	
	VS = 13 TeV			Nov	vember	2022		
	95% CL			$\Lambda =$	1 TeV			
	$ C_{uw}^{(13)^*} , C_{uB}^{(13)^*} $ [1]							
	$ C_{UW}^{(31)} , C_{UB}^{(31)} $ [1]							
	$ C_{\mu\nu}^{(23)*} , C_{\mu\nu}^{(23)*} $ [1]							
	$ C_{uW}^{(32)} , C_{uB}^{(32)} $ [1]							
	C ^{ut} _{uG} [2]							
	C ^{ct} _{uG} [2]							
	$ C_{uW}^{(13)^{*}} + C_{uB}^{(13)^{*}} $ [3]							
	$ C_{uW}^{(31)} + C_{uB}^{(31)} $ [3]							
	$ C_{uW}^{(23)^{*}} + C_{uB}^{(23)^{*}} $ [3]							
	$ C_{uW}^{(32)}+C_{uB}^{(32)} $ [3]							
	C _{uo} [4]			•••••				
	C _{c\$} [4]							
	[1] FCNC tZq, AT	LAS-CONF	-2021-0)49				
	[2] FCNC top-glu	on, EPJC 8	2 (2022) 334				
	[3] FCNC tqy, arX	(iv:2205.02	537					
	[4] FCNC tqH, ar	Xiv:2208.11	415			.	. .	
							10	
-0	0.0 -0.4 -0.2	0 0.2	0.4	0.6	0.8	I	1.2	1.4
								()

4Tops Backgrounds

tt + jets is a substantial background. Also challenging to model.

Adjust MC based on data:

All corrections derived from data with low number of b-jets

 Flavour rescaling: Factors derived from PL fit

2. Kinematics reweighting:

Considered FCNCs

Gluon

- $qg \longrightarrow t$
- Single-top final state
- Leptonic top decay

Photon

- q → ty
- t → q y
- Final-state photon

Higgs

- pp → tH
- t → q H
- Higgs decay: H $\longrightarrow \tau^+ \tau^-$

Z-boson

- $qg \longrightarrow tZ$
- t → u Z
- Trileptonic final state

Single-Top Photon Production

First observation of electroweak top-photon production!

- Data-driven fake photon estimation (using Z DY)
- Yield of 5% in 0fj and 10% if 1fj

Single-Top Photon Production

Profile likelihood fit applied to NN outputs to extract cross-section

Significance: 9.1 *σ* Parton: 580 + 19 (stat) + 36 (syst) fb Particle: 287 + 8 (stat) + 31 (syst) fb

- Dominant uncertainty is $t\bar{t}\gamma$ production.
- 40% higher excess over SM prediction is consistent with CMS.

ttW Charge Asymmetry

Bold entries indicate uncertainties on freelyfloating background normalisation.

4-Tops Extras

