

Drell-Yan production in thirdgeneration gauge **vector leptoquark** models at **NLO+PS** in QCD

Luc Schnell Kruger 2022: Discovery Physics at the LHC December 7, 2022

Source: <u>HIG-21-001-PAS</u> (CMS)

1. Introduction

1.1 Low-energy anomalies1.2 UV-complete models

- Recently, LHCb published their first measurement of the LFU ratio R(D).
- Combined with earlier measurements:

Source: LHCb talk by G.M. Ciezarek (18.10.2022)

- Recently, LHCb published their first measurement of the LFU ratio R(D).
- Combined with earlier measurements:

Source: LHCb talk by G.M. Ciezarek (18.10.2022)

- Recently, LHCb published their first measurement of the LFU ratio R(D).
- Combined with earlier measurements:

Source: LHCb talk by G.M. Ciezarek (18.10.2022)

• Analyzing this in a model-independent way:

Source: <u>ArXiv:2210.13422</u> (J. Aebischer, G. Isidori, M. Pesut, B.A. Stefanek, F. Wilsch)

 $\mathcal{L}_{b\to c} = -\frac{4G_F}{\sqrt{2}} V_{cb} \left[\left(1 + \mathcal{C}_{LL}^c \right) (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_L) - 2 \mathcal{C}_{LR}^c (\bar{c}_L b_R) (\bar{\tau}_R \nu_L) \right],$

• Analyzing this in a model-independent way:

Source: <u>ArXiv:2210.13422</u> (J. Aebischer, G. Isidori, M. Pesut, B.A. Stefanek, F. Wilsch)

$$\frac{v^2}{2\Lambda_U^2}$$

 \sim **0.03** for TeV-scale NP.

$$\frac{G_F}{\sqrt{2}} V_{cb} \left[\left(1 + \mathcal{C}_{LL}^c \right) (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_L) - 2 \mathcal{C}_{LR}^c (\bar{c}_L b_R) (\bar{\tau}_R \nu_L) \right],$$

• Analyzing this in a **model-independent** way:

Source: ArXiv:2210.13422 (J. Aebischer, G. Isidori, M. Pesut, B.A. Stefanek, F. Wilsch)

 $\frac{v^2}{2\Lambda_U^2}$

 \sim **0.03** for TeV-scale NP.

 $\mathcal{L}_{b\to c} = -\frac{4G_F}{\sqrt{2}} V_{cb} \left[\left(1 + \mathcal{C}_{LL}^c \right) (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_L) - 2 \mathcal{C}_{LR}^c (\bar{c}_L b_R) (\bar{\tau}_R \nu_L) \right],$

A large (leading-order) contribution to quarklepton vector operators is needed.

• Analyzing this in a model-independent way:

 $\frac{v^2}{2\Lambda_U^2}$

 \sim **0.03** for TeV-scale NP.

 $\mathcal{L}_{b\to c} = -\frac{4G_F}{\sqrt{2}} V_{cb} \left[\left(1 + \mathcal{C}_{LL}^c \right) (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_L) - 2 \mathcal{C}_{LR}^c (\bar{c}_L b_R) (\bar{\tau}_R \nu_L) \right],$

A large (leading-order) contribution to quarklepton vector operators is needed.

 $\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \bar{Q}^{i,a} \gamma_\mu L^j + \beta_R^{ij} \bar{d}^{i,a} \gamma_\mu e^j \right] U^{\mu,a} + \text{h.c.}$

This can be provided by the $U_1 \sim (3,1,2/3)$ vector leptoquark.

• Analyzing this in a model-independent way:

 \sim **0.03** for TeV-scale NP.

 $\mathcal{L}_{b\to c} = -\frac{4G_F}{\sqrt{2}} V_{cb} \left[\left(1 + \mathcal{C}_{LL}^c \right) (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_L) - 2 \mathcal{C}_{LR}^c (\bar{c}_L b_R) (\bar{\tau}_R \nu_L) \right],$

A large (leading-order) contribution to quarklepton vector operators is needed.

This can be provided by the $U_1 \sim (3, 1, 2/3)$ vector leptoquark.

• Analyzing this in a model-independent way:

 v^2 $\overline{2\Lambda_{U}^{2}}$

 \sim **0.03** for TeV-scale NP.

 $\mathcal{L}_{b\to c} = -\frac{4G_F}{\sqrt{2}} V_{cb} \left[\left(1 + \mathcal{C}_{LL}^c \right) (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_L) - 2 \mathcal{C}_{LR}^c (\bar{c}_L b_R) (\bar{\tau}_R \nu_L) \right],$

vector leptoquark.

A large (leading-order) contribution to quarklepton vector operators is needed.

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \bar{Q}^{i,a} \gamma_\mu L^j + \beta_R^{ij} \bar{d}^{i,a} \gamma_\mu e^j \right] U^{\mu,a} + \text{h.c}$$

This can be provided by the $\mathbf{U}_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$

• Analyzing this in a model-independent way:

$$\frac{v^2}{2\Lambda_U^2}$$

 \sim **0.03** for TeV-scale NP.

 $\mathcal{L}_{b\to c} = -\frac{4G_F}{\sqrt{2}} V_{cb} \left[\left(1 + \mathcal{C}_{LL}^c \right) (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_L) - 2\mathcal{C}_{LR}^c (\bar{c}_L b_R) (\bar{\tau}_R \nu_L) \right],$

A large (leading-order) contribution to quarklepton vector operators is needed.

This can be provided by the $U_1 \sim (3,1,2/3)$ vector leptoquark.

- Recently, LHCb published their first measurement of the LFU ratio R(D).
- Combined with earlier measurements:

Source: LHCb talk by G.M. Ciezarek (18.10.2022)

- Recently, LHCb published their first measurement of the LFU ratio R(D).
- Combined with earlier measurements:

Source: LHCb talk by G.M. Ciezarek (18.10.2022)

- Recently, LHCb published their first measurement of the LFU ratio R(D).
- Combined with earlier measurements:

Source: LHCb talk by G.M. Ciezarek (18.10.2022)

- Recently, LHCb published their first measurement of the LFU ratio R(D).
- Combined with earlier measurements:

• **U**₁ VLQ: $\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \bar{Q}^{i,a} \gamma_\mu L^j + \beta_R^{ij} \bar{d}^{i,a} \gamma_\mu e^j \right] U^{\mu,a} + \text{h.c.}$

• U_1 VLQ:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] U^{\mu,a}$$

Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• U_1 VLQ:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \gamma_\mu L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \gamma_\mu e^j \right] U^{\mu,a}$$

• Gauge models:

 $G_{\rm NP} \supset G_{\rm SM}$

• First idea: Pati-Salam-type model

• U_1 VLQ:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] U^{\mu,a}$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• First idea: Pati-Salam-type model

• U_1 VLQ:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] U^{\mu,a}$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• First idea: Pati-Salam-type model

 $G_{\rm NP}^{\rm min} = SU(4) \times SU(2)_L \times U(1)_{T_R^3} ,$

SU(4) generators:

• U_1 VLQ:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] U^{\mu,a}$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• First idea: Pati-Salam-type model

• U_1 VLQ:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] U^{\mu,a}$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

First idea: Pati-Salam-type model

• U_1 VLQ:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] U^{\mu,a}$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• First idea: Pati-Salam-type model

• U_1 VLQ:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] U^{\mu,a}$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• First idea: Pati-Salam-type model

 $G_{\rm NP}^{\rm min} = SU(4) \times SU(2)_L \times U(1)_{T_R^3} ,$

• U_1 VLQ:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \,\gamma_\mu \,L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \,\gamma_\mu \,e^j \right] U^{\mu,a}$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

First idea: Pati-Salam-type model

 $G_{\rm NP}^{\rm min} = SU(4) \times SU(2)_L \times U(1)_{T_R^3} ,$

• U_1 VLQ:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \gamma_\mu L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \gamma_\mu e^j \right] U^{\mu,a}$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

First idea: Pati-Salam-type model

$$G_{\rm NP}^{\rm min} = SU(4) \times SU(2)_L \times U(1)_{T_R^3} ,$$

$$\psi_L^{\rm SM} = \left($$

Improved: 4321 model

 $(G_{\rm NP}^{\rm min})' = SU(4) \times SU(3)' \times SU(2)_L \times U(1)_{T_R^3},$

• U_1 VLQ:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \gamma_\mu L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \gamma_\mu e^j \right] U^{\mu,a}$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

First idea: Pati-Salam-type model

$$G_{\rm NP}^{\rm min} = SU(4) \times SU(2)_L \times U(1)_{T_R^3} ,$$

$$\psi_L^{\rm SM} = \left($$

 \mathbf{U}_1

+ h.c.

 q_L^β

 ℓ_L

Improved: 4321 model

 $(G_{\rm NP}^{\rm min})' = SU(4) \times SU(3)' \times SU(2)_L \times U(1)_{T_R^3},$

SU(3)' generators:

$$T^{1} = \frac{1}{2} \begin{pmatrix} 0 \ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \\ 0 \ 0 \ 0 \\ 0 \ 0 \end{pmatrix}$$

• U_1 VLQ:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \gamma_\mu L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \gamma_\mu e^j \right] U^{\mu,a}$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

First idea: Pati-Salam-type model

$$G_{\rm NP}^{\rm min} = SU(4) \times SU(2)_L \times U(1)_{T_R^3} ,$$

$$\psi_L^{\rm SM} = \left($$

Improved: 4321 model

 $(G_{\rm NP}^{\rm min})' = SU(4) \times SU(3)' \times SU(2)_L \times U(1)_{T_R^3},$

• U_1 VLQ:

$$\frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \,\bar{Q}^{\,i,a} \gamma_\mu L^j + \beta_R^{ij} \,\bar{d}^{\,i,a} \gamma_\mu e^j \right] U^{\mu,a}$$

• Gauge models:

$$G_{\rm NP} \supset G_{\rm SM}$$

• First idea: Pati-Salam-type model

$$G_{\rm NP}^{\rm min} = SU(4) \times SU(2)_L \times U(1)_{T_R^3} ,$$

$$\psi_L^{\rm SM} = \left($$

• Improved: 4321 model

 $(G_{\rm NP}^{\rm min})' = SU(4) \times SU(3)' \times SU(2)_L \times U(1)_{T_R^3},$

2. Constraints from the LHC

- 2.1 Channels
- 2.2 Drell-Yan production
- 2.3 Single-resonant production

7

2.1 Channels

έ.	4
7	R
2	3
	Ý
1	2
1	Y
5	P
7	Ľ
i	Ş
é	I,
1.	4
8	Л
1	1
ð.	2
Â	
Š.	P
1	R
4	F
4	F
1	1
1	
Ε.	5
J.	4
1	
4	Ņ
1	ł
1	R
1	ľ
X	R
Ň.	6
P	ľ
8	R
9	1
Š.	9
2	
1	Ĩ.
X	1
4	S
N	k
ş	Ŗ
	_

A second a second and the second and the

2.1 Channels

έ.	4
7	R
2	3
	Ý
1	2
1	Y
5	P
7	Ľ
i	Ş
é	I,
1.	4
8	Л
1	1
ð.	2
Â	
Š.	P
1	R
4	F
4	F
1	1
1	
Ε.	5
J.	4
4	Ņ
1	ł
1	R
1	ľ
X	R
Ň.	6
P	ľ
8	R
9	1
Š.	9
2	
1	Ĩ.
X	1
4	S
N	k
ş	Ŗ
	_

A second a second and the second and the

$\begin{array}{c} \mathbf{G} \\ $
Single production

$\begin{array}{c} \mathbf{G} \\ $
Single production

$\begin{array}{c} \mathbf{G} \\ $
Single production

2. Constraints from the LHC 2.2 Drell-Yan production: Overview

2. Constraints from the LHC 2.2 Drell-Yan production: Overview

- A pillar of the research programme at LHC.

• Drell-Yan: clean and well-reconstructable experimental signature with excellent detection efficiency.

Source: <u>ArXiv:2002.12223</u> (ATLAS)

constructable experimental signature with excellent detection efficiency.

2. Constraints from the LHC 2.2 Drell-Yan production: Going beyond the LQ LO

2. Constraints from the LHC 2.2 Drell-Yan production: Going beyond the LQ LO

LQ

2. Constraints from the LHC 2.2 Drell-Yan production: Going beyond the LQ LO

2.2 Drell-Yan production: POWHEG-BOX implementation

Input parameters

powheg.input PhysPars.h init_couplings.f Flavour structure and phase space Born_phsp.f init_processes.f

Matrix elements

Born.f real.f virtual.f

Input parameters

powheg.input PhysPars.h init_couplings.f Flavour structure and phase space Born_phsp.f init_processes.f

Matrix elements

Born.f real.f virtual.f

Input parameters

powheg.input PhysPars.h init_couplings.f

Flavour structure and phase space Born_phsp.f init_processes.f

Input parameters:

g4	0	(Real) Overall coupling-strength of the $SU(4)$ gauge group. This sets the overall coupling strength of U to fermions.
betaL3x3	1	(Real) Relative strength of U to left-handed fermions of the third generation ($t_L u_{ au}$ and $b_L au_L$).
betaR3x3	1	(Real) Relative strength of U to right-handed fermions of the third generation ($b_R au_R$).
MU1	10000	(Real) Mass (in GeV) of U .
MGp	10000	(Real) Mass (in GeV) of the coloron $G^\prime.$

and the second second

Matrix elements

Born.f real.f virtual.f

Input parameters

powheg.input PhysPars.h init_couplings.f

Flavour structure and phase space Born_phsp.f init_processes.f

Input parameters:

g4	0	(Real) Overall coupling-strength of the $SU(4)$ gauge group. This sets the overall coupling strength of U to fermions.
betaL3x3	1	(Real) Relative strength of U to left-handed fermions of the third generation ($t_L u_{ au}$ and $b_L au_L$).
betaR3x3	1	(Real) Relative strength of U to right-handed fermions of the third generation ($b_R au_R$).
MU1	10000	(Real) Mass (in GeV) of U .
MGp	10000	(Real) Mass (in GeV) of the coloron $G^\prime.$

Matrix elements

Born.f real.f virtual.f

Input parameters

powheg.input PhysPars.h init_couplings.f Flavour structure and phase space Born_phsp.f init_processes.f

Matrix elements

Born.f real.f virtual.f

Input parameters

powheg.input PhysPars.h init_couplings.f

Kinematics the same as in the SM:

- We focussed on $pp \to \tau^+ \tau^- + X$.
- There are ideas to extend this to $pp \to \tau \nu_\tau + X.$

Flavour structure and phase space

Born_phsp.f init_processes.f

Matrix elements

Born.f real.f virtual.f

Input parameters

powheg.input PhysPars.h init_couplings.f Flavour structure and phase space Born_phsp.f init_processes.f

Matrix elements

Born.f real.f virtual.f

Input parameters

powheg.input PhysPars.h init_couplings.f

- Calculation with **PackageX**, cross-checked with **FormCalc**, numerical evaluation with **LoopTools**. \bullet
- \bullet regularisation.

Flavour structure and phase space

init_processes.f

Matrix elements

Born.f real.f virtual.f

UV divergences cancel between the G and G' contributions, IR divergences handled with **dimensional**

2.2 Drell-Yan production: POWHEG-BOX implementation

2.2 Drell-Yan production: POWHEG-BOX implementation

c LS: We express the virtual S = 2d0 * dotp(p(0 T = -2d0 * dotp(p(U = -2d0 * dotp(p(corrections belo 2:3,1),p(0:3,2)) 0:3,3),p(0:3,1)) 0:3,2),p(0:3,3))
c LS: Ratio between the colo x = ph_MGp**2/ph_M	oron and U1 mass s U1**2
c ====================================	
c Factorizeable virtual corr	rections
c	
с	
c LS: These include the one-	particle reducibl
c diagrams. The other co	ontributions
c (box diagrams) are imp	lemented below.
c ====================================	
c LS: b-quark field strength	renormalization
c LS: This agrees with the r c UH 15/9/22: Checked!	esult in ArXiv:20
deltaZb = 4/3*(Log #- Log(dcmplx(x)) - 0.5	(dcmplx(st_muren2 d0)

<pre>c LS: We express the virtual corrections below S = 2d0 * dotp(p(0:3,1),p(0:3,2)) T = -2d0 * dotp(p(0:3,3),p(0:3,1)) U = -2d0 * dotp(p(0:3,2),p(0:3,3))</pre>
c LS: Ratio between the coloron and U1 mass so x = ph_MGp**2/ph_MU1**2
C ====================================
c Factorizeable virtual corrections
C
С
c LS: These include the one-particle reducible
c diagrams. The other contributions
c (box diagrams) are implemented below.
C ====================================
r
c IS: h-quark field strength renormalization
c LS. This parage with the result in ArViv.200
L LS: THIS agrees with the result in ALXIV:200
C UH 15/9/22: Checked!
deltaZb = 4/3*(Log(dcmplx(st_muren2, #- Log(dcmplx(x)) - 0.5d0)

- Our U_1 code is available on GitLab (https://gitlab.com/lucschnell/Drell-Yan-LQ-NLO) and soon on the **POWHEG-BOX website**.

<pre>c LS: We express the virtual corrections below S = 2d0 * dotp(p(0:3,1),p(0:3,2)) T = -2d0 * dotp(p(0:3,3),p(0:3,1)) U = -2d0 * dotp(p(0:3,2),p(0:3,3))</pre>
c LS: Ratio between the coloron and U1 mass so x = ph_MGp**2/ph_MU1**2
C ====================================
c Factorizeable virtual corrections
c
с
c LS: These include the one-particle reducible
c diagrams. The other contributions
c (box diagrams) are implemented below.
C ====================================
c
c IS: b-quark field strength renormalization
c
c IS: This agrees with the result in ArXiv:200
c UH 15/9/22: Checked!
deltaZb = 4/3*(Log(dcmplx(st_muren2, #- Log(dcmplx(x)) - 0.5d0)

- Our U_1 code is available on GitLab (https://gitlab.com/lucschnell/Drell-Yan-LQ-NLO) and soon on the **POWHEG-BOX website**.
- It can be used to generate events (.lhe and .hepmc) for dedicated MC studies.

- Our U_1 code is available on GitLab (https://gitlab.com/lucschnell/Drell-Yan-LQ-NLO) and soon on the **POWHEG-BOX website**.
- It can be used to generate events (.lhe and .hepmc) for dedicated MC studies. \bullet
- **BOX** website, too.

• We have also implemented the contributions from SLQs, this is available on GitLab and the POWHEG-

2. Constraints from the LHC 2.2 Drell-Yan production: Phenomenology

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

2. Constraints from the LHC 2.2 Drell-Yan production: Phenomenology

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

2. Constraints from the LHC 2.2 Drell-Yan production: Phenomenology

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

17

b-tag/b-veto:

 Full NLO+PS analysis, LHC cuts modelled in MadAnalysis5 (normal + expert mode).

17

b-tag/b-veto:

 Full NLO+PS analysis, LHC cuts modelled in MadAnalysis5 (normal + expert mode).

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

17

b-tag/b-veto:

 Full NLO+PS analysis, LHC cuts modelled in MadAnalysis5 (normal + expert mode).

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

2.2 Drell-Yan production: Prelimina

Exclusion limits:

ATLAS 2020

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

2.2 Drell-Yan production: Phenor

Exclusion limits:

ATLAS 2020

Obs. / Bkg.

Source: EXO-19-016-PAS (CMS)

2.2 Drell-Yan production: Phenor

Exclusion limits:

ATLAS 2020

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

2.2 Drell-Yan production: Phenor

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

2. Constraints from the LHC 2.2 Drell-Yan production: Phenomenology

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

CMS 2022

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

Low-energy fit:

Low-energy fit:

Source: <u>ArXiv:2210.13422</u> (J. Aebischer, G. Isidori, M. Pesut, B.A. Stefanek, F. Wilsch)

High-energy constraints:

Low-energy fit:

Source: <u>ArXiv:2210.13422</u> (J. Aebischer, G. Isidori, M. Pesut, B.A. Stefanek, F. Wilsch)

High-energy constraints:

Low-energy fit:

Source: <u>ArXiv:2210.13422</u> (J. Aebischer, G. Isidori, M. Pesut, B.A. Stefanek, F. Wilsch)

High-energy constraints:

- The U_1 vector leptoquark can explain both the charged-current and neutral-current anomalies in a minimal setup.
 - I showed the current situation for the LFU ratios R(D), R(D*).

- anomalies in a minimal setup.
 - I showed the current situation for the LFU ratios **R(D)**, **R(D*)**.
- The U_1 can be embedded into a UV-complete gauge model, which however entails more structure, specifically a Z' and a G'.
 - LFUV couplings mainly to the third fermion generation.
 - Leptons and quarks are **unified** into SU(4) quadruplets.

• The U_1 vector leptoquark can explain both the charged-current and neutral-current

- anomalies in a minimal setup.
 - I showed the current situation for the LFU ratios **R(D)**, **R(D*)**.
- The U_1 can be embedded into a UV-complete gauge model, which however entails more structure, specifically a Z' and a G'.
 - LFUV couplings mainly to the **third fermion generation**.
 - Leptons and quarks are **unified** into SU(4) quadruplets.
- We implemented the U₁ effects in $pp \rightarrow \tau^- \tau^+$ at NLO QCD in POWHEG-BOX-V2. - High-luminosity LHC will be able to probe the relevant parameter space.

• The U_1 vector leptoquark can explain both the charged-current and neutral-current

Thank you for your attention!

