
Drell-Yan production in third-
generation gauge vector leptoquark 
models at NLO+PS in QCD

Luc Schnell 
Kruger 2022: Discovery Physics at the LHC

December 7, 2022


8. Results 25

210 310
 (GeV)tot

Tm

0.5

1

1.5

2

O
bs

./E
xp

.

 Bkg.ττ tt

QCD multijet Others

Observed Bkg. unc.

 = 1.2 TeV)
φ

(m
 @ 3.1 fbφgg

 = 1.2 TeV)
φ

(m
 @ 1.0 fbφbb

 = 1 TeV)
U

(m
 = 1.2

U
VLQ, g

Observed Bkg. unc. φgg φbb VLQ

3−10

1−10

10
210

5000

10000

< 
Ev

en
ts

 / 
G

eV
 > CMS

Preliminary

 (13 TeV)-1138 fb
ζ

, No b-tag, Medium-Dµe

210 310
 (GeV)tot

Tm

1

2

O
bs

./E
xp

.

 Bkg.ττ tt

QCD multijet Others

Observed Bkg. unc.

 = 1.2 TeV)
φ

(m
 @ 3.1 fbφgg

 = 1.2 TeV)
φ

(m
 @ 1.0 fbφbb

 = 1 TeV)
U

(m
 = 1.2

U
VLQ, g

Observed Bkg. unc. φgg φbb VLQ

4−10

3−10

2−10

1−10
1

500

1000

1500

< 
Ev

en
ts

 / 
G

eV
 > CMS

Preliminary

 (13 TeV)-1138 fb
ζ

, b-tag, Medium-Dµe

210 310
 (GeV)tot

Tm

1

1.5

2

O
bs

./E
xp

.

 Bkg.ττ hτ→Jet

tt Others

Observed Bkg. unc.

 = 1.2 TeV)
φ

(m
 @ 3.1 fbφgg

 = 1.2 TeV)
φ

(m
 @ 1.0 fbφbb

 = 1 TeV)
U

(m
 = 1.2

U
VLQ, g

φgg φbb VLQ

Observed Bkg. unc.

3−10

1−10

10
210

10000

20000

30000

< 
Ev

en
ts

 / 
G

eV
 > CMS

Preliminary

 (13 TeV)-1138 fbT
, No b-tag Tight-mhτ+e

h
τµ

210 310
 (GeV)tot

Tm

1

2

O
bs

./E
xp

.

 Bkg.ττ hτ→Jet

tt Others

Observed Bkg. unc.

 = 1.2 TeV)
φ

(m
 @ 3.1 fbφgg

 = 1.2 TeV)
φ

(m
 @ 1.0 fbφbb

 = 1 TeV)
U

(m
 = 1.2

U
VLQ, g

φgg φbb VLQ

Observed Bkg. unc.

4−10

3−10

2−10

1−10
1

500

1000

1500

< 
Ev

en
ts

 / 
G

eV
 > CMS

Preliminary

 (13 TeV)-1138 fbT
, b-tag Tight-mhτ+e

h
τµ

210 310
 (GeV)tot

Tm

1

2

O
bs

./E
xp

.

 Bkg.ττ hτ→Jet

tt Others

Observed Bkg. unc.

 = 1.2 TeV)
φ

(m
 @ 3.1 fbφgg

 = 1.2 TeV)
φ

(m
 @ 1.0 fbφbb

 = 1 TeV)
U

(m
 = 1.2

U
VLQ, g

φgg φbb VLQ

Observed Bkg. unc.

3−10

1−10

10
210

2000

4000

6000

8000

< 
Ev

en
ts

 / 
G

eV
 > CMS

Preliminary

 (13 TeV)-1138 fb, No b-taghτhτ

210 310
 (GeV)tot

Tm

1

2

O
bs

./E
xp

.

 Bkg.ττ hτ→Jet

tt Others

Observed Bkg. unc.

 = 1.2 TeV)
φ

(m
 @ 3.1 fbφgg

 = 1.2 TeV)
φ

(m
 @ 1.0 fbφbb

 = 1 TeV)
U

(m
 = 1.2

U
VLQ, g

φgg φbb VLQ

Observed Bkg. unc.

4−10

3−10

2−10

1−10
1

100

200

300

< 
Ev

en
ts

 / 
G

eV
 > CMS

Preliminary

 (13 TeV)-1138 fb, b-taghτhτ

Figure 7: Distributions of mtot
T in the global (left) no b-tag and (right) b-tag categories in the

(upper row) eµ, (middle row) eth and µth, and (lower row) thth final states, for the most
signal sensitive categories. For the eµ final state, the Medium-Dz category is displayed, for
the eth and µth final states the Tight-mT categories are shown. The black horizontal line in
the upper panel of each subfigure indicates the change from logarithmic to linear scale on the
vertical axis. The distributions are shown for all data-taking years combined.

Source: HIG-21-001-PAS (CMS)

CMS 2021

U1Figure 7. Comparison of the 95% CL constraints on the MU –g4 plane that arise from the latest
LHC Run II hadronic ditau analysis [54]. The red (green) exclusion corresponds to the no b -tag (b -
tag) category of the latter search, while the hatched grey parameter space is excluded by strong
pair production of third-generation LQs [113]. Consult the main text for additional explanations.

long as MG0 = O(MU ). One finally sees that the considered SM-LQ LO interference ef-
fects amount to a few permille in the case of the no b -tag category, while they can exceed
the level of 5% if one requires the presence of a b -tag in the events. In contrast to what
has been suggested in the recent work [54], interference effects therefore play only a minor
role in the SRs that are relevant for non-resonant DY searches for third-generation singlet
vector LQs at the LHC.

Based on the ditau search strategies detailed above, we now derive NLO+PS accurate
95% confidence level (CL) limits on the MU –g4 plane. Since we have seen that the choice
of coloron mass has only a minor impact on the m

tot
T spectrum, we employ MG0 = MU

for simplicity when determining the exclusion bounds. Figure 7 shows our 95% CL limits
on the MU –g4 parameter space that follow from the two b -jet categories considered in the
CMS search [54] for two hadronic tau leptons. The red and green exclusion corresponds
to the no b -tag and the b -tag category of this analysis, respectively, while the parameter
space excluded by strong pair production of third-generation LQs [53] is indicated by the
hatched grey vertical band. This search excludes MU < 1650GeV at 95% CL. The signifi-
cance of the individual b -jet categories of the search [54] is calculated as a ratio of Poisson
likelihoods modified to incorporate systematic uncertainties on the background as Gaus-
sian constraints [114]. Our statistical analysis includes the six (three) highest m

tot
T bins in

the case of the no b -tag (b -tag) category. One first observes that the bound on g4 that
follows from the search with a b -tag is more stringent than the one that derives from a
strategy that requires no b -jet. We add that the difference between the no b -tag and b -tag
constraints is rather pronounced in the case of the CMS analysis [54], because this search
observes a resonant-like excess with a significance of around 3� at m

tot
T ' 1.2TeV in the
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3 Observables

In the following, we discuss the most relevant observables allowing to test and con-
strain our model. For the low-energy precision and flavour observables we match the
full LQ theory onto the weak effective theory (WET) whose Lagrangian is generically
written as

Leff =
X

i

CiOi . (3.1)

We refer to the manual of flavio [179], a package that we employ in our phenomeno-
logical analysis, for a precise definition of the operators.

3.1 R
D(⇤) anomalies

We consider the ratios

R
D(⇤) =

Br(B ! D
(⇤)

⌧ ⌫̄)

Br(B ! D(⇤)`⌫̄)

����
`2{e,µ}

, (3.2)

whose current experimental averages read

R
exp

D
= 0.346(31) [18, 22, 180] and R

exp

D⇤ = 0.296(16) [18, 22, 180, 181] .
(3.3)

These values are compared to our theoretical predictions whose SM component is
provided by flavio [173, 182–185],

R
SM

D
= 0.297(8) and R

SM

D⇤ = 0.245(8) , (3.4)

although more accurate predictions have been calculated in the meantime [33, 186–
188]. At low energy, the new physics contributions are described by the WET oper-
ators

(OSL)
bc⌧⌫⌧

= �
4GF
p

2
V

CKM
23 (c̄PLb) (⌧̄PL⌫⌧ ) ,

(OT )
bc⌧⌫⌧

= �
4GF
p

2
V

CKM
23 (c̄�µ⌫

PLb) (⌧̄�µ⌫PL⌫⌧ ) ,

(3.5)

where PL and PR (for further reference) are the usual chirality projectors and GF

is the Fermi constant. The corresponding Wilson coefficients are evaluated at the
matching scale,

(CSL)LQ

bc⌧⌫⌧
= 4 (CT )LQ

bc⌧⌫⌧
= �

p
2

4GF V
CKM
23

✓
Y

RL

2⌧ Y
LR⇤
3⌧

2M2
⌧

◆
. (3.6)

While WET renormalisation group (RG) running is accounted for by flavio, we
additionally multiply the predictions by appropriate correction factors to account for
RG running from M⌧ to the electroweak scale MW in the SM Effective Field Theory

– 5 –
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G. Isidori, M. Pesut, B.A. Stefanek, F. Wilsch)
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FIG. 1. Determination of Cc
LL and Cc

LR from a �2-fit to low-
energy observables. The Wilson coe�cients, assumed to be
real, are renormalized at the reference scale ⇤UV = 1 TeV.
The blue ellipses denote the 1, 2, and 3� contours fitting only
b ! c observables. The black dot indicates the best fit point
of (0.05,�0.02). The dotted lines are obtained including also
B
�
B�

u ! ⌧ ⌫̄
�
in the limit of up alignment. The ��2 = 1

regions preferred by each observable are also indicated, except
in the case of R⇤b where we give the 90% CL region (due to
the large error).

⇤UV = 1 TeV, which is the most appropriate scale
to compare low- and high-energy observables. Taking
into account only the QCD-induced running, we set
C
c

LL
(mb) = C

c

LL
(⇤UV) and

C
c

LR
(mb) = ⌘S C

c

LR
(⇤UV) , ⌘S ⇡ 1.6 . (35)

The first point to notice is that the SM point (Cc

LL
=

C
c

LR
= 0) is excluded at the 3� level. The b ! c observ-

ables favor a region compatible with both a pure left-
handed interaction (Cc

LR
= 0) as well as the case with

equal magnitude right-handed currents Cc

LL
= �C

c

LR
. In

both cases, the pull of the U1 LQ hypothesis with re-
spect to the SM is ��2 = �2

SM � �2
NP ⇡ 11, which

is at the 3� level. As first pointed out in [10], the
case where C

c

LL
= �C

c

LR
is a natural benchmark for a

flavor non-universal gauge model, where both left- and
right-handed third-family quarks and leptons are uni-
fied in fundamental representations of SU(4). As indi-
cated by the dashed blue lines, the preferred region is
essentially unchanged if B(B�

! ⌧ ⌫̄) is added under
the hypothesis of non-minimal U(2)Q breaking and up-
alignment. In either case, we find a best fit point of
C
c

LL
= 0.05 and C

c

LR
= �0.02. On the other hand, the

inclusion of B(B�
! ⌧ ⌫̄) under the hypothesis of mini-

mal U(2)Q breaking (dark green band) disfavors sizable
right-handed currents.

Loop-induced contribution to b ! s`¯̀

This analysis is focused on the leading couplings of the
U1 field to third-generation leptons. Hence, we do not
discuss b ! s`` transitions (` = e, µ) in detail here. How-
ever, we recall that the operator O

sb⌧⌧

LL
mixes via QED

running [57] into operators with light leptons (⌧ ⌧̄ ! `¯̀

loop). This results into a lepton-universal contribution
to the b ! s`¯̀Wilson coe�cient C9 [58], defined accord-
ing to standard conventions (see e.g. [59, 60]). We will
estimate the size of this e↵ect using the results of the fit
in Fig. 1.
To this purpose, we note that besides the leading-log

running from the high-energy matching scale (i.e. MU )
down to mb, we should also include long distance (LD)
contributions resulting from the one-loop matrix element
of the semi-leptonic operator Osb⌧⌧

LL
[61]. Such contribu-

tions are analogous to the LD contributions from charm
penguins where the only di↵erence is that the charm is
replaced by a tau lepton. This can be taken into account
defining a q2-dependent Ce↵

9 (q2), where q2 = m2
``
. Con-

sidering also this e↵ect, we find the following expression
for the correction to Ce↵

9 induced by the U1:

�Ce↵
9 (q2 = 0) =

Csb⌧⌧

LL

V ⇤
ts
Vtb

2

3


log

✓
M2

U

m2
⌧

◆
� 1

�
,

= �
C
c

LL

1 + |Vts|/✏q

2

3


log

✓
M2

U

m2
⌧

◆
� 1

�
. (36)

The last expression follows from the relation between
Csb⌧⌧

LL
and C

c

LL
, which can be deduced from Sect. II A.

For C
c

LL
= 0.05 (best fit point in Fig. 1), MU = 3 TeV,

and ✏q = 2|Vts|, we get �Ce↵
9 (0) ⇡ �0.3. While not

solving all b ! s`¯̀ anomalies, such a correction leads to
a significant improvement in the description of b ! s`¯̀

data [16, 59, 60].

B. High-energy

Collider observables are known to provide rich informa-
tion on the parameter space of vector leptoquark mod-
els [31, 38, 44] explaining the B-meson anomalies, that is
complementary to low-energy data [16, 62]. A variety of
di↵erent underlying processes can be relevant at hadron
colliders such as the LHC. The most important channels
involving the U1 leptoquark are:

• Pair production pp ! U⇤
1U1,

• Quark-gluon scattering qg ! U1`,

• Quark-lepton fusion q` ! U1,

• Drell-Yan pp ! `¯̀.

The main decay channels in models where the leptoquark
predominantly couples to third generation fermions are
U1 ! b⌧+ and U1 ! t⌫̄⌧ . In the case of interest where

• Analyzing this in a model-independent way:

4

In the phenomenological limit su = 0 and Vd = 0, the
light-quark fields in the interaction basis can be identified
as

✓
q1
L

q2
L

◆
=

✓
Vud Vus

Vcd Vcs

◆✓
dL
sL

◆
⇡

✓
uL

cL

◆
, (21)

while q3
L
⌘ bL. The �i⌧

L
become approximately diagonal

in the up-quark mass basis and, setting ✏q1 ! 0, we get

�c⌧

L
= ✏q2 . �u⌧

L
= 0 . (22)

In the following we will investigate the relation between
b ! c and b ! u transitions either assuming the minimal-
breaking relation (20), or employing the ansatz (22).

B. Charged currents in the mass-eigenstate basis

Following the notation of [16], we re-write the part of
L
LQ
EFT relevant to b ! c⌧ ⌫̄ transitions as

Lb!c = �
4GF
p
2
Vcb

⇣
1 + C

c

LL

⌘
(c̄L�µbL)(⌧̄L�

µ⌫L)

� 2 Cc

LR
(c̄LbR)(⌧̄R ⌫L)

�
, (23)

and similarly for b ! u⌧ ⌫̄. The e↵ective coe�cients
C
c,u

LL(LR) defined above are related to the coe�cients in

(3) by

C
c

LL(LR) =
Ccb⌧⌧

LL(LR)

Vcb

, C
u

LL(LR) =
Cub⌧⌧

LL(LR)

Vub

. (24)

Using the �ij

L
introduced in (17), we get

C
c

LL
= C33⌧⌧

LL

✓
1 +

X

i=s,d

Vci

Vcb

�i⌧

L

◆
⌘ C33⌧⌧

LL

✓
1 +

✏q
|Vcb|

◆
,

C
c

LR
= �⇤

R
C
c

LL
, (25)

where we defined the e↵ective parameter ✏q to simplify
the notation. Concerning the b ! u coe�cients, assum-
ing the minimal-breaking relation (20) we get

C
u

LL(LR) = C
c

LL(LR) , (26)

whereas the non-minimal ansatz (22) leads to

C
u

LL(LR) =
C
c

LL(LR)

1 + ✏q/|Vcb|
. (27)

III. OBSERVABLES

A. Low-energy

The values of the e↵ective couplings Cc

LL
and C

c

LR
can

be fit at low energies using the experimental information

on the LFU ratios RD, RD⇤ , and R⇤b . We have explicitly
checked that other poorly measured observables, such as
polarisation asymmetries in b ! c⌧ ⌫̄ transitions or the
loose bound on B(B�

c
! ⌧ ⌫̄) [45], do not currently pro-

vide additional constraints.
The values of RD and RD⇤ , recently measured by the

LHCb collaboration, RD = 0.441± 0.060stat ± 0.066syst,
RD⇤ = 0.281± 0.018stat ± 0.024syst, with correlation ⇢ =
�0.43, shifts the world average of these ratios to [46]

Rexp
D⇤ = 0.285± 0.010stat ± 0.008syst , (28)

Rexp
D

= 0.358± 0.025stat ± 0.012syst , (29)

with correlation ⇢ = �0.29. We fit these results within
our model using the approximate numerical formulae re-
ported in [16]:

RD

RSM
D

= |1 + C
c

LL
|
2
� 3.00Re [(1 + C

c

LL
) Cc ⇤

LR
]

+ 4.12|Cc

LR
|
2 , (30)

RD⇤

RSM
D⇤

= |1 + C
c

LL
|
2
� 0.24Re [(1 + C

c

LL
) Cc ⇤

LR
]

+ 0.16|Cc

LR
|
2 , (31)

where the Wilson coe�cients are understood to be reno-
malized at the scale µ = mb. As reference values for the
SM predictions we use the HFLAV averages [46]:5

RSM
D

= 0.298(4) , RSM
D⇤ = 0.254(5) . (32)

Concerning R⇤b , we use the approximate formula pro-
vided in [53], that in our notation reads

R⇤b

RSM
⇤b

= |1 + C
c

LL
|
2
� 1.01Re [Cc

LR
+ C

c

LL
C
c ⇤
LR

]

+ 1.34|Cc

LR
|
2 . (33)

As inputs we use the recent LHCb result, Rexp
⇤b

= 0.242±

0.076 [54], and the SM value RSM
⇤b

= 0.333(13) [53].
In the case of b ! u⌧⌫ transitions, the only relevant

constraint at present is provided by B(B�
u

! ⌧ ⌫̄). Here
the numerical expression reads [40] :

B (B�
u

! ⌧ ⌫̄)

B
�
B�

u ! ⌧ ⌫̄
�SM = |1 + C

u

LL
� 2�u C

u

LR
|
2 , (34)

where �u = m2
B+/ [m⌧ (mb +mu)] ⇡ 3.75. The data

we use are B (B�
u

! ⌧ ⌫̄)
exp

= 1.09(24) ⇥ 10�4 [55] and

B (B�
u

! ⌧ ⌫̄)
SM

= 0.812(54)⇥ 10�4 [56].
In Fig. 1 we report the best values of C

c

LL
and C

c

LR

as obtained from a �2-fit to the low-energy observables.
The values reported in Fig. 1 correspond to the Wil-
son coe�cients renormalized at a reference high-scale

5
More details about the SM predictions of RD and RD⇤ and their

uncertainties can be found in [47–52]
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FIG. 1. Determination of Cc
LL and Cc

LR from a �2-fit to low-
energy observables. The Wilson coe�cients, assumed to be
real, are renormalized at the reference scale ⇤UV = 1 TeV.
The blue ellipses denote the 1, 2, and 3� contours fitting only
b ! c observables. The black dot indicates the best fit point
of (0.05,�0.02). The dotted lines are obtained including also
B
�
B�

u ! ⌧ ⌫̄
�
in the limit of up alignment. The ��2 = 1

regions preferred by each observable are also indicated, except
in the case of R⇤b where we give the 90% CL region (due to
the large error).

⇤UV = 1 TeV, which is the most appropriate scale
to compare low- and high-energy observables. Taking
into account only the QCD-induced running, we set
C
c

LL
(mb) = C

c

LL
(⇤UV) and

C
c

LR
(mb) = ⌘S C

c

LR
(⇤UV) , ⌘S ⇡ 1.6 . (35)

The first point to notice is that the SM point (Cc

LL
=

C
c

LR
= 0) is excluded at the 3� level. The b ! c observ-

ables favor a region compatible with both a pure left-
handed interaction (Cc

LR
= 0) as well as the case with

equal magnitude right-handed currents Cc

LL
= �C

c

LR
. In

both cases, the pull of the U1 LQ hypothesis with re-
spect to the SM is ��2 = �2

SM � �2
NP ⇡ 11, which

is at the 3� level. As first pointed out in [10], the
case where C

c

LL
= �C

c

LR
is a natural benchmark for a

flavor non-universal gauge model, where both left- and
right-handed third-family quarks and leptons are uni-
fied in fundamental representations of SU(4). As indi-
cated by the dashed blue lines, the preferred region is
essentially unchanged if B(B�

! ⌧ ⌫̄) is added under
the hypothesis of non-minimal U(2)Q breaking and up-
alignment. In either case, we find a best fit point of
C
c

LL
= 0.05 and C

c

LR
= �0.02. On the other hand, the

inclusion of B(B�
! ⌧ ⌫̄) under the hypothesis of mini-

mal U(2)Q breaking (dark green band) disfavors sizable
right-handed currents.

Loop-induced contribution to b ! s`¯̀

This analysis is focused on the leading couplings of the
U1 field to third-generation leptons. Hence, we do not
discuss b ! s`` transitions (` = e, µ) in detail here. How-
ever, we recall that the operator O

sb⌧⌧

LL
mixes via QED

running [57] into operators with light leptons (⌧ ⌧̄ ! `¯̀

loop). This results into a lepton-universal contribution
to the b ! s`¯̀Wilson coe�cient C9 [58], defined accord-
ing to standard conventions (see e.g. [59, 60]). We will
estimate the size of this e↵ect using the results of the fit
in Fig. 1.
To this purpose, we note that besides the leading-log

running from the high-energy matching scale (i.e. MU )
down to mb, we should also include long distance (LD)
contributions resulting from the one-loop matrix element
of the semi-leptonic operator Osb⌧⌧

LL
[61]. Such contribu-

tions are analogous to the LD contributions from charm
penguins where the only di↵erence is that the charm is
replaced by a tau lepton. This can be taken into account
defining a q2-dependent Ce↵

9 (q2), where q2 = m2
``
. Con-

sidering also this e↵ect, we find the following expression
for the correction to Ce↵

9 induced by the U1:

�Ce↵
9 (q2 = 0) =

Csb⌧⌧

LL

V ⇤
ts
Vtb

2

3


log

✓
M2

U

m2
⌧

◆
� 1

�
,

= �
C
c

LL

1 + |Vts|/✏q

2

3


log

✓
M2

U

m2
⌧

◆
� 1

�
. (36)

The last expression follows from the relation between
Csb⌧⌧

LL
and C

c

LL
, which can be deduced from Sect. II A.

For C
c

LL
= 0.05 (best fit point in Fig. 1), MU = 3 TeV,

and ✏q = 2|Vts|, we get �Ce↵
9 (0) ⇡ �0.3. While not

solving all b ! s`¯̀ anomalies, such a correction leads to
a significant improvement in the description of b ! s`¯̀

data [16, 59, 60].

B. High-energy

Collider observables are known to provide rich informa-
tion on the parameter space of vector leptoquark mod-
els [31, 38, 44] explaining the B-meson anomalies, that is
complementary to low-energy data [16, 62]. A variety of
di↵erent underlying processes can be relevant at hadron
colliders such as the LHC. The most important channels
involving the U1 leptoquark are:

• Pair production pp ! U⇤
1U1,

• Quark-gluon scattering qg ! U1`,

• Quark-lepton fusion q` ! U1,

• Drell-Yan pp ! `¯̀.

The main decay channels in models where the leptoquark
predominantly couples to third generation fermions are
U1 ! b⌧+ and U1 ! t⌫̄⌧ . In the case of interest where

• Analyzing this in a model-independent way:

4

In the phenomenological limit su = 0 and Vd = 0, the
light-quark fields in the interaction basis can be identified
as

✓
q1
L

q2
L

◆
=

✓
Vud Vus

Vcd Vcs

◆✓
dL
sL

◆
⇡

✓
uL

cL

◆
, (21)

while q3
L
⌘ bL. The �i⌧

L
become approximately diagonal

in the up-quark mass basis and, setting ✏q1 ! 0, we get

�c⌧

L
= ✏q2 . �u⌧

L
= 0 . (22)

In the following we will investigate the relation between
b ! c and b ! u transitions either assuming the minimal-
breaking relation (20), or employing the ansatz (22).

B. Charged currents in the mass-eigenstate basis

Following the notation of [16], we re-write the part of
L
LQ
EFT relevant to b ! c⌧ ⌫̄ transitions as

Lb!c = �
4GF
p
2
Vcb

⇣
1 + C

c

LL

⌘
(c̄L�µbL)(⌧̄L�

µ⌫L)

� 2 Cc

LR
(c̄LbR)(⌧̄R ⌫L)

�
, (23)

and similarly for b ! u⌧ ⌫̄. The e↵ective coe�cients
C
c,u

LL(LR) defined above are related to the coe�cients in

(3) by

C
c

LL(LR) =
Ccb⌧⌧

LL(LR)

Vcb

, C
u

LL(LR) =
Cub⌧⌧

LL(LR)

Vub

. (24)

Using the �ij

L
introduced in (17), we get

C
c

LL
= C33⌧⌧

LL

✓
1 +

X

i=s,d

Vci

Vcb

�i⌧

L

◆
⌘ C33⌧⌧

LL

✓
1 +

✏q
|Vcb|

◆
,

C
c

LR
= �⇤

R
C
c

LL
, (25)

where we defined the e↵ective parameter ✏q to simplify
the notation. Concerning the b ! u coe�cients, assum-
ing the minimal-breaking relation (20) we get

C
u

LL(LR) = C
c

LL(LR) , (26)

whereas the non-minimal ansatz (22) leads to

C
u

LL(LR) =
C
c

LL(LR)

1 + ✏q/|Vcb|
. (27)

III. OBSERVABLES

A. Low-energy

The values of the e↵ective couplings Cc

LL
and C

c

LR
can

be fit at low energies using the experimental information

on the LFU ratios RD, RD⇤ , and R⇤b . We have explicitly
checked that other poorly measured observables, such as
polarisation asymmetries in b ! c⌧ ⌫̄ transitions or the
loose bound on B(B�

c
! ⌧ ⌫̄) [45], do not currently pro-

vide additional constraints.
The values of RD and RD⇤ , recently measured by the

LHCb collaboration, RD = 0.441± 0.060stat ± 0.066syst,
RD⇤ = 0.281± 0.018stat ± 0.024syst, with correlation ⇢ =
�0.43, shifts the world average of these ratios to [46]

Rexp
D⇤ = 0.285± 0.010stat ± 0.008syst , (28)

Rexp
D

= 0.358± 0.025stat ± 0.012syst , (29)

with correlation ⇢ = �0.29. We fit these results within
our model using the approximate numerical formulae re-
ported in [16]:

RD

RSM
D

= |1 + C
c

LL
|
2
� 3.00Re [(1 + C

c

LL
) Cc ⇤

LR
]

+ 4.12|Cc

LR
|
2 , (30)

RD⇤

RSM
D⇤

= |1 + C
c

LL
|
2
� 0.24Re [(1 + C

c

LL
) Cc ⇤

LR
]

+ 0.16|Cc

LR
|
2 , (31)

where the Wilson coe�cients are understood to be reno-
malized at the scale µ = mb. As reference values for the
SM predictions we use the HFLAV averages [46]:5

RSM
D

= 0.298(4) , RSM
D⇤ = 0.254(5) . (32)

Concerning R⇤b , we use the approximate formula pro-
vided in [53], that in our notation reads

R⇤b

RSM
⇤b

= |1 + C
c

LL
|
2
� 1.01Re [Cc

LR
+ C

c

LL
C
c ⇤
LR

]

+ 1.34|Cc

LR
|
2 . (33)

As inputs we use the recent LHCb result, Rexp
⇤b

= 0.242±

0.076 [54], and the SM value RSM
⇤b

= 0.333(13) [53].
In the case of b ! u⌧⌫ transitions, the only relevant

constraint at present is provided by B(B�
u

! ⌧ ⌫̄). Here
the numerical expression reads [40] :

B (B�
u

! ⌧ ⌫̄)

B
�
B�

u ! ⌧ ⌫̄
�SM = |1 + C

u

LL
� 2�u C

u

LR
|
2 , (34)

where �u = m2
B+/ [m⌧ (mb +mu)] ⇡ 3.75. The data

we use are B (B�
u

! ⌧ ⌫̄)
exp

= 1.09(24) ⇥ 10�4 [55] and

B (B�
u

! ⌧ ⌫̄)
SM

= 0.812(54)⇥ 10�4 [56].
In Fig. 1 we report the best values of C

c

LL
and C

c

LR

as obtained from a �2-fit to the low-energy observables.
The values reported in Fig. 1 correspond to the Wil-
son coe�cients renormalized at a reference high-scale

5
More details about the SM predictions of RD and RD⇤ and their

uncertainties can be found in [47–52]

2

fermions. Focusing on third-generation leptons, and
assuming no leptoquark (LQ) couplings to light right-
handed fields (which are severely constrained by data,
see e.g. [15, 40]), we restrict our attention to the follow-
ing terms in the LQ current:

Jµ

U
=

gU
p
2

2

4q3
L
�µ`3

L
+ �R d

3
R
�µe3

R
+
X

k=1,2

✏qk q
k

L
�µ`3

L

3

5 .

(2)
Here the right-handed fields and the lepton doublet are
understood to be in the corresponding mass-eigenstate
basis, while the basis for the left-handed quarks is left
generic and will be discussed in detail later on.

Integrating out the LQ field at the tree level leads to
the e↵ective interactions

L
LQ
EFT = �

2

v2

h
Cij↵�

LL
O

ij↵�

LL
+ Cij↵�

RR
O

ij↵�

RR

+
⇣
Cij↵�

LR
O

ij↵�

LR
+ h.c.

⌘ i
, (3)

where

O
ij↵�

LL
= (q̄ i

L
�µ`

↵

L
)(¯̀�

L
�µq j

L
) ,

O
ij↵�

LR
= (q̄ i

L
�µ`

↵

L
)(ē�

R
�µd j

R
) ,

O
ij↵�

RR
= (d̄ i

R
�µe

↵

R
)(ē�

R
�µd j

R
) .

The normalization factor in the e↵ective Lagrangian is
v = (

p
2GF )�1/2

⇡ 246 GeV. We also introduce the
e↵ective scale ⇤U =

p
2MU/gU , such that

C33⌧⌧
LL

=
v2

2⇤2
U

. (4)

If we were interested only in b ! c⌧ ⌫̄ transitions, we
would have restricted our attention to the coe�cients
Ccb⌧⌧

LL(LR).
1 However, in order to also address the inter-

play with b ! u⌧ ⌫̄ transitions and, most importantly,
high-energy constraints, we need to analyze the relation
among the Ccb⌧⌧

LL(LR) and coe�cients involving di↵erent
quark flavors.

A. Quark flavor structure

The flavor basis defined by Jµ

U
can be considered the

interaction basis for the LQ field. To address its relation
to the mass-eigenstate basis of up (or down) quarks we
need to write down and diagonalize the Yukawa couplings
in this basis.

As in [3], we work under the assumption of an approx-
imate U(2)3

f
= U(2)Q⇥U(2)U ⇥U(2)D symmetry acting

1
Here and in the rest of this section the up- or down-type flavor

indices referred to qiL indicate the corresponding SU(2)L doublet

in a given (up- or down-type) mass eigenstate.

on the light quark generations. In the limit of unbroken
symmetry, the parameters ✏qk in (2) should vanish and
only third-generation quarks have non-zero Yukawa cou-
plings. To describe a realistic spectrum, we proceed by
introducing two sets of U(2)3

f
breaking terms:

eq , Vu , Vd ⇠ 2Q , (5)

�u , �d ⇠ 2̄U(D) ⇥ 2Q , (6)

where eq denotes the vector eT
q
= (✏q1 , ✏q2). The leading

2Q terms control the heavy! light mixing in the left-
handed sector, whereas the subleading 2̄U(D)⇥2Q terms
are responsible for the light Yukawa couplings.
The hypothesis of minimal U(2)3

f
breaking, proposed

in [41, 42] and employed in previous phenomenologi-
cal analysis (see e.g. [3, 5, 40]), corresponds to the as-
sumption of a single 2Q spurion, or the alignment of
the three terms in (5) in U(2)Q space. Motivated by
model-building considerations [22, 43] and recent data,
we do not enforce this assumption in what follows. In
addition to the minimal case, we will consider also the
possibility of a (small) misalignment of the three lead-
ing U(2)Q-breaking terms. We thus use the approximate
U(2)3

f
symmetry more as an organising principle to clas-

sify the flavor-violating couplings in the theory, rather
than a strict ansatz on the underlying flavor structure.
Under these assumptions, the 3⇥ 3 Yukawa couplings

can be written as (f = u, d):

Yf = yf3

✓
�f Vf

0 1

◆
. (7)

Without loss of generality, the residual flavor symmetry
allows us to choose a basis where both �u and �d are
real. In this basis, the latter are diagonalised by a real
orthogonal matrix,

�f = Of⇥diag

✓
yf1
yf3

,
yf2
yf3

◆
, Of =

✓
cf sf
�sf cf

◆
, (8)

where sf = sin ✓f and cf = cos ✓f , and Vf are in general
two complex vectors, VT

f
= (Vf1 , Vf2).

The natural size of the di↵erent mixing terms can
be deduced by the perturbative diagonalisation of Yu

and Yd. Introducing unitary matrices Lf , defined by

LfYfY
†
f
L†
f
= diag(yf1 , yf2 , yf3) , (9)

it follows that

Lf ⇡

✓
OT 0
0 1

◆ 
1 �VT

f

V†
f

1

!
. (10)

Since the elements of the Cabibbo, Kobayashi, Maskawa
(CKM) matrix are given by Vij = (LuL

†
d
)ij , we deduce

Vu2,d2 = O(�2) , Vu1,d1 = O(�3) , (11)

where � = |Vus| ⇡ 0.22, and

sd � su = �+O(�3) . (12)

 0.03 for TeV-scale NP. ∼
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FIG. 1. Determination of Cc
LL and Cc

LR from a �2-fit to low-
energy observables. The Wilson coe�cients, assumed to be
real, are renormalized at the reference scale ⇤UV = 1 TeV.
The blue ellipses denote the 1, 2, and 3� contours fitting only
b ! c observables. The black dot indicates the best fit point
of (0.05,�0.02). The dotted lines are obtained including also
B
�
B�

u ! ⌧ ⌫̄
�
in the limit of up alignment. The ��2 = 1

regions preferred by each observable are also indicated, except
in the case of R⇤b where we give the 90% CL region (due to
the large error).

⇤UV = 1 TeV, which is the most appropriate scale
to compare low- and high-energy observables. Taking
into account only the QCD-induced running, we set
C
c

LL
(mb) = C

c

LL
(⇤UV) and

C
c

LR
(mb) = ⌘S C

c

LR
(⇤UV) , ⌘S ⇡ 1.6 . (35)

The first point to notice is that the SM point (Cc

LL
=

C
c

LR
= 0) is excluded at the 3� level. The b ! c observ-

ables favor a region compatible with both a pure left-
handed interaction (Cc

LR
= 0) as well as the case with

equal magnitude right-handed currents Cc

LL
= �C

c

LR
. In

both cases, the pull of the U1 LQ hypothesis with re-
spect to the SM is ��2 = �2

SM � �2
NP ⇡ 11, which

is at the 3� level. As first pointed out in [10], the
case where C

c

LL
= �C

c

LR
is a natural benchmark for a

flavor non-universal gauge model, where both left- and
right-handed third-family quarks and leptons are uni-
fied in fundamental representations of SU(4). As indi-
cated by the dashed blue lines, the preferred region is
essentially unchanged if B(B�

! ⌧ ⌫̄) is added under
the hypothesis of non-minimal U(2)Q breaking and up-
alignment. In either case, we find a best fit point of
C
c

LL
= 0.05 and C

c

LR
= �0.02. On the other hand, the

inclusion of B(B�
! ⌧ ⌫̄) under the hypothesis of mini-

mal U(2)Q breaking (dark green band) disfavors sizable
right-handed currents.

Loop-induced contribution to b ! s`¯̀

This analysis is focused on the leading couplings of the
U1 field to third-generation leptons. Hence, we do not
discuss b ! s`` transitions (` = e, µ) in detail here. How-
ever, we recall that the operator O

sb⌧⌧

LL
mixes via QED

running [57] into operators with light leptons (⌧ ⌧̄ ! `¯̀

loop). This results into a lepton-universal contribution
to the b ! s`¯̀Wilson coe�cient C9 [58], defined accord-
ing to standard conventions (see e.g. [59, 60]). We will
estimate the size of this e↵ect using the results of the fit
in Fig. 1.
To this purpose, we note that besides the leading-log

running from the high-energy matching scale (i.e. MU )
down to mb, we should also include long distance (LD)
contributions resulting from the one-loop matrix element
of the semi-leptonic operator Osb⌧⌧

LL
[61]. Such contribu-

tions are analogous to the LD contributions from charm
penguins where the only di↵erence is that the charm is
replaced by a tau lepton. This can be taken into account
defining a q2-dependent Ce↵

9 (q2), where q2 = m2
``
. Con-

sidering also this e↵ect, we find the following expression
for the correction to Ce↵

9 induced by the U1:

�Ce↵
9 (q2 = 0) =

Csb⌧⌧

LL

V ⇤
ts
Vtb

2

3


log

✓
M2

U

m2
⌧

◆
� 1

�
,

= �
C
c

LL

1 + |Vts|/✏q

2

3


log

✓
M2

U

m2
⌧

◆
� 1

�
. (36)

The last expression follows from the relation between
Csb⌧⌧

LL
and C

c

LL
, which can be deduced from Sect. II A.

For C
c

LL
= 0.05 (best fit point in Fig. 1), MU = 3 TeV,

and ✏q = 2|Vts|, we get �Ce↵
9 (0) ⇡ �0.3. While not

solving all b ! s`¯̀ anomalies, such a correction leads to
a significant improvement in the description of b ! s`¯̀

data [16, 59, 60].

B. High-energy

Collider observables are known to provide rich informa-
tion on the parameter space of vector leptoquark mod-
els [31, 38, 44] explaining the B-meson anomalies, that is
complementary to low-energy data [16, 62]. A variety of
di↵erent underlying processes can be relevant at hadron
colliders such as the LHC. The most important channels
involving the U1 leptoquark are:

• Pair production pp ! U⇤
1U1,

• Quark-gluon scattering qg ! U1`,

• Quark-lepton fusion q` ! U1,

• Drell-Yan pp ! `¯̀.

The main decay channels in models where the leptoquark
predominantly couples to third generation fermions are
U1 ! b⌧+ and U1 ! t⌫̄⌧ . In the case of interest where

• Analyzing this in a model-independent way:

A large (leading-order) 
contribution to quark-
lepton vector operators 
is needed. 

4

In the phenomenological limit su = 0 and Vd = 0, the
light-quark fields in the interaction basis can be identified
as

✓
q1
L

q2
L

◆
=

✓
Vud Vus

Vcd Vcs

◆✓
dL
sL

◆
⇡

✓
uL

cL

◆
, (21)

while q3
L
⌘ bL. The �i⌧

L
become approximately diagonal

in the up-quark mass basis and, setting ✏q1 ! 0, we get

�c⌧

L
= ✏q2 . �u⌧

L
= 0 . (22)

In the following we will investigate the relation between
b ! c and b ! u transitions either assuming the minimal-
breaking relation (20), or employing the ansatz (22).

B. Charged currents in the mass-eigenstate basis

Following the notation of [16], we re-write the part of
L
LQ
EFT relevant to b ! c⌧ ⌫̄ transitions as

Lb!c = �
4GF
p
2
Vcb

⇣
1 + C

c

LL

⌘
(c̄L�µbL)(⌧̄L�

µ⌫L)

� 2 Cc

LR
(c̄LbR)(⌧̄R ⌫L)

�
, (23)

and similarly for b ! u⌧ ⌫̄. The e↵ective coe�cients
C
c,u

LL(LR) defined above are related to the coe�cients in

(3) by

C
c

LL(LR) =
Ccb⌧⌧

LL(LR)

Vcb

, C
u

LL(LR) =
Cub⌧⌧

LL(LR)

Vub

. (24)

Using the �ij

L
introduced in (17), we get

C
c

LL
= C33⌧⌧

LL

✓
1 +

X

i=s,d

Vci

Vcb

�i⌧

L

◆
⌘ C33⌧⌧

LL

✓
1 +

✏q
|Vcb|

◆
,

C
c

LR
= �⇤

R
C
c

LL
, (25)

where we defined the e↵ective parameter ✏q to simplify
the notation. Concerning the b ! u coe�cients, assum-
ing the minimal-breaking relation (20) we get

C
u

LL(LR) = C
c

LL(LR) , (26)

whereas the non-minimal ansatz (22) leads to

C
u

LL(LR) =
C
c

LL(LR)

1 + ✏q/|Vcb|
. (27)

III. OBSERVABLES

A. Low-energy

The values of the e↵ective couplings Cc

LL
and C

c

LR
can

be fit at low energies using the experimental information

on the LFU ratios RD, RD⇤ , and R⇤b . We have explicitly
checked that other poorly measured observables, such as
polarisation asymmetries in b ! c⌧ ⌫̄ transitions or the
loose bound on B(B�

c
! ⌧ ⌫̄) [45], do not currently pro-

vide additional constraints.
The values of RD and RD⇤ , recently measured by the

LHCb collaboration, RD = 0.441± 0.060stat ± 0.066syst,
RD⇤ = 0.281± 0.018stat ± 0.024syst, with correlation ⇢ =
�0.43, shifts the world average of these ratios to [46]

Rexp
D⇤ = 0.285± 0.010stat ± 0.008syst , (28)

Rexp
D

= 0.358± 0.025stat ± 0.012syst , (29)

with correlation ⇢ = �0.29. We fit these results within
our model using the approximate numerical formulae re-
ported in [16]:

RD

RSM
D

= |1 + C
c

LL
|
2
� 3.00Re [(1 + C

c

LL
) Cc ⇤

LR
]

+ 4.12|Cc

LR
|
2 , (30)

RD⇤

RSM
D⇤

= |1 + C
c

LL
|
2
� 0.24Re [(1 + C

c

LL
) Cc ⇤

LR
]

+ 0.16|Cc

LR
|
2 , (31)

where the Wilson coe�cients are understood to be reno-
malized at the scale µ = mb. As reference values for the
SM predictions we use the HFLAV averages [46]:5

RSM
D

= 0.298(4) , RSM
D⇤ = 0.254(5) . (32)

Concerning R⇤b , we use the approximate formula pro-
vided in [53], that in our notation reads

R⇤b

RSM
⇤b

= |1 + C
c

LL
|
2
� 1.01Re [Cc

LR
+ C

c

LL
C
c ⇤
LR

]

+ 1.34|Cc

LR
|
2 . (33)

As inputs we use the recent LHCb result, Rexp
⇤b

= 0.242±

0.076 [54], and the SM value RSM
⇤b

= 0.333(13) [53].
In the case of b ! u⌧⌫ transitions, the only relevant

constraint at present is provided by B(B�
u

! ⌧ ⌫̄). Here
the numerical expression reads [40] :

B (B�
u

! ⌧ ⌫̄)

B
�
B�

u ! ⌧ ⌫̄
�SM = |1 + C

u

LL
� 2�u C

u

LR
|
2 , (34)

where �u = m2
B+/ [m⌧ (mb +mu)] ⇡ 3.75. The data

we use are B (B�
u

! ⌧ ⌫̄)
exp

= 1.09(24) ⇥ 10�4 [55] and

B (B�
u

! ⌧ ⌫̄)
SM

= 0.812(54)⇥ 10�4 [56].
In Fig. 1 we report the best values of C

c

LL
and C

c

LR

as obtained from a �2-fit to the low-energy observables.
The values reported in Fig. 1 correspond to the Wil-
son coe�cients renormalized at a reference high-scale
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2

fermions. Focusing on third-generation leptons, and
assuming no leptoquark (LQ) couplings to light right-
handed fields (which are severely constrained by data,
see e.g. [15, 40]), we restrict our attention to the follow-
ing terms in the LQ current:

Jµ

U
=

gU
p
2

2

4q3
L
�µ`3

L
+ �R d

3
R
�µe3

R
+
X

k=1,2

✏qk q
k

L
�µ`3

L

3

5 .

(2)
Here the right-handed fields and the lepton doublet are
understood to be in the corresponding mass-eigenstate
basis, while the basis for the left-handed quarks is left
generic and will be discussed in detail later on.

Integrating out the LQ field at the tree level leads to
the e↵ective interactions

L
LQ
EFT = �

2

v2

h
Cij↵�

LL
O

ij↵�

LL
+ Cij↵�

RR
O

ij↵�

RR

+
⇣
Cij↵�

LR
O

ij↵�

LR
+ h.c.

⌘ i
, (3)

where

O
ij↵�

LL
= (q̄ i

L
�µ`

↵

L
)(¯̀�

L
�µq j

L
) ,

O
ij↵�

LR
= (q̄ i

L
�µ`

↵

L
)(ē�

R
�µd j

R
) ,

O
ij↵�

RR
= (d̄ i

R
�µe

↵

R
)(ē�

R
�µd j

R
) .

The normalization factor in the e↵ective Lagrangian is
v = (

p
2GF )�1/2

⇡ 246 GeV. We also introduce the
e↵ective scale ⇤U =

p
2MU/gU , such that

C33⌧⌧
LL

=
v2

2⇤2
U

. (4)

If we were interested only in b ! c⌧ ⌫̄ transitions, we
would have restricted our attention to the coe�cients
Ccb⌧⌧

LL(LR).
1 However, in order to also address the inter-

play with b ! u⌧ ⌫̄ transitions and, most importantly,
high-energy constraints, we need to analyze the relation
among the Ccb⌧⌧

LL(LR) and coe�cients involving di↵erent
quark flavors.

A. Quark flavor structure

The flavor basis defined by Jµ

U
can be considered the

interaction basis for the LQ field. To address its relation
to the mass-eigenstate basis of up (or down) quarks we
need to write down and diagonalize the Yukawa couplings
in this basis.

As in [3], we work under the assumption of an approx-
imate U(2)3

f
= U(2)Q⇥U(2)U ⇥U(2)D symmetry acting

1
Here and in the rest of this section the up- or down-type flavor

indices referred to qiL indicate the corresponding SU(2)L doublet

in a given (up- or down-type) mass eigenstate.

on the light quark generations. In the limit of unbroken
symmetry, the parameters ✏qk in (2) should vanish and
only third-generation quarks have non-zero Yukawa cou-
plings. To describe a realistic spectrum, we proceed by
introducing two sets of U(2)3

f
breaking terms:

eq , Vu , Vd ⇠ 2Q , (5)

�u , �d ⇠ 2̄U(D) ⇥ 2Q , (6)

where eq denotes the vector eT
q
= (✏q1 , ✏q2). The leading

2Q terms control the heavy! light mixing in the left-
handed sector, whereas the subleading 2̄U(D)⇥2Q terms
are responsible for the light Yukawa couplings.
The hypothesis of minimal U(2)3

f
breaking, proposed

in [41, 42] and employed in previous phenomenologi-
cal analysis (see e.g. [3, 5, 40]), corresponds to the as-
sumption of a single 2Q spurion, or the alignment of
the three terms in (5) in U(2)Q space. Motivated by
model-building considerations [22, 43] and recent data,
we do not enforce this assumption in what follows. In
addition to the minimal case, we will consider also the
possibility of a (small) misalignment of the three lead-
ing U(2)Q-breaking terms. We thus use the approximate
U(2)3

f
symmetry more as an organising principle to clas-

sify the flavor-violating couplings in the theory, rather
than a strict ansatz on the underlying flavor structure.
Under these assumptions, the 3⇥ 3 Yukawa couplings

can be written as (f = u, d):

Yf = yf3

✓
�f Vf

0 1

◆
. (7)

Without loss of generality, the residual flavor symmetry
allows us to choose a basis where both �u and �d are
real. In this basis, the latter are diagonalised by a real
orthogonal matrix,

�f = Of⇥diag

✓
yf1
yf3

,
yf2
yf3

◆
, Of =

✓
cf sf
�sf cf

◆
, (8)

where sf = sin ✓f and cf = cos ✓f , and Vf are in general
two complex vectors, VT

f
= (Vf1 , Vf2).

The natural size of the di↵erent mixing terms can
be deduced by the perturbative diagonalisation of Yu

and Yd. Introducing unitary matrices Lf , defined by

LfYfY
†
f
L†
f
= diag(yf1 , yf2 , yf3) , (9)

it follows that

Lf ⇡

✓
OT 0
0 1

◆ 
1 �VT

f

V†
f

1

!
. (10)

Since the elements of the Cabibbo, Kobayashi, Maskawa
(CKM) matrix are given by Vij = (LuL

†
d
)ij , we deduce

Vu2,d2 = O(�2) , Vu1,d1 = O(�3) , (11)

where � = |Vus| ⇡ 0.22, and

sd � su = �+O(�3) . (12)
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1.1 Low-energy anomalies

Source: ArXiv:2210.13422 (J. Aebischer, 

G. Isidori, M. Pesut, B.A. Stefanek, F. Wilsch)

5

-0.10 -0.05 0.00 0.05 0.10 0.15 0.20
-0.15

-0.10

-0.05

0.00

0.05

0.10

FIG. 1. Determination of Cc
LL and Cc

LR from a �2-fit to low-
energy observables. The Wilson coe�cients, assumed to be
real, are renormalized at the reference scale ⇤UV = 1 TeV.
The blue ellipses denote the 1, 2, and 3� contours fitting only
b ! c observables. The black dot indicates the best fit point
of (0.05,�0.02). The dotted lines are obtained including also
B
�
B�

u ! ⌧ ⌫̄
�
in the limit of up alignment. The ��2 = 1

regions preferred by each observable are also indicated, except
in the case of R⇤b where we give the 90% CL region (due to
the large error).

⇤UV = 1 TeV, which is the most appropriate scale
to compare low- and high-energy observables. Taking
into account only the QCD-induced running, we set
C
c

LL
(mb) = C

c

LL
(⇤UV) and

C
c

LR
(mb) = ⌘S C

c

LR
(⇤UV) , ⌘S ⇡ 1.6 . (35)

The first point to notice is that the SM point (Cc

LL
=

C
c

LR
= 0) is excluded at the 3� level. The b ! c observ-

ables favor a region compatible with both a pure left-
handed interaction (Cc

LR
= 0) as well as the case with

equal magnitude right-handed currents Cc

LL
= �C

c

LR
. In

both cases, the pull of the U1 LQ hypothesis with re-
spect to the SM is ��2 = �2

SM � �2
NP ⇡ 11, which

is at the 3� level. As first pointed out in [10], the
case where C

c

LL
= �C

c

LR
is a natural benchmark for a

flavor non-universal gauge model, where both left- and
right-handed third-family quarks and leptons are uni-
fied in fundamental representations of SU(4). As indi-
cated by the dashed blue lines, the preferred region is
essentially unchanged if B(B�

! ⌧ ⌫̄) is added under
the hypothesis of non-minimal U(2)Q breaking and up-
alignment. In either case, we find a best fit point of
C
c

LL
= 0.05 and C

c

LR
= �0.02. On the other hand, the

inclusion of B(B�
! ⌧ ⌫̄) under the hypothesis of mini-

mal U(2)Q breaking (dark green band) disfavors sizable
right-handed currents.

Loop-induced contribution to b ! s`¯̀

This analysis is focused on the leading couplings of the
U1 field to third-generation leptons. Hence, we do not
discuss b ! s`` transitions (` = e, µ) in detail here. How-
ever, we recall that the operator O

sb⌧⌧

LL
mixes via QED

running [57] into operators with light leptons (⌧ ⌧̄ ! `¯̀

loop). This results into a lepton-universal contribution
to the b ! s`¯̀Wilson coe�cient C9 [58], defined accord-
ing to standard conventions (see e.g. [59, 60]). We will
estimate the size of this e↵ect using the results of the fit
in Fig. 1.
To this purpose, we note that besides the leading-log

running from the high-energy matching scale (i.e. MU )
down to mb, we should also include long distance (LD)
contributions resulting from the one-loop matrix element
of the semi-leptonic operator Osb⌧⌧

LL
[61]. Such contribu-

tions are analogous to the LD contributions from charm
penguins where the only di↵erence is that the charm is
replaced by a tau lepton. This can be taken into account
defining a q2-dependent Ce↵

9 (q2), where q2 = m2
``
. Con-

sidering also this e↵ect, we find the following expression
for the correction to Ce↵

9 induced by the U1:

�Ce↵
9 (q2 = 0) =

Csb⌧⌧

LL

V ⇤
ts
Vtb

2

3


log

✓
M2

U

m2
⌧

◆
� 1

�
,

= �
C
c

LL

1 + |Vts|/✏q

2

3


log

✓
M2

U

m2
⌧

◆
� 1

�
. (36)

The last expression follows from the relation between
Csb⌧⌧

LL
and C

c

LL
, which can be deduced from Sect. II A.

For C
c

LL
= 0.05 (best fit point in Fig. 1), MU = 3 TeV,

and ✏q = 2|Vts|, we get �Ce↵
9 (0) ⇡ �0.3. While not

solving all b ! s`¯̀ anomalies, such a correction leads to
a significant improvement in the description of b ! s`¯̀

data [16, 59, 60].

B. High-energy

Collider observables are known to provide rich informa-
tion on the parameter space of vector leptoquark mod-
els [31, 38, 44] explaining the B-meson anomalies, that is
complementary to low-energy data [16, 62]. A variety of
di↵erent underlying processes can be relevant at hadron
colliders such as the LHC. The most important channels
involving the U1 leptoquark are:

• Pair production pp ! U⇤
1U1,

• Quark-gluon scattering qg ! U1`,

• Quark-lepton fusion q` ! U1,

• Drell-Yan pp ! `¯̀.

The main decay channels in models where the leptoquark
predominantly couples to third generation fermions are
U1 ! b⌧+ and U1 ! t⌫̄⌧ . In the case of interest where

• Analyzing this in a model-independent way:
calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.

– 3 –

U1

A large (leading-order) 
contribution to quark-
lepton vector operators 
is needed. 

This can be provided by the  
vector leptoquark. 

U1 ∼ (3, 1, 2/3)

4

In the phenomenological limit su = 0 and Vd = 0, the
light-quark fields in the interaction basis can be identified
as

✓
q1
L

q2
L

◆
=

✓
Vud Vus

Vcd Vcs

◆✓
dL
sL

◆
⇡

✓
uL

cL

◆
, (21)

while q3
L
⌘ bL. The �i⌧

L
become approximately diagonal

in the up-quark mass basis and, setting ✏q1 ! 0, we get

�c⌧

L
= ✏q2 . �u⌧

L
= 0 . (22)

In the following we will investigate the relation between
b ! c and b ! u transitions either assuming the minimal-
breaking relation (20), or employing the ansatz (22).

B. Charged currents in the mass-eigenstate basis

Following the notation of [16], we re-write the part of
L
LQ
EFT relevant to b ! c⌧ ⌫̄ transitions as

Lb!c = �
4GF
p
2
Vcb

⇣
1 + C

c

LL

⌘
(c̄L�µbL)(⌧̄L�

µ⌫L)

� 2 Cc

LR
(c̄LbR)(⌧̄R ⌫L)

�
, (23)

and similarly for b ! u⌧ ⌫̄. The e↵ective coe�cients
C
c,u

LL(LR) defined above are related to the coe�cients in

(3) by

C
c

LL(LR) =
Ccb⌧⌧

LL(LR)

Vcb

, C
u

LL(LR) =
Cub⌧⌧

LL(LR)

Vub

. (24)

Using the �ij

L
introduced in (17), we get

C
c

LL
= C33⌧⌧

LL

✓
1 +

X

i=s,d

Vci

Vcb

�i⌧

L

◆
⌘ C33⌧⌧

LL

✓
1 +

✏q
|Vcb|

◆
,

C
c

LR
= �⇤

R
C
c

LL
, (25)

where we defined the e↵ective parameter ✏q to simplify
the notation. Concerning the b ! u coe�cients, assum-
ing the minimal-breaking relation (20) we get

C
u

LL(LR) = C
c

LL(LR) , (26)

whereas the non-minimal ansatz (22) leads to

C
u

LL(LR) =
C
c

LL(LR)

1 + ✏q/|Vcb|
. (27)

III. OBSERVABLES

A. Low-energy

The values of the e↵ective couplings Cc

LL
and C

c

LR
can

be fit at low energies using the experimental information

on the LFU ratios RD, RD⇤ , and R⇤b . We have explicitly
checked that other poorly measured observables, such as
polarisation asymmetries in b ! c⌧ ⌫̄ transitions or the
loose bound on B(B�

c
! ⌧ ⌫̄) [45], do not currently pro-

vide additional constraints.
The values of RD and RD⇤ , recently measured by the

LHCb collaboration, RD = 0.441± 0.060stat ± 0.066syst,
RD⇤ = 0.281± 0.018stat ± 0.024syst, with correlation ⇢ =
�0.43, shifts the world average of these ratios to [46]

Rexp
D⇤ = 0.285± 0.010stat ± 0.008syst , (28)

Rexp
D

= 0.358± 0.025stat ± 0.012syst , (29)

with correlation ⇢ = �0.29. We fit these results within
our model using the approximate numerical formulae re-
ported in [16]:

RD

RSM
D

= |1 + C
c

LL
|
2
� 3.00Re [(1 + C

c

LL
) Cc ⇤

LR
]

+ 4.12|Cc

LR
|
2 , (30)

RD⇤

RSM
D⇤

= |1 + C
c

LL
|
2
� 0.24Re [(1 + C

c

LL
) Cc ⇤

LR
]

+ 0.16|Cc

LR
|
2 , (31)

where the Wilson coe�cients are understood to be reno-
malized at the scale µ = mb. As reference values for the
SM predictions we use the HFLAV averages [46]:5

RSM
D

= 0.298(4) , RSM
D⇤ = 0.254(5) . (32)

Concerning R⇤b , we use the approximate formula pro-
vided in [53], that in our notation reads

R⇤b

RSM
⇤b

= |1 + C
c

LL
|
2
� 1.01Re [Cc

LR
+ C

c

LL
C
c ⇤
LR

]

+ 1.34|Cc

LR
|
2 . (33)

As inputs we use the recent LHCb result, Rexp
⇤b

= 0.242±

0.076 [54], and the SM value RSM
⇤b

= 0.333(13) [53].
In the case of b ! u⌧⌫ transitions, the only relevant

constraint at present is provided by B(B�
u

! ⌧ ⌫̄). Here
the numerical expression reads [40] :

B (B�
u

! ⌧ ⌫̄)

B
�
B�

u ! ⌧ ⌫̄
�SM = |1 + C

u

LL
� 2�u C

u

LR
|
2 , (34)

where �u = m2
B+/ [m⌧ (mb +mu)] ⇡ 3.75. The data

we use are B (B�
u

! ⌧ ⌫̄)
exp

= 1.09(24) ⇥ 10�4 [55] and

B (B�
u

! ⌧ ⌫̄)
SM

= 0.812(54)⇥ 10�4 [56].
In Fig. 1 we report the best values of C

c

LL
and C

c

LR

as obtained from a �2-fit to the low-energy observables.
The values reported in Fig. 1 correspond to the Wil-
son coe�cients renormalized at a reference high-scale
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2

fermions. Focusing on third-generation leptons, and
assuming no leptoquark (LQ) couplings to light right-
handed fields (which are severely constrained by data,
see e.g. [15, 40]), we restrict our attention to the follow-
ing terms in the LQ current:

Jµ

U
=

gU
p
2

2

4q3
L
�µ`3

L
+ �R d

3
R
�µe3

R
+
X

k=1,2

✏qk q
k

L
�µ`3

L

3

5 .

(2)
Here the right-handed fields and the lepton doublet are
understood to be in the corresponding mass-eigenstate
basis, while the basis for the left-handed quarks is left
generic and will be discussed in detail later on.

Integrating out the LQ field at the tree level leads to
the e↵ective interactions

L
LQ
EFT = �

2

v2

h
Cij↵�

LL
O

ij↵�

LL
+ Cij↵�

RR
O

ij↵�

RR

+
⇣
Cij↵�

LR
O

ij↵�

LR
+ h.c.

⌘ i
, (3)

where

O
ij↵�

LL
= (q̄ i

L
�µ`

↵

L
)(¯̀�

L
�µq j

L
) ,

O
ij↵�

LR
= (q̄ i

L
�µ`

↵

L
)(ē�

R
�µd j

R
) ,

O
ij↵�

RR
= (d̄ i

R
�µe

↵

R
)(ē�

R
�µd j

R
) .

The normalization factor in the e↵ective Lagrangian is
v = (

p
2GF )�1/2

⇡ 246 GeV. We also introduce the
e↵ective scale ⇤U =

p
2MU/gU , such that

C33⌧⌧
LL

=
v2

2⇤2
U

. (4)

If we were interested only in b ! c⌧ ⌫̄ transitions, we
would have restricted our attention to the coe�cients
Ccb⌧⌧

LL(LR).
1 However, in order to also address the inter-

play with b ! u⌧ ⌫̄ transitions and, most importantly,
high-energy constraints, we need to analyze the relation
among the Ccb⌧⌧

LL(LR) and coe�cients involving di↵erent
quark flavors.

A. Quark flavor structure

The flavor basis defined by Jµ

U
can be considered the

interaction basis for the LQ field. To address its relation
to the mass-eigenstate basis of up (or down) quarks we
need to write down and diagonalize the Yukawa couplings
in this basis.

As in [3], we work under the assumption of an approx-
imate U(2)3

f
= U(2)Q⇥U(2)U ⇥U(2)D symmetry acting

1
Here and in the rest of this section the up- or down-type flavor

indices referred to qiL indicate the corresponding SU(2)L doublet

in a given (up- or down-type) mass eigenstate.

on the light quark generations. In the limit of unbroken
symmetry, the parameters ✏qk in (2) should vanish and
only third-generation quarks have non-zero Yukawa cou-
plings. To describe a realistic spectrum, we proceed by
introducing two sets of U(2)3

f
breaking terms:

eq , Vu , Vd ⇠ 2Q , (5)

�u , �d ⇠ 2̄U(D) ⇥ 2Q , (6)

where eq denotes the vector eT
q
= (✏q1 , ✏q2). The leading

2Q terms control the heavy! light mixing in the left-
handed sector, whereas the subleading 2̄U(D)⇥2Q terms
are responsible for the light Yukawa couplings.
The hypothesis of minimal U(2)3

f
breaking, proposed

in [41, 42] and employed in previous phenomenologi-
cal analysis (see e.g. [3, 5, 40]), corresponds to the as-
sumption of a single 2Q spurion, or the alignment of
the three terms in (5) in U(2)Q space. Motivated by
model-building considerations [22, 43] and recent data,
we do not enforce this assumption in what follows. In
addition to the minimal case, we will consider also the
possibility of a (small) misalignment of the three lead-
ing U(2)Q-breaking terms. We thus use the approximate
U(2)3

f
symmetry more as an organising principle to clas-

sify the flavor-violating couplings in the theory, rather
than a strict ansatz on the underlying flavor structure.
Under these assumptions, the 3⇥ 3 Yukawa couplings

can be written as (f = u, d):

Yf = yf3

✓
�f Vf

0 1

◆
. (7)

Without loss of generality, the residual flavor symmetry
allows us to choose a basis where both �u and �d are
real. In this basis, the latter are diagonalised by a real
orthogonal matrix,

�f = Of⇥diag

✓
yf1
yf3

,
yf2
yf3

◆
, Of =

✓
cf sf
�sf cf

◆
, (8)

where sf = sin ✓f and cf = cos ✓f , and Vf are in general
two complex vectors, VT

f
= (Vf1 , Vf2).

The natural size of the di↵erent mixing terms can
be deduced by the perturbative diagonalisation of Yu

and Yd. Introducing unitary matrices Lf , defined by

LfYfY
†
f
L†
f
= diag(yf1 , yf2 , yf3) , (9)

it follows that

Lf ⇡

✓
OT 0
0 1

◆ 
1 �VT

f

V†
f

1

!
. (10)

Since the elements of the Cabibbo, Kobayashi, Maskawa
(CKM) matrix are given by Vij = (LuL

†
d
)ij , we deduce

Vu2,d2 = O(�2) , Vu1,d1 = O(�3) , (11)

where � = |Vus| ⇡ 0.22, and

sd � su = �+O(�3) . (12)
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1.1 Low-energy anomalies

Source: ArXiv:2210.13422 (J. Aebischer, 

G. Isidori, M. Pesut, B.A. Stefanek, F. Wilsch)
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FIG. 1. Determination of Cc
LL and Cc

LR from a �2-fit to low-
energy observables. The Wilson coe�cients, assumed to be
real, are renormalized at the reference scale ⇤UV = 1 TeV.
The blue ellipses denote the 1, 2, and 3� contours fitting only
b ! c observables. The black dot indicates the best fit point
of (0.05,�0.02). The dotted lines are obtained including also
B
�
B�

u ! ⌧ ⌫̄
�
in the limit of up alignment. The ��2 = 1

regions preferred by each observable are also indicated, except
in the case of R⇤b where we give the 90% CL region (due to
the large error).

⇤UV = 1 TeV, which is the most appropriate scale
to compare low- and high-energy observables. Taking
into account only the QCD-induced running, we set
C
c

LL
(mb) = C

c

LL
(⇤UV) and

C
c

LR
(mb) = ⌘S C

c

LR
(⇤UV) , ⌘S ⇡ 1.6 . (35)

The first point to notice is that the SM point (Cc

LL
=

C
c

LR
= 0) is excluded at the 3� level. The b ! c observ-

ables favor a region compatible with both a pure left-
handed interaction (Cc

LR
= 0) as well as the case with

equal magnitude right-handed currents Cc

LL
= �C

c

LR
. In

both cases, the pull of the U1 LQ hypothesis with re-
spect to the SM is ��2 = �2

SM � �2
NP ⇡ 11, which

is at the 3� level. As first pointed out in [10], the
case where C

c

LL
= �C

c

LR
is a natural benchmark for a

flavor non-universal gauge model, where both left- and
right-handed third-family quarks and leptons are uni-
fied in fundamental representations of SU(4). As indi-
cated by the dashed blue lines, the preferred region is
essentially unchanged if B(B�

! ⌧ ⌫̄) is added under
the hypothesis of non-minimal U(2)Q breaking and up-
alignment. In either case, we find a best fit point of
C
c

LL
= 0.05 and C

c

LR
= �0.02. On the other hand, the

inclusion of B(B�
! ⌧ ⌫̄) under the hypothesis of mini-

mal U(2)Q breaking (dark green band) disfavors sizable
right-handed currents.

Loop-induced contribution to b ! s`¯̀

This analysis is focused on the leading couplings of the
U1 field to third-generation leptons. Hence, we do not
discuss b ! s`` transitions (` = e, µ) in detail here. How-
ever, we recall that the operator O

sb⌧⌧

LL
mixes via QED

running [57] into operators with light leptons (⌧ ⌧̄ ! `¯̀

loop). This results into a lepton-universal contribution
to the b ! s`¯̀Wilson coe�cient C9 [58], defined accord-
ing to standard conventions (see e.g. [59, 60]). We will
estimate the size of this e↵ect using the results of the fit
in Fig. 1.
To this purpose, we note that besides the leading-log

running from the high-energy matching scale (i.e. MU )
down to mb, we should also include long distance (LD)
contributions resulting from the one-loop matrix element
of the semi-leptonic operator Osb⌧⌧

LL
[61]. Such contribu-

tions are analogous to the LD contributions from charm
penguins where the only di↵erence is that the charm is
replaced by a tau lepton. This can be taken into account
defining a q2-dependent Ce↵

9 (q2), where q2 = m2
``
. Con-

sidering also this e↵ect, we find the following expression
for the correction to Ce↵

9 induced by the U1:

�Ce↵
9 (q2 = 0) =

Csb⌧⌧

LL

V ⇤
ts
Vtb

2

3


log

✓
M2

U

m2
⌧

◆
� 1

�
,

= �
C
c

LL

1 + |Vts|/✏q

2

3


log

✓
M2

U

m2
⌧

◆
� 1

�
. (36)

The last expression follows from the relation between
Csb⌧⌧

LL
and C

c

LL
, which can be deduced from Sect. II A.

For C
c

LL
= 0.05 (best fit point in Fig. 1), MU = 3 TeV,

and ✏q = 2|Vts|, we get �Ce↵
9 (0) ⇡ �0.3. While not

solving all b ! s`¯̀ anomalies, such a correction leads to
a significant improvement in the description of b ! s`¯̀

data [16, 59, 60].

B. High-energy

Collider observables are known to provide rich informa-
tion on the parameter space of vector leptoquark mod-
els [31, 38, 44] explaining the B-meson anomalies, that is
complementary to low-energy data [16, 62]. A variety of
di↵erent underlying processes can be relevant at hadron
colliders such as the LHC. The most important channels
involving the U1 leptoquark are:

• Pair production pp ! U⇤
1U1,

• Quark-gluon scattering qg ! U1`,

• Quark-lepton fusion q` ! U1,

• Drell-Yan pp ! `¯̀.

The main decay channels in models where the leptoquark
predominantly couples to third generation fermions are
U1 ! b⌧+ and U1 ! t⌫̄⌧ . In the case of interest where

• Analyzing this in a model-independent way:
calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.

– 3 –

U1

A large (leading-order) 
contribution to quark-
lepton vector operators 
is needed. 

This can be provided by the  
vector leptoquark. 

U1 ∼ (3, 1, 2/3)

4

In the phenomenological limit su = 0 and Vd = 0, the
light-quark fields in the interaction basis can be identified
as

✓
q1
L

q2
L

◆
=

✓
Vud Vus

Vcd Vcs

◆✓
dL
sL

◆
⇡

✓
uL

cL

◆
, (21)

while q3
L
⌘ bL. The �i⌧

L
become approximately diagonal

in the up-quark mass basis and, setting ✏q1 ! 0, we get

�c⌧

L
= ✏q2 . �u⌧

L
= 0 . (22)

In the following we will investigate the relation between
b ! c and b ! u transitions either assuming the minimal-
breaking relation (20), or employing the ansatz (22).

B. Charged currents in the mass-eigenstate basis

Following the notation of [16], we re-write the part of
L
LQ
EFT relevant to b ! c⌧ ⌫̄ transitions as

Lb!c = �
4GF
p
2
Vcb

⇣
1 + C

c

LL

⌘
(c̄L�µbL)(⌧̄L�

µ⌫L)

� 2 Cc

LR
(c̄LbR)(⌧̄R ⌫L)

�
, (23)

and similarly for b ! u⌧ ⌫̄. The e↵ective coe�cients
C
c,u

LL(LR) defined above are related to the coe�cients in

(3) by

C
c

LL(LR) =
Ccb⌧⌧

LL(LR)

Vcb

, C
u

LL(LR) =
Cub⌧⌧

LL(LR)

Vub

. (24)

Using the �ij

L
introduced in (17), we get

C
c

LL
= C33⌧⌧

LL

✓
1 +

X

i=s,d

Vci

Vcb

�i⌧

L

◆
⌘ C33⌧⌧

LL

✓
1 +

✏q
|Vcb|

◆
,

C
c

LR
= �⇤

R
C
c

LL
, (25)

where we defined the e↵ective parameter ✏q to simplify
the notation. Concerning the b ! u coe�cients, assum-
ing the minimal-breaking relation (20) we get

C
u

LL(LR) = C
c

LL(LR) , (26)

whereas the non-minimal ansatz (22) leads to

C
u

LL(LR) =
C
c

LL(LR)

1 + ✏q/|Vcb|
. (27)

III. OBSERVABLES

A. Low-energy

The values of the e↵ective couplings Cc

LL
and C

c

LR
can

be fit at low energies using the experimental information

on the LFU ratios RD, RD⇤ , and R⇤b . We have explicitly
checked that other poorly measured observables, such as
polarisation asymmetries in b ! c⌧ ⌫̄ transitions or the
loose bound on B(B�

c
! ⌧ ⌫̄) [45], do not currently pro-

vide additional constraints.
The values of RD and RD⇤ , recently measured by the

LHCb collaboration, RD = 0.441± 0.060stat ± 0.066syst,
RD⇤ = 0.281± 0.018stat ± 0.024syst, with correlation ⇢ =
�0.43, shifts the world average of these ratios to [46]

Rexp
D⇤ = 0.285± 0.010stat ± 0.008syst , (28)

Rexp
D

= 0.358± 0.025stat ± 0.012syst , (29)

with correlation ⇢ = �0.29. We fit these results within
our model using the approximate numerical formulae re-
ported in [16]:

RD

RSM
D

= |1 + C
c

LL
|
2
� 3.00Re [(1 + C

c

LL
) Cc ⇤

LR
]

+ 4.12|Cc

LR
|
2 , (30)

RD⇤

RSM
D⇤

= |1 + C
c

LL
|
2
� 0.24Re [(1 + C

c

LL
) Cc ⇤

LR
]

+ 0.16|Cc

LR
|
2 , (31)

where the Wilson coe�cients are understood to be reno-
malized at the scale µ = mb. As reference values for the
SM predictions we use the HFLAV averages [46]:5

RSM
D

= 0.298(4) , RSM
D⇤ = 0.254(5) . (32)

Concerning R⇤b , we use the approximate formula pro-
vided in [53], that in our notation reads

R⇤b

RSM
⇤b

= |1 + C
c

LL
|
2
� 1.01Re [Cc

LR
+ C

c

LL
C
c ⇤
LR

]

+ 1.34|Cc

LR
|
2 . (33)

As inputs we use the recent LHCb result, Rexp
⇤b

= 0.242±

0.076 [54], and the SM value RSM
⇤b

= 0.333(13) [53].
In the case of b ! u⌧⌫ transitions, the only relevant

constraint at present is provided by B(B�
u

! ⌧ ⌫̄). Here
the numerical expression reads [40] :

B (B�
u

! ⌧ ⌫̄)

B
�
B�

u ! ⌧ ⌫̄
�SM = |1 + C

u

LL
� 2�u C

u

LR
|
2 , (34)

where �u = m2
B+/ [m⌧ (mb +mu)] ⇡ 3.75. The data

we use are B (B�
u

! ⌧ ⌫̄)
exp

= 1.09(24) ⇥ 10�4 [55] and

B (B�
u

! ⌧ ⌫̄)
SM

= 0.812(54)⇥ 10�4 [56].
In Fig. 1 we report the best values of C

c

LL
and C

c

LR

as obtained from a �2-fit to the low-energy observables.
The values reported in Fig. 1 correspond to the Wil-
son coe�cients renormalized at a reference high-scale
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2

fermions. Focusing on third-generation leptons, and
assuming no leptoquark (LQ) couplings to light right-
handed fields (which are severely constrained by data,
see e.g. [15, 40]), we restrict our attention to the follow-
ing terms in the LQ current:

Jµ

U
=

gU
p
2

2

4q3
L
�µ`3

L
+ �R d

3
R
�µe3

R
+
X

k=1,2

✏qk q
k

L
�µ`3

L

3

5 .

(2)
Here the right-handed fields and the lepton doublet are
understood to be in the corresponding mass-eigenstate
basis, while the basis for the left-handed quarks is left
generic and will be discussed in detail later on.

Integrating out the LQ field at the tree level leads to
the e↵ective interactions

L
LQ
EFT = �

2

v2

h
Cij↵�

LL
O

ij↵�

LL
+ Cij↵�

RR
O

ij↵�

RR

+
⇣
Cij↵�

LR
O

ij↵�

LR
+ h.c.

⌘ i
, (3)

where

O
ij↵�

LL
= (q̄ i

L
�µ`

↵

L
)(¯̀�

L
�µq j

L
) ,

O
ij↵�

LR
= (q̄ i

L
�µ`

↵

L
)(ē�

R
�µd j

R
) ,

O
ij↵�

RR
= (d̄ i

R
�µe

↵

R
)(ē�

R
�µd j

R
) .

The normalization factor in the e↵ective Lagrangian is
v = (

p
2GF )�1/2

⇡ 246 GeV. We also introduce the
e↵ective scale ⇤U =

p
2MU/gU , such that

C33⌧⌧
LL

=
v2

2⇤2
U

. (4)

If we were interested only in b ! c⌧ ⌫̄ transitions, we
would have restricted our attention to the coe�cients
Ccb⌧⌧

LL(LR).
1 However, in order to also address the inter-

play with b ! u⌧ ⌫̄ transitions and, most importantly,
high-energy constraints, we need to analyze the relation
among the Ccb⌧⌧

LL(LR) and coe�cients involving di↵erent
quark flavors.

A. Quark flavor structure

The flavor basis defined by Jµ

U
can be considered the

interaction basis for the LQ field. To address its relation
to the mass-eigenstate basis of up (or down) quarks we
need to write down and diagonalize the Yukawa couplings
in this basis.

As in [3], we work under the assumption of an approx-
imate U(2)3

f
= U(2)Q⇥U(2)U ⇥U(2)D symmetry acting

1
Here and in the rest of this section the up- or down-type flavor

indices referred to qiL indicate the corresponding SU(2)L doublet

in a given (up- or down-type) mass eigenstate.

on the light quark generations. In the limit of unbroken
symmetry, the parameters ✏qk in (2) should vanish and
only third-generation quarks have non-zero Yukawa cou-
plings. To describe a realistic spectrum, we proceed by
introducing two sets of U(2)3

f
breaking terms:

eq , Vu , Vd ⇠ 2Q , (5)

�u , �d ⇠ 2̄U(D) ⇥ 2Q , (6)

where eq denotes the vector eT
q
= (✏q1 , ✏q2). The leading

2Q terms control the heavy! light mixing in the left-
handed sector, whereas the subleading 2̄U(D)⇥2Q terms
are responsible for the light Yukawa couplings.
The hypothesis of minimal U(2)3

f
breaking, proposed

in [41, 42] and employed in previous phenomenologi-
cal analysis (see e.g. [3, 5, 40]), corresponds to the as-
sumption of a single 2Q spurion, or the alignment of
the three terms in (5) in U(2)Q space. Motivated by
model-building considerations [22, 43] and recent data,
we do not enforce this assumption in what follows. In
addition to the minimal case, we will consider also the
possibility of a (small) misalignment of the three lead-
ing U(2)Q-breaking terms. We thus use the approximate
U(2)3

f
symmetry more as an organising principle to clas-

sify the flavor-violating couplings in the theory, rather
than a strict ansatz on the underlying flavor structure.
Under these assumptions, the 3⇥ 3 Yukawa couplings

can be written as (f = u, d):

Yf = yf3

✓
�f Vf

0 1

◆
. (7)

Without loss of generality, the residual flavor symmetry
allows us to choose a basis where both �u and �d are
real. In this basis, the latter are diagonalised by a real
orthogonal matrix,

�f = Of⇥diag

✓
yf1
yf3

,
yf2
yf3

◆
, Of =

✓
cf sf
�sf cf

◆
, (8)

where sf = sin ✓f and cf = cos ✓f , and Vf are in general
two complex vectors, VT

f
= (Vf1 , Vf2).

The natural size of the di↵erent mixing terms can
be deduced by the perturbative diagonalisation of Yu

and Yd. Introducing unitary matrices Lf , defined by

LfYfY
†
f
L†
f
= diag(yf1 , yf2 , yf3) , (9)

it follows that

Lf ⇡

✓
OT 0
0 1

◆ 
1 �VT

f

V†
f

1

!
. (10)

Since the elements of the Cabibbo, Kobayashi, Maskawa
(CKM) matrix are given by Vij = (LuL

†
d
)ij , we deduce

Vu2,d2 = O(�2) , Vu1,d1 = O(�3) , (11)

where � = |Vus| ⇡ 0.22, and

sd � su = �+O(�3) . (12)
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FIG. 1. Determination of Cc
LL and Cc

LR from a �2-fit to low-
energy observables. The Wilson coe�cients, assumed to be
real, are renormalized at the reference scale ⇤UV = 1 TeV.
The blue ellipses denote the 1, 2, and 3� contours fitting only
b ! c observables. The black dot indicates the best fit point
of (0.05,�0.02). The dotted lines are obtained including also
B
�
B�

u ! ⌧ ⌫̄
�
in the limit of up alignment. The ��2 = 1

regions preferred by each observable are also indicated, except
in the case of R⇤b where we give the 90% CL region (due to
the large error).

⇤UV = 1 TeV, which is the most appropriate scale
to compare low- and high-energy observables. Taking
into account only the QCD-induced running, we set
C
c

LL
(mb) = C

c

LL
(⇤UV) and

C
c

LR
(mb) = ⌘S C

c

LR
(⇤UV) , ⌘S ⇡ 1.6 . (35)

The first point to notice is that the SM point (Cc

LL
=

C
c

LR
= 0) is excluded at the 3� level. The b ! c observ-

ables favor a region compatible with both a pure left-
handed interaction (Cc

LR
= 0) as well as the case with

equal magnitude right-handed currents Cc

LL
= �C

c

LR
. In

both cases, the pull of the U1 LQ hypothesis with re-
spect to the SM is ��2 = �2

SM � �2
NP ⇡ 11, which

is at the 3� level. As first pointed out in [10], the
case where C

c

LL
= �C

c

LR
is a natural benchmark for a

flavor non-universal gauge model, where both left- and
right-handed third-family quarks and leptons are uni-
fied in fundamental representations of SU(4). As indi-
cated by the dashed blue lines, the preferred region is
essentially unchanged if B(B�

! ⌧ ⌫̄) is added under
the hypothesis of non-minimal U(2)Q breaking and up-
alignment. In either case, we find a best fit point of
C
c

LL
= 0.05 and C

c

LR
= �0.02. On the other hand, the

inclusion of B(B�
! ⌧ ⌫̄) under the hypothesis of mini-

mal U(2)Q breaking (dark green band) disfavors sizable
right-handed currents.

Loop-induced contribution to b ! s`¯̀

This analysis is focused on the leading couplings of the
U1 field to third-generation leptons. Hence, we do not
discuss b ! s`` transitions (` = e, µ) in detail here. How-
ever, we recall that the operator O

sb⌧⌧

LL
mixes via QED

running [57] into operators with light leptons (⌧ ⌧̄ ! `¯̀

loop). This results into a lepton-universal contribution
to the b ! s`¯̀Wilson coe�cient C9 [58], defined accord-
ing to standard conventions (see e.g. [59, 60]). We will
estimate the size of this e↵ect using the results of the fit
in Fig. 1.
To this purpose, we note that besides the leading-log

running from the high-energy matching scale (i.e. MU )
down to mb, we should also include long distance (LD)
contributions resulting from the one-loop matrix element
of the semi-leptonic operator Osb⌧⌧

LL
[61]. Such contribu-

tions are analogous to the LD contributions from charm
penguins where the only di↵erence is that the charm is
replaced by a tau lepton. This can be taken into account
defining a q2-dependent Ce↵

9 (q2), where q2 = m2
``
. Con-

sidering also this e↵ect, we find the following expression
for the correction to Ce↵

9 induced by the U1:

�Ce↵
9 (q2 = 0) =

Csb⌧⌧

LL

V ⇤
ts
Vtb

2

3


log

✓
M2

U

m2
⌧

◆
� 1

�
,

= �
C
c

LL

1 + |Vts|/✏q

2

3


log

✓
M2

U

m2
⌧

◆
� 1

�
. (36)

The last expression follows from the relation between
Csb⌧⌧

LL
and C

c

LL
, which can be deduced from Sect. II A.

For C
c

LL
= 0.05 (best fit point in Fig. 1), MU = 3 TeV,

and ✏q = 2|Vts|, we get �Ce↵
9 (0) ⇡ �0.3. While not

solving all b ! s`¯̀ anomalies, such a correction leads to
a significant improvement in the description of b ! s`¯̀

data [16, 59, 60].

B. High-energy

Collider observables are known to provide rich informa-
tion on the parameter space of vector leptoquark mod-
els [31, 38, 44] explaining the B-meson anomalies, that is
complementary to low-energy data [16, 62]. A variety of
di↵erent underlying processes can be relevant at hadron
colliders such as the LHC. The most important channels
involving the U1 leptoquark are:

• Pair production pp ! U⇤
1U1,

• Quark-gluon scattering qg ! U1`,

• Quark-lepton fusion q` ! U1,

• Drell-Yan pp ! `¯̀.

The main decay channels in models where the leptoquark
predominantly couples to third generation fermions are
U1 ! b⌧+ and U1 ! t⌫̄⌧ . In the case of interest where

• Analyzing this in a model-independent way:
calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.

– 3 –

U1

A large (leading-order) 
contribution to quark-
lepton vector operators 
is needed. 

This can be provided by the  
vector leptoquark. 

U1 ∼ (3, 1, 2/3)

4

In the phenomenological limit su = 0 and Vd = 0, the
light-quark fields in the interaction basis can be identified
as

✓
q1
L

q2
L

◆
=

✓
Vud Vus

Vcd Vcs

◆✓
dL
sL

◆
⇡

✓
uL

cL

◆
, (21)

while q3
L
⌘ bL. The �i⌧

L
become approximately diagonal

in the up-quark mass basis and, setting ✏q1 ! 0, we get

�c⌧

L
= ✏q2 . �u⌧

L
= 0 . (22)

In the following we will investigate the relation between
b ! c and b ! u transitions either assuming the minimal-
breaking relation (20), or employing the ansatz (22).

B. Charged currents in the mass-eigenstate basis

Following the notation of [16], we re-write the part of
L
LQ
EFT relevant to b ! c⌧ ⌫̄ transitions as

Lb!c = �
4GF
p
2
Vcb

⇣
1 + C

c

LL

⌘
(c̄L�µbL)(⌧̄L�

µ⌫L)

� 2 Cc

LR
(c̄LbR)(⌧̄R ⌫L)

�
, (23)

and similarly for b ! u⌧ ⌫̄. The e↵ective coe�cients
C
c,u

LL(LR) defined above are related to the coe�cients in

(3) by

C
c

LL(LR) =
Ccb⌧⌧

LL(LR)

Vcb

, C
u

LL(LR) =
Cub⌧⌧

LL(LR)

Vub

. (24)

Using the �ij

L
introduced in (17), we get

C
c

LL
= C33⌧⌧

LL

✓
1 +

X

i=s,d

Vci

Vcb

�i⌧

L

◆
⌘ C33⌧⌧

LL

✓
1 +

✏q
|Vcb|

◆
,

C
c

LR
= �⇤

R
C
c

LL
, (25)

where we defined the e↵ective parameter ✏q to simplify
the notation. Concerning the b ! u coe�cients, assum-
ing the minimal-breaking relation (20) we get

C
u

LL(LR) = C
c

LL(LR) , (26)

whereas the non-minimal ansatz (22) leads to

C
u

LL(LR) =
C
c

LL(LR)

1 + ✏q/|Vcb|
. (27)

III. OBSERVABLES

A. Low-energy

The values of the e↵ective couplings Cc

LL
and C

c

LR
can

be fit at low energies using the experimental information

on the LFU ratios RD, RD⇤ , and R⇤b . We have explicitly
checked that other poorly measured observables, such as
polarisation asymmetries in b ! c⌧ ⌫̄ transitions or the
loose bound on B(B�

c
! ⌧ ⌫̄) [45], do not currently pro-

vide additional constraints.
The values of RD and RD⇤ , recently measured by the

LHCb collaboration, RD = 0.441± 0.060stat ± 0.066syst,
RD⇤ = 0.281± 0.018stat ± 0.024syst, with correlation ⇢ =
�0.43, shifts the world average of these ratios to [46]

Rexp
D⇤ = 0.285± 0.010stat ± 0.008syst , (28)

Rexp
D

= 0.358± 0.025stat ± 0.012syst , (29)

with correlation ⇢ = �0.29. We fit these results within
our model using the approximate numerical formulae re-
ported in [16]:

RD

RSM
D

= |1 + C
c

LL
|
2
� 3.00Re [(1 + C

c

LL
) Cc ⇤

LR
]

+ 4.12|Cc

LR
|
2 , (30)

RD⇤

RSM
D⇤

= |1 + C
c

LL
|
2
� 0.24Re [(1 + C

c

LL
) Cc ⇤

LR
]

+ 0.16|Cc

LR
|
2 , (31)

where the Wilson coe�cients are understood to be reno-
malized at the scale µ = mb. As reference values for the
SM predictions we use the HFLAV averages [46]:5

RSM
D

= 0.298(4) , RSM
D⇤ = 0.254(5) . (32)

Concerning R⇤b , we use the approximate formula pro-
vided in [53], that in our notation reads

R⇤b

RSM
⇤b

= |1 + C
c

LL
|
2
� 1.01Re [Cc

LR
+ C

c

LL
C
c ⇤
LR

]

+ 1.34|Cc

LR
|
2 . (33)

As inputs we use the recent LHCb result, Rexp
⇤b

= 0.242±

0.076 [54], and the SM value RSM
⇤b

= 0.333(13) [53].
In the case of b ! u⌧⌫ transitions, the only relevant

constraint at present is provided by B(B�
u

! ⌧ ⌫̄). Here
the numerical expression reads [40] :

B (B�
u

! ⌧ ⌫̄)

B
�
B�

u ! ⌧ ⌫̄
�SM = |1 + C

u

LL
� 2�u C

u

LR
|
2 , (34)

where �u = m2
B+/ [m⌧ (mb +mu)] ⇡ 3.75. The data

we use are B (B�
u

! ⌧ ⌫̄)
exp

= 1.09(24) ⇥ 10�4 [55] and

B (B�
u

! ⌧ ⌫̄)
SM

= 0.812(54)⇥ 10�4 [56].
In Fig. 1 we report the best values of C

c

LL
and C

c

LR

as obtained from a �2-fit to the low-energy observables.
The values reported in Fig. 1 correspond to the Wil-
son coe�cients renormalized at a reference high-scale

5
More details about the SM predictions of RD and RD⇤ and their

uncertainties can be found in [47–52]

2

fermions. Focusing on third-generation leptons, and
assuming no leptoquark (LQ) couplings to light right-
handed fields (which are severely constrained by data,
see e.g. [15, 40]), we restrict our attention to the follow-
ing terms in the LQ current:

Jµ

U
=

gU
p
2

2

4q3
L
�µ`3

L
+ �R d

3
R
�µe3

R
+
X

k=1,2

✏qk q
k

L
�µ`3

L

3

5 .

(2)
Here the right-handed fields and the lepton doublet are
understood to be in the corresponding mass-eigenstate
basis, while the basis for the left-handed quarks is left
generic and will be discussed in detail later on.

Integrating out the LQ field at the tree level leads to
the e↵ective interactions

L
LQ
EFT = �

2

v2

h
Cij↵�

LL
O

ij↵�

LL
+ Cij↵�

RR
O

ij↵�

RR

+
⇣
Cij↵�

LR
O

ij↵�

LR
+ h.c.

⌘ i
, (3)

where

O
ij↵�

LL
= (q̄ i

L
�µ`

↵

L
)(¯̀�

L
�µq j

L
) ,

O
ij↵�

LR
= (q̄ i

L
�µ`

↵

L
)(ē�

R
�µd j

R
) ,

O
ij↵�

RR
= (d̄ i

R
�µe

↵

R
)(ē�

R
�µd j

R
) .

The normalization factor in the e↵ective Lagrangian is
v = (

p
2GF )�1/2

⇡ 246 GeV. We also introduce the
e↵ective scale ⇤U =

p
2MU/gU , such that

C33⌧⌧
LL

=
v2

2⇤2
U

. (4)

If we were interested only in b ! c⌧ ⌫̄ transitions, we
would have restricted our attention to the coe�cients
Ccb⌧⌧

LL(LR).
1 However, in order to also address the inter-

play with b ! u⌧ ⌫̄ transitions and, most importantly,
high-energy constraints, we need to analyze the relation
among the Ccb⌧⌧

LL(LR) and coe�cients involving di↵erent
quark flavors.

A. Quark flavor structure

The flavor basis defined by Jµ

U
can be considered the

interaction basis for the LQ field. To address its relation
to the mass-eigenstate basis of up (or down) quarks we
need to write down and diagonalize the Yukawa couplings
in this basis.

As in [3], we work under the assumption of an approx-
imate U(2)3

f
= U(2)Q⇥U(2)U ⇥U(2)D symmetry acting

1
Here and in the rest of this section the up- or down-type flavor

indices referred to qiL indicate the corresponding SU(2)L doublet

in a given (up- or down-type) mass eigenstate.

on the light quark generations. In the limit of unbroken
symmetry, the parameters ✏qk in (2) should vanish and
only third-generation quarks have non-zero Yukawa cou-
plings. To describe a realistic spectrum, we proceed by
introducing two sets of U(2)3

f
breaking terms:

eq , Vu , Vd ⇠ 2Q , (5)

�u , �d ⇠ 2̄U(D) ⇥ 2Q , (6)

where eq denotes the vector eT
q
= (✏q1 , ✏q2). The leading

2Q terms control the heavy! light mixing in the left-
handed sector, whereas the subleading 2̄U(D)⇥2Q terms
are responsible for the light Yukawa couplings.
The hypothesis of minimal U(2)3

f
breaking, proposed

in [41, 42] and employed in previous phenomenologi-
cal analysis (see e.g. [3, 5, 40]), corresponds to the as-
sumption of a single 2Q spurion, or the alignment of
the three terms in (5) in U(2)Q space. Motivated by
model-building considerations [22, 43] and recent data,
we do not enforce this assumption in what follows. In
addition to the minimal case, we will consider also the
possibility of a (small) misalignment of the three lead-
ing U(2)Q-breaking terms. We thus use the approximate
U(2)3

f
symmetry more as an organising principle to clas-

sify the flavor-violating couplings in the theory, rather
than a strict ansatz on the underlying flavor structure.
Under these assumptions, the 3⇥ 3 Yukawa couplings

can be written as (f = u, d):

Yf = yf3

✓
�f Vf

0 1

◆
. (7)

Without loss of generality, the residual flavor symmetry
allows us to choose a basis where both �u and �d are
real. In this basis, the latter are diagonalised by a real
orthogonal matrix,

�f = Of⇥diag

✓
yf1
yf3

,
yf2
yf3

◆
, Of =

✓
cf sf
�sf cf

◆
, (8)

where sf = sin ✓f and cf = cos ✓f , and Vf are in general
two complex vectors, VT

f
= (Vf1 , Vf2).

The natural size of the di↵erent mixing terms can
be deduced by the perturbative diagonalisation of Yu

and Yd. Introducing unitary matrices Lf , defined by

LfYfY
†
f
L†
f
= diag(yf1 , yf2 , yf3) , (9)

it follows that

Lf ⇡

✓
OT 0
0 1

◆ 
1 �VT

f

V†
f

1

!
. (10)

Since the elements of the Cabibbo, Kobayashi, Maskawa
(CKM) matrix are given by Vij = (LuL

†
d
)ij , we deduce

Vu2,d2 = O(�2) , Vu1,d1 = O(�3) , (11)

where � = |Vus| ⇡ 0.22, and

sd � su = �+O(�3) . (12)
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FIG. 1. Determination of Cc
LL and Cc

LR from a �2-fit to low-
energy observables. The Wilson coe�cients, assumed to be
real, are renormalized at the reference scale ⇤UV = 1 TeV.
The blue ellipses denote the 1, 2, and 3� contours fitting only
b ! c observables. The black dot indicates the best fit point
of (0.05,�0.02). The dotted lines are obtained including also
B
�
B�

u ! ⌧ ⌫̄
�
in the limit of up alignment. The ��2 = 1

regions preferred by each observable are also indicated, except
in the case of R⇤b where we give the 90% CL region (due to
the large error).

⇤UV = 1 TeV, which is the most appropriate scale
to compare low- and high-energy observables. Taking
into account only the QCD-induced running, we set
C
c

LL
(mb) = C

c

LL
(⇤UV) and

C
c

LR
(mb) = ⌘S C

c

LR
(⇤UV) , ⌘S ⇡ 1.6 . (35)

The first point to notice is that the SM point (Cc

LL
=

C
c

LR
= 0) is excluded at the 3� level. The b ! c observ-

ables favor a region compatible with both a pure left-
handed interaction (Cc

LR
= 0) as well as the case with

equal magnitude right-handed currents Cc

LL
= �C

c

LR
. In

both cases, the pull of the U1 LQ hypothesis with re-
spect to the SM is ��2 = �2

SM � �2
NP ⇡ 11, which

is at the 3� level. As first pointed out in [10], the
case where C

c

LL
= �C

c

LR
is a natural benchmark for a

flavor non-universal gauge model, where both left- and
right-handed third-family quarks and leptons are uni-
fied in fundamental representations of SU(4). As indi-
cated by the dashed blue lines, the preferred region is
essentially unchanged if B(B�

! ⌧ ⌫̄) is added under
the hypothesis of non-minimal U(2)Q breaking and up-
alignment. In either case, we find a best fit point of
C
c

LL
= 0.05 and C

c

LR
= �0.02. On the other hand, the

inclusion of B(B�
! ⌧ ⌫̄) under the hypothesis of mini-

mal U(2)Q breaking (dark green band) disfavors sizable
right-handed currents.

Loop-induced contribution to b ! s`¯̀

This analysis is focused on the leading couplings of the
U1 field to third-generation leptons. Hence, we do not
discuss b ! s`` transitions (` = e, µ) in detail here. How-
ever, we recall that the operator O

sb⌧⌧

LL
mixes via QED

running [57] into operators with light leptons (⌧ ⌧̄ ! `¯̀

loop). This results into a lepton-universal contribution
to the b ! s`¯̀Wilson coe�cient C9 [58], defined accord-
ing to standard conventions (see e.g. [59, 60]). We will
estimate the size of this e↵ect using the results of the fit
in Fig. 1.
To this purpose, we note that besides the leading-log

running from the high-energy matching scale (i.e. MU )
down to mb, we should also include long distance (LD)
contributions resulting from the one-loop matrix element
of the semi-leptonic operator Osb⌧⌧

LL
[61]. Such contribu-

tions are analogous to the LD contributions from charm
penguins where the only di↵erence is that the charm is
replaced by a tau lepton. This can be taken into account
defining a q2-dependent Ce↵

9 (q2), where q2 = m2
``
. Con-

sidering also this e↵ect, we find the following expression
for the correction to Ce↵

9 induced by the U1:

�Ce↵
9 (q2 = 0) =

Csb⌧⌧

LL

V ⇤
ts
Vtb

2

3


log

✓
M2

U

m2
⌧

◆
� 1

�
,

= �
C
c

LL

1 + |Vts|/✏q

2

3


log

✓
M2

U

m2
⌧

◆
� 1

�
. (36)

The last expression follows from the relation between
Csb⌧⌧

LL
and C

c

LL
, which can be deduced from Sect. II A.

For C
c

LL
= 0.05 (best fit point in Fig. 1), MU = 3 TeV,

and ✏q = 2|Vts|, we get �Ce↵
9 (0) ⇡ �0.3. While not

solving all b ! s`¯̀ anomalies, such a correction leads to
a significant improvement in the description of b ! s`¯̀

data [16, 59, 60].

B. High-energy

Collider observables are known to provide rich informa-
tion on the parameter space of vector leptoquark mod-
els [31, 38, 44] explaining the B-meson anomalies, that is
complementary to low-energy data [16, 62]. A variety of
di↵erent underlying processes can be relevant at hadron
colliders such as the LHC. The most important channels
involving the U1 leptoquark are:

• Pair production pp ! U⇤
1U1,

• Quark-gluon scattering qg ! U1`,

• Quark-lepton fusion q` ! U1,

• Drell-Yan pp ! `¯̀.

The main decay channels in models where the leptoquark
predominantly couples to third generation fermions are
U1 ! b⌧+ and U1 ! t⌫̄⌧ . In the case of interest where

• Analyzing this in a model-independent way:
calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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U1

A large (leading-order) 
contribution to quark-
lepton vector operators 
is needed. 

This can be provided by the  
vector leptoquark. 

U1 ∼ (3, 1, 2/3)

4

In the phenomenological limit su = 0 and Vd = 0, the
light-quark fields in the interaction basis can be identified
as

✓
q1
L

q2
L

◆
=

✓
Vud Vus

Vcd Vcs

◆✓
dL
sL

◆
⇡

✓
uL

cL

◆
, (21)

while q3
L
⌘ bL. The �i⌧

L
become approximately diagonal

in the up-quark mass basis and, setting ✏q1 ! 0, we get

�c⌧

L
= ✏q2 . �u⌧

L
= 0 . (22)

In the following we will investigate the relation between
b ! c and b ! u transitions either assuming the minimal-
breaking relation (20), or employing the ansatz (22).

B. Charged currents in the mass-eigenstate basis

Following the notation of [16], we re-write the part of
L
LQ
EFT relevant to b ! c⌧ ⌫̄ transitions as

Lb!c = �
4GF
p
2
Vcb

⇣
1 + C

c

LL

⌘
(c̄L�µbL)(⌧̄L�

µ⌫L)

� 2 Cc

LR
(c̄LbR)(⌧̄R ⌫L)

�
, (23)

and similarly for b ! u⌧ ⌫̄. The e↵ective coe�cients
C
c,u

LL(LR) defined above are related to the coe�cients in

(3) by

C
c

LL(LR) =
Ccb⌧⌧

LL(LR)

Vcb

, C
u

LL(LR) =
Cub⌧⌧

LL(LR)

Vub

. (24)

Using the �ij

L
introduced in (17), we get

C
c

LL
= C33⌧⌧

LL

✓
1 +

X

i=s,d

Vci

Vcb

�i⌧

L

◆
⌘ C33⌧⌧

LL

✓
1 +

✏q
|Vcb|

◆
,

C
c

LR
= �⇤

R
C
c

LL
, (25)

where we defined the e↵ective parameter ✏q to simplify
the notation. Concerning the b ! u coe�cients, assum-
ing the minimal-breaking relation (20) we get

C
u

LL(LR) = C
c

LL(LR) , (26)

whereas the non-minimal ansatz (22) leads to

C
u

LL(LR) =
C
c

LL(LR)

1 + ✏q/|Vcb|
. (27)

III. OBSERVABLES

A. Low-energy

The values of the e↵ective couplings Cc

LL
and C

c

LR
can

be fit at low energies using the experimental information

on the LFU ratios RD, RD⇤ , and R⇤b . We have explicitly
checked that other poorly measured observables, such as
polarisation asymmetries in b ! c⌧ ⌫̄ transitions or the
loose bound on B(B�

c
! ⌧ ⌫̄) [45], do not currently pro-

vide additional constraints.
The values of RD and RD⇤ , recently measured by the

LHCb collaboration, RD = 0.441± 0.060stat ± 0.066syst,
RD⇤ = 0.281± 0.018stat ± 0.024syst, with correlation ⇢ =
�0.43, shifts the world average of these ratios to [46]

Rexp
D⇤ = 0.285± 0.010stat ± 0.008syst , (28)

Rexp
D

= 0.358± 0.025stat ± 0.012syst , (29)

with correlation ⇢ = �0.29. We fit these results within
our model using the approximate numerical formulae re-
ported in [16]:

RD

RSM
D

= |1 + C
c

LL
|
2
� 3.00Re [(1 + C

c

LL
) Cc ⇤

LR
]

+ 4.12|Cc

LR
|
2 , (30)

RD⇤

RSM
D⇤

= |1 + C
c

LL
|
2
� 0.24Re [(1 + C

c

LL
) Cc ⇤

LR
]

+ 0.16|Cc

LR
|
2 , (31)

where the Wilson coe�cients are understood to be reno-
malized at the scale µ = mb. As reference values for the
SM predictions we use the HFLAV averages [46]:5

RSM
D

= 0.298(4) , RSM
D⇤ = 0.254(5) . (32)

Concerning R⇤b , we use the approximate formula pro-
vided in [53], that in our notation reads

R⇤b

RSM
⇤b

= |1 + C
c

LL
|
2
� 1.01Re [Cc

LR
+ C

c

LL
C
c ⇤
LR

]

+ 1.34|Cc

LR
|
2 . (33)

As inputs we use the recent LHCb result, Rexp
⇤b

= 0.242±

0.076 [54], and the SM value RSM
⇤b

= 0.333(13) [53].
In the case of b ! u⌧⌫ transitions, the only relevant

constraint at present is provided by B(B�
u

! ⌧ ⌫̄). Here
the numerical expression reads [40] :

B (B�
u

! ⌧ ⌫̄)

B
�
B�

u ! ⌧ ⌫̄
�SM = |1 + C

u

LL
� 2�u C

u

LR
|
2 , (34)

where �u = m2
B+/ [m⌧ (mb +mu)] ⇡ 3.75. The data

we use are B (B�
u

! ⌧ ⌫̄)
exp

= 1.09(24) ⇥ 10�4 [55] and

B (B�
u

! ⌧ ⌫̄)
SM

= 0.812(54)⇥ 10�4 [56].
In Fig. 1 we report the best values of C

c

LL
and C

c

LR

as obtained from a �2-fit to the low-energy observables.
The values reported in Fig. 1 correspond to the Wil-
son coe�cients renormalized at a reference high-scale

5
More details about the SM predictions of RD and RD⇤ and their

uncertainties can be found in [47–52]

2

fermions. Focusing on third-generation leptons, and
assuming no leptoquark (LQ) couplings to light right-
handed fields (which are severely constrained by data,
see e.g. [15, 40]), we restrict our attention to the follow-
ing terms in the LQ current:

Jµ

U
=

gU
p
2

2

4q3
L
�µ`3

L
+ �R d

3
R
�µe3

R
+
X

k=1,2

✏qk q
k

L
�µ`3

L

3

5 .

(2)
Here the right-handed fields and the lepton doublet are
understood to be in the corresponding mass-eigenstate
basis, while the basis for the left-handed quarks is left
generic and will be discussed in detail later on.

Integrating out the LQ field at the tree level leads to
the e↵ective interactions

L
LQ
EFT = �

2

v2

h
Cij↵�

LL
O

ij↵�

LL
+ Cij↵�

RR
O

ij↵�

RR

+
⇣
Cij↵�

LR
O

ij↵�

LR
+ h.c.

⌘ i
, (3)

where

O
ij↵�

LL
= (q̄ i

L
�µ`

↵

L
)(¯̀�

L
�µq j

L
) ,

O
ij↵�

LR
= (q̄ i

L
�µ`

↵

L
)(ē�

R
�µd j

R
) ,

O
ij↵�

RR
= (d̄ i

R
�µe

↵

R
)(ē�

R
�µd j

R
) .

The normalization factor in the e↵ective Lagrangian is
v = (

p
2GF )�1/2

⇡ 246 GeV. We also introduce the
e↵ective scale ⇤U =

p
2MU/gU , such that

C33⌧⌧
LL

=
v2

2⇤2
U

. (4)

If we were interested only in b ! c⌧ ⌫̄ transitions, we
would have restricted our attention to the coe�cients
Ccb⌧⌧

LL(LR).
1 However, in order to also address the inter-

play with b ! u⌧ ⌫̄ transitions and, most importantly,
high-energy constraints, we need to analyze the relation
among the Ccb⌧⌧

LL(LR) and coe�cients involving di↵erent
quark flavors.

A. Quark flavor structure

The flavor basis defined by Jµ

U
can be considered the

interaction basis for the LQ field. To address its relation
to the mass-eigenstate basis of up (or down) quarks we
need to write down and diagonalize the Yukawa couplings
in this basis.

As in [3], we work under the assumption of an approx-
imate U(2)3

f
= U(2)Q⇥U(2)U ⇥U(2)D symmetry acting

1
Here and in the rest of this section the up- or down-type flavor

indices referred to qiL indicate the corresponding SU(2)L doublet

in a given (up- or down-type) mass eigenstate.

on the light quark generations. In the limit of unbroken
symmetry, the parameters ✏qk in (2) should vanish and
only third-generation quarks have non-zero Yukawa cou-
plings. To describe a realistic spectrum, we proceed by
introducing two sets of U(2)3

f
breaking terms:

eq , Vu , Vd ⇠ 2Q , (5)

�u , �d ⇠ 2̄U(D) ⇥ 2Q , (6)

where eq denotes the vector eT
q
= (✏q1 , ✏q2). The leading

2Q terms control the heavy! light mixing in the left-
handed sector, whereas the subleading 2̄U(D)⇥2Q terms
are responsible for the light Yukawa couplings.
The hypothesis of minimal U(2)3

f
breaking, proposed

in [41, 42] and employed in previous phenomenologi-
cal analysis (see e.g. [3, 5, 40]), corresponds to the as-
sumption of a single 2Q spurion, or the alignment of
the three terms in (5) in U(2)Q space. Motivated by
model-building considerations [22, 43] and recent data,
we do not enforce this assumption in what follows. In
addition to the minimal case, we will consider also the
possibility of a (small) misalignment of the three lead-
ing U(2)Q-breaking terms. We thus use the approximate
U(2)3

f
symmetry more as an organising principle to clas-

sify the flavor-violating couplings in the theory, rather
than a strict ansatz on the underlying flavor structure.
Under these assumptions, the 3⇥ 3 Yukawa couplings

can be written as (f = u, d):

Yf = yf3

✓
�f Vf

0 1

◆
. (7)

Without loss of generality, the residual flavor symmetry
allows us to choose a basis where both �u and �d are
real. In this basis, the latter are diagonalised by a real
orthogonal matrix,

�f = Of⇥diag

✓
yf1
yf3

,
yf2
yf3

◆
, Of =

✓
cf sf
�sf cf

◆
, (8)

where sf = sin ✓f and cf = cos ✓f , and Vf are in general
two complex vectors, VT

f
= (Vf1 , Vf2).

The natural size of the di↵erent mixing terms can
be deduced by the perturbative diagonalisation of Yu

and Yd. Introducing unitary matrices Lf , defined by

LfYfY
†
f
L†
f
= diag(yf1 , yf2 , yf3) , (9)

it follows that

Lf ⇡

✓
OT 0
0 1

◆ 
1 �VT

f

V†
f

1

!
. (10)

Since the elements of the Cabibbo, Kobayashi, Maskawa
(CKM) matrix are given by Vij = (LuL

†
d
)ij , we deduce

Vu2,d2 = O(�2) , Vu1,d1 = O(�3) , (11)

where � = |Vus| ⇡ 0.22, and

sd � su = �+O(�3) . (12)

 0.03 for TeV-scale NP. ∼
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3 Observables

In the following, we discuss the most relevant observables allowing to test and con-
strain our model. For the low-energy precision and flavour observables we match the
full LQ theory onto the weak effective theory (WET) whose Lagrangian is generically
written as

Leff =
X

i

CiOi . (3.1)

We refer to the manual of flavio [179], a package that we employ in our phenomeno-
logical analysis, for a precise definition of the operators.

3.1 R
D(⇤) anomalies

We consider the ratios

R
D(⇤) =

Br(B ! D
(⇤)

⌧ ⌫̄)

Br(B ! D(⇤)`⌫̄)

����
`2{e,µ}

, (3.2)

whose current experimental averages read

R
exp

D
= 0.346(31) [18, 22, 180] and R

exp

D⇤ = 0.296(16) [18, 22, 180, 181] .
(3.3)

These values are compared to our theoretical predictions whose SM component is
provided by flavio [173, 182–185],

R
SM

D
= 0.297(8) and R

SM

D⇤ = 0.245(8) , (3.4)

although more accurate predictions have been calculated in the meantime [33, 186–
188]. At low energy, the new physics contributions are described by the WET oper-
ators

(OSL)
bc⌧⌫⌧

= �
4GF
p

2
V

CKM
23 (c̄PLb) (⌧̄PL⌫⌧ ) ,

(OT )
bc⌧⌫⌧

= �
4GF
p

2
V

CKM
23 (c̄�µ⌫

PLb) (⌧̄�µ⌫PL⌫⌧ ) ,

(3.5)

where PL and PR (for further reference) are the usual chirality projectors and GF

is the Fermi constant. The corresponding Wilson coefficients are evaluated at the
matching scale,

(CSL)LQ

bc⌧⌫⌧
= 4 (CT )LQ

bc⌧⌫⌧
= �

p
2

4GF V
CKM
23

✓
Y

RL

2⌧ Y
LR⇤
3⌧

2M2
⌧

◆
. (3.6)

While WET renormalisation group (RG) running is accounted for by flavio, we
additionally multiply the predictions by appropriate correction factors to account for
RG running from M⌧ to the electroweak scale MW in the SM Effective Field Theory

– 5 –

• Recently, LHCb published their first measurement of the LFU ratio R(D). 
• Combined with earlier measurements: 

https://indico.cern.ch/event/1187939/
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3 Observables

In the following, we discuss the most relevant observables allowing to test and con-
strain our model. For the low-energy precision and flavour observables we match the
full LQ theory onto the weak effective theory (WET) whose Lagrangian is generically
written as

Leff =
X

i

CiOi . (3.1)

We refer to the manual of flavio [179], a package that we employ in our phenomeno-
logical analysis, for a precise definition of the operators.

3.1 R
D(⇤) anomalies

We consider the ratios
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whose current experimental averages read

R
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= 0.346(31) [18, 22, 180] and R

exp

D⇤ = 0.296(16) [18, 22, 180, 181] .
(3.3)

These values are compared to our theoretical predictions whose SM component is
provided by flavio [173, 182–185],

R
SM

D
= 0.297(8) and R

SM

D⇤ = 0.245(8) , (3.4)

although more accurate predictions have been calculated in the meantime [33, 186–
188]. At low energy, the new physics contributions are described by the WET oper-
ators

(OSL)
bc⌧⌫⌧
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where PL and PR (for further reference) are the usual chirality projectors and GF

is the Fermi constant. The corresponding Wilson coefficients are evaluated at the
matching scale,
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4GF V
CKM
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While WET renormalisation group (RG) running is accounted for by flavio, we
additionally multiply the predictions by appropriate correction factors to account for
RG running from M⌧ to the electroweak scale MW in the SM Effective Field Theory
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• Recently, LHCb published their first measurement of the LFU ratio R(D). 
• Combined with earlier measurements: 

SM LO contribution:
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although more accurate predictions have been calculated in the meantime [33, 186–
188]. At low energy, the new physics contributions are described by the WET oper-
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where PL and PR (for further reference) are the usual chirality projectors and GF

is the Fermi constant. The corresponding Wilson coefficients are evaluated at the
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While WET renormalisation group (RG) running is accounted for by flavio, we
additionally multiply the predictions by appropriate correction factors to account for
RG running from M⌧ to the electroweak scale MW in the SM Effective Field Theory
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)
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where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
+ =

 
0 �↵�

0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0

0 �1

!
,

1

3

3X

↵,�=1

[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL
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↵
µ + (JR

U )↵µ
⇤
+ h.c. ,
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j
L , (JR

U )↵µ = �
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i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
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. (2)
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In this notation the left-handed current in eq. (1) can be written as (JL
U )
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µ =  ̄
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the following explicit expression for the action of the GNP generators on the SM projection of  L:
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The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator
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�
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The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
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2
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⇥
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Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
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1
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U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
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exotic
L ,  
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L =
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In this notation the left-handed current in eq. (1) can be written as (JL
U )
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µ =  ̄

SM
L (T↵
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SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:
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The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator
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The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
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NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3
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, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G
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NP /GSM contains seven generators: the six T
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± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3
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! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3
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, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
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Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
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�� &���23
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���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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1. Introduction
1.2 UV-complete gauge models

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
+ =

 
0 �↵�

0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0

0 �1

!
,

1

3

3X

↵,�=1

[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as

T 1 = 1
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0
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0 1 0 0

1 0 0 0
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0 0 0 0
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T 2 = 1
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with normalization
Tr T↵T � =

1
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�↵� . (A.67)
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1.2 UV-complete gauge models

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
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2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,
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L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
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j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
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In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄
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+)�µ 
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L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
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. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0
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!
,

1

3

3X

↵,�=1

[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.
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1. Introduction
1.2 UV-complete gauge models

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
+ =

 
0 �↵�

0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0

0 �1

!
,

1

3

3X

↵,�=1

[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:
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Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
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exotic
L ,  
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L =
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions
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Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern
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��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as

T 1 = 1
2

0

BBB@

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

1

CCCA
T 2 = 1

2

0

BBB@

0 �i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

1

CCCA
T 3 = 1

2

0

BBB@

1 0 0 0

0 �1 0 0

0 0 0 0

0 0 0 0

1

CCCA

T 4 = 1
2

0

BBB@

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

1

CCCA
T 5 = 1

2

0

BBB@

0 0 �i 0

0 0 0 0

i 0 0 0

0 0 0 0

1

CCCA
T 6 = 1

2

0

BBB@

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

1

CCCA

T 7 = 1
2

0

BBB@

0 0 0 0

0 0 �i 0

0 i 0 0

0 0 0 0

1

CCCA
T 8 = 1

2
p
3

0

BBB@

1 0 0 0

0 1 0 0

0 0 �2 0

0 0 0 0

1

CCCA
T 9 = 1

2

0

BBB@

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

1

CCCA

T 10 = 1
2

0

BBB@

0 0 0 �i

0 0 0 0

0 0 0 0

i 0 0 0

1

CCCA
T 11 = 1

2

0

BBB@

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

1

CCCA
T 12 = 1

2

0

BBB@

0 0 0 0

0 0 0 �i

0 0 0 0

0 i 0 0

1

CCCA

T 13 = 1
2

0

BBB@

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

1

CCCA
T 14 = 1

2

0

BBB@

0 0 0 0

0 0 0 0

0 0 0 �i

0 0 i 0

1

CCCA
T 15 = 1

2
p
6

0

BBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �3

1

CCCA
,

with normalization
Tr T↵T � =

1

2
�↵� . (A.67)

– 52 –

 generators: SU(4)

G

One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
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1. Introduction
1.2 UV-complete gauge models

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:
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Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as
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the following explicit expression for the action of the GNP generators on the SM projection of  L:
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The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies
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The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
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NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G
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NP /GSM contains seven generators: the six T
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± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]
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NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3
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, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.
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Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.
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1. Introduction
1.2 UV-complete gauge models

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
+ =

 
0 �↵�

0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0
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!
,

1
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3X
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[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.

3

•  VLQ:   U1

• Gauge models: 

• First idea: Pati-Salam-type model

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:
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Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.
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representation can be written as

T 1 = 1
2

0

BBB@

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

1

CCCA
T 2 = 1

2

0

BBB@

0 �i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

1

CCCA
T 3 = 1

2

0

BBB@

1 0 0 0

0 �1 0 0

0 0 0 0

0 0 0 0

1

CCCA

T 4 = 1
2

0

BBB@

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

1

CCCA
T 5 = 1

2

0

BBB@

0 0 �i 0

0 0 0 0

i 0 0 0

0 0 0 0

1

CCCA
T 6 = 1

2

0

BBB@

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

1

CCCA

T 7 = 1
2

0

BBB@

0 0 0 0

0 0 �i 0

0 i 0 0

0 0 0 0

1

CCCA
T 8 = 1

2
p
3

0

BBB@

1 0 0 0

0 1 0 0

0 0 �2 0

0 0 0 0

1

CCCA
T 9 = 1

2

0

BBB@

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

1

CCCA

T 10 = 1
2

0

BBB@

0 0 0 �i

0 0 0 0

0 0 0 0

i 0 0 0

1

CCCA
T 11 = 1

2

0

BBB@

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

1

CCCA
T 12 = 1

2

0

BBB@

0 0 0 0

0 0 0 �i

0 0 0 0

0 i 0 0

1

CCCA

T 13 = 1
2

0

BBB@

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

1

CCCA
T 14 = 1

2

0

BBB@

0 0 0 0

0 0 0 0

0 0 0 �i

0 0 i 0

1

CCCA
T 15 = 1

2
p
6

0

BBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �3

1

CCCA
,

with normalization
Tr T↵T � =

1

2
�↵� . (A.67)

– 52 –

Z′ 

U1

U1

6

Inspired by : ArXiv:1808.00942 (L. Di Luzio, J. Fuentes-
Martin, A. Greljo, M. Nardecchia, S. Renner), 
ArXiv:1901.10480 (M.J. Baker, J. Fuentes-Martin,  
G. Isidori, M. König) 

https://arxiv.org/pdf/1808.00942.pdf
https://arxiv.org/abs/1901.10480


1. Introduction
1.2 UV-complete gauge models

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
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!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator
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The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:
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Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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• Improved: 4321 model

U1

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
+ =

 
0 �↵�

0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0

0 �1

!
,

1

3

3X

↵,�=1

[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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1. Introduction
1.2 UV-complete gauge models

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
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U )
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µ + (JR

U )↵µ
⇤
+ h.c. ,
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i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)
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In this notation the left-handed current in eq. (1) can be written as (JL
U )
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L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:
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. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator
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1
3��� 0

0 �1

!
,

1

3

3X

↵,�=1

[T↵
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The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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• First idea: Pati-Salam-type model

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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• Improved: 4321 model

U1

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
+ =

 
0 �↵�

0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0

0 �1

!
,

1

3

3X

↵,�=1

[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.
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1. Introduction
1.2 UV-complete gauge models

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
+ =

 
0 �↵�

0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0

0 �1

!
,

1

3

3X

↵,�=1

[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
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1

⇥
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µ + (JR
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+ h.c. ,
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R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
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 generators: SU(4)

One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.
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Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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U1

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄
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L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:
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The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator
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The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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1. Introduction
1.2 UV-complete gauge models

proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:

LNP �
gU
p
2
U

µ,↵
1

⇥
(JL

U )
↵
µ + (JR

U )↵µ
⇤
+ h.c. ,

(JL
U )

↵
µ = �

ij
L q̄

i,↵
L �µ`

j
L , (JR

U )↵µ = �
ij
R d̄

i,↵
R �µe

j
R . (1)

Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
L +  

exotic
L ,  

SM
L =

 
q
�
L

`L

!
. (2)

2

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
+ =

 
0 �↵�

0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0

0 �1

!
,

1

3

3X

↵,�=1

[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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proposed in [15–18], or a vector resonance of some new strongly interacting dynamics, as e.g. in [19, 21].
As we show, in both cases the consistency of the theory requires additional vector states with similar
masses. The purpose of this paper is to provide a comprehensive analysis of the high-pT constraints
on the vector leptoquark U1 and what can be considered its minimal set of vector companions, namely
a colour octet G0

⇠ (8,1, 0), which we will refer to as the coloron, and a colour singlet Z 0
⇠ (1,1, 0).

In our analysis we consider the most general chiral structure for the U1 couplings to SM fermions.
This is in contrast with many recent studies which considered only left-handed (LH) couplings. While
this hypothesis is motivated by the absence of clear indications of right-handed (RH) currents in the
present data and by the sake of minimality, it does not have a strong theoretical justification. Indeed,
the quantum numbers of the U1 allow for RH couplings, and in motivated UV completions such
couplings naturally appear [18, 26]. We also analyse the impact of a non-vanishing mixing between
the second and third family in high-pT searches, including in particular constraints from pp ! ⌧µ and
pp ! ⌧⌫. As we show, the inclusion of right-handed couplings and/or a sizeable 2-3 family mixing
yields significant modifications to the results found in the existing literature.

The structure of this paper is as follows: In section 2 we motivate our choice of TeV-scale vectors
and in section 3 we introduce the phenomenological Lagrangian adopted to describe their high-pT
signatures. We then present the results of the searches in section 4 and conclude with section 5.

2 The spectrum of vector states at the TeV scale

The bottom-up requirement for the class of models we are interested in is the following e↵ective
interaction of the U1 field with SM fermions:
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Here qL (`L) denotes the left-handed quark (lepton) doublets, dR (eR) denotes the right-handed down-
type quark (charge-lepton) singlets, i 2 {1, 2, 3} and j 2 {1, 2, 3} are flavour indices, ↵ 2 {1, 2, 3} is a
SU(3)c index, and �

ij
L,R are complex matrices in family-space.

The e↵ective interaction in eq. (1) unambiguously identifies the representation of U1 under GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to be (3,1, 2/3). There are two basic classes of well-defined UV theories
where such interactions can occur:

i. Gauge models. Here U1 is the massive gauge boson of a spontaneously broken gauge symmetry
GNP � GSM. The need for extra massive vectors follows from the size of the coset-space of
GNP/GSM, that necessarily requires additional generators besides the six associated to U1.

ii. Strongly interacting models. Here U1 appears as a massive resonance for a new strongly interact-
ing sector. In this case the need of additional massive vectors is a consequence of the additional
resonances formed by the same set of constituents leading to U1.

Gauge models: the need for a Z0

Within gauge models, let us start analysing the case of a single generation of SM fermions (i = j = 3),
and further assume that SM fermions belong to well-defined representations of GNP (i.e. no mixing
between SM-like and exotic fermions). Under these assumptions, �L is non-zero only if qL and `L

belong to the same GNP representation. We denote this representation  L and, without loss of
generality, we decompose it as

 L =  
SM
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exotic
L ,  

SM
L =
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L
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calculation of the third-generation gauge vector LQ corrections considered in this work.
The constraints on the parameter space of third-generation singlet vector LQs that follow
from recasts of the recent ditau searches [51, 55] are instead presented in Appendix B.
So without further ado, let’s crack straight into it.

2 Theoretical framework

A singlet vector LQ can be added to the SM Lagrangian in a simple bottom-up approach
by employing the following effective interactions

LU �
gU
p
2

h
�
ij
L Q̄

i,a
�µL

j + �
ij
R d̄

i,a
�µ e

j
i
U

µ,a + h.c. (2.1)

Here Q and L are the left-handed SM quark and lepton SU(2)L doublets, while d and e are
the corresponding right-handed fields, i, j 2 {1, 2, 3} are flavour indices and a 2 {1, 2, 3} is a
colour index. The vector LQ transforms as U ⇠ (3, 1, 2/3) under the SM gauge group GSM =

SU(3)C⇥SU(2)L⇥U(1)Y , making it an SU(2)L singlet. The coupling gU characterises the
overall strength of the LQ interactions with the SM matter fields, whereas �ij

L and �
ij
R are (a

priori) arbitrary complex 3⇥ 3 matrices in flavour space.2 In order to explain the observed
anomalies in the charged-current b ! c and neutral-current b ! s transitions the following
LQ-quark-lepton couplings have to be non-zero and follow the pattern

���33
L

�� '
���33

R

�� &���23
L

�� �
���32

L

�� '
���22

L

��, while the remaining couplings can in principle vanish.
The simplified interactions described by the Lagrangian LU however do not provide a

consistent UV completion for the singlet vector LQ field which renders higher-order pertur-
bative calculations based on (2.1) in general ambiguous. A well-motivated and thoroughly
studied class of UV-complete theories that incorporates a singlet vector LQ are gauge mod-
els. There, the massive U field arises from a gauge symmetry G � GSM that is broken
spontaneously to yield the SM Lagrangian at low energies, together with the singlet vec-
tor LQ as well as additional degrees of freedom. The minimal gauge group that leads to the
effective interactions of the form (2.1) and that can account for the hints of LFU violation
in semi-leptonic B decays is [21, 23, 26, 27, 30, 35, 41, 42, 95, 96]

G4321 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)X . (2.2)

This gauge group is commonly referred to as 4321. In our article, we restrict ourselves to
the SU(4) ⇥ SU(3)0 sector of (2.2) which includes the LQ interactions and O(↵s) correc-
tions thereof, while neglecting contributions that involve the SU(2)L ⇥ U(1)X subgroup.
This means in particular that we do not consider contributions to DY dilepton production
that arise from the colour singlet state Z

0
⇠ (1, 1, 0) that also appears in the spectrum of

the 4321 model after spontaneous symmetry breaking [21, 23, 26, 27, 30, 35]. This omission
is firstly motivated because the Z

0 does not contribute to the O(↵s) corrections we are
interested in. Secondly, while the colour singlet does contribute to DY dilepton produc-
tion, the tree-level s-channel exchange of a Z

0 leads to a narrow resonance in the dilepton
2
In our POWHEG-BOX implementation of the simplified Lagrangian (2.1) the relevant third-generation

LQ-quark-lepton couplings are treated as real.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.

A.10 SU(4) generators

Here we report some useful facts about the SU(4) algebra. The generators in the fundamental
representation can be written as
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
that the imposed U(2)q+ symmetry in the quark sector is explicitly broken in other sectors, more
specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
symmetry. These departures are severely constrained by �F = 2 observables and therefore they
set a limit on the possible UV scale at which the Yukawa textures in Eq. (3.4) can be generated.
Interestingly, we find that the U(2)q+ symmetry in the Z 0 and g0 couplings is partially protected.
This protection arises from the fact that the U(2)q+ -breaking terms, i.e. those containing �`, are
the same in the RGEs of �q, �15 and M , leading to partial cancellations of the aforementioned
breaking terms for the quark mixing angles, c.f. Eq. (A.44). As a result we find that the Yukawa
textures in Eq. (3.4) could arise from (unspecified) UV dynamics at ⇤ ⇡ 10 TeV without signifi-
cantly impacting �F = 2 observables.
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Z′ 

• Improved: 4321 model

U1

In this notation the left-handed current in eq. (1) can be written as (JL
U )

↵
µ =  ̄

SM
L (T↵

+)�µ 
SM
L with

the following explicit expression for the action of the GNP generators on the SM projection of  L:

T
↵
+ =

 
0 �↵�

0 0

!
. (3)

The closure of the algebra of the six generators T↵
± associated with the six components of U1 implies

the need of the following additional (colour-neutral) generator

TB�L =

 
1
3��� 0

0 �1

!
,

1

3

3X

↵,�=1

[T↵
+, T

�
�] = TB�L . (4)

The same conclusion is reached by looking at the right-handed coupling in eq. (1). Moreover, since a
possible mixing between SM and exotic fermions must occur in a SU(3)c invariant way, the decom-
position in eq. (2) also holds for possible exotic fermions mixing with the SM ones. Hence the need
of TB�L for the closure of the algebra is a general conclusion that holds independently of the possible
mixing among fermion representations.

An equivalent way to deduce the need for an extra generator is the observation that the minimal
group G

min
NP � GSM containing generators associated to the representation (3,1, 2/3) is

G
min
NP = SU(4)⇥ SU(2)L ⇥ U(1)T 3

R
, (5)

i.e. the subgroup of the Pati-Salam group GPS = SU(4)⇥SU(2)L⇥SU(2)R [29]. Gmin
NP is obtained by

considering the U(1) subgroup of SU(2)R defined by its diagonal (electric-charge neutral) generator
T
3
R. The coset G

min
NP /GSM contains seven generators: the six T

↵
± describing the coset SU(4)/SU(3)c⇥

U(1)B�L, and TB�L.
In gauge models, the presence of an extra massive vector Z 0

⇠ (1,1, 0) associated with the breaking
U(1)B�L ⇥ U(1)T 3

R
! U(1)Y is thus unavoidable. Since the breaking of U(1)B�L necessarily implies

a breaking of SU(4), the breaking terms which lead to a non-vanishing Z
0 mass necessarily induce a

mass term for the U1 as well. Hence, the Z
0 state cannot be decoupled. The opposite is not true:

since the U1 generators are associated to the SU(4)/SU(3)c ⇥ U(1)B�L coset, mass terms for the U1

do not necessarily contribute to the Z
0 mass.

Gauge models: the need for a G0

While the minimal group in eq. (5) allows us to build a consistent model for a massive U1 ⇠ (3,1, 2/3),
it does not leave us enough freedom to adjust U1 and Z

0 couplings in order to comply with low- and
high-energy data.

Under G
min
NP the interaction strengths of both U1 and Z

0 are unambiguously related to the QCD
coupling (gs) and to hypercharge, given that they all originate from the same SU(4) group. In
particular gU = gs(MU1), in a normalisation where |�

ij
L,R|  1. Moreover, the couplings of the Z

0 to

SM fermions are necessarily flavour universal.1 A flavour-universal Z 0 is constrained by LHC dilepton
searches to have MZ0 >⇠ 5 TeV [30, 31]. Within G

min
NP , the U1 should be necessarily close in mass [22]

which, together with the low value of gU , results in a negligible impact on b ! c`⌫ decays.
To avoid these constraints, T↵

±, TB�L, and the QCD generators T
a, should not be unified in a

single SU(4) group. Given the commutation rules between T
↵
± and T

a, the next-to-minimal option is
obtained with [15]

(Gmin
NP )0 = SU(4)⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)T 3

R
, (6)

1This statement follows from the fact that the mixing of SM fermions among themselves (in flavour space) and with
possible exotic representations necessarily involve states with the same B �L charges. As a result, the mixing acts as a
unitary rotation on the Z0 couplings that remains proportional to the identity matrix in flavour space.
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One can use the RGEs above to test the radiative stability of our proposed solution by evolv-
ing the Yukawa textures in Eq. (3.4) from a high scale down to the SU(4)-breaking scale. Given
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specifically by �`, RGE effects are expected to introduce departures from the original U(2)q+ 
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Figure 1: The mtot
T for the b-veto (left) and b-tag (right) categories of the ⌧lep⌧had channel (top) and ⌧had⌧had channel

(bottom). The binning displayed is that entering into the fit. The predictions and uncertainties for the background
processes are obtained from the fit assuming the background-only hypothesis. Expectations from signal processes
are superimposed. Overflows are included in the last bin of the distributions.
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Source: ArXiv:2002.12223 (ATLAS)

ATLAS 2020

2. Constraints from the LHC

https://arxiv.org/pdf/2002.12223.pdf


9

2.2 Drell-Yan production: Overview

• Drell-Yan: clean and well-reconstructable experimental signature with excellent detection efficiency.

• A pillar of the research programme at LHC.

8. Results 25

210 310
 (GeV)tot

Tm

0.5

1

1.5

2

O
bs

./E
xp

.

 Bkg.ττ tt

QCD multijet Others

Observed Bkg. unc.

 = 1.2 TeV)
φ

(m
 @ 3.1 fbφgg

 = 1.2 TeV)
φ

(m
 @ 1.0 fbφbb

 = 1 TeV)
U

(m
 = 1.2

U
VLQ, g

Observed Bkg. unc. φgg φbb VLQ

3−10

1−10

10
210

5000

10000

< 
Ev

en
ts

 / 
G

eV
 > CMS

Preliminary

 (13 TeV)-1138 fb
ζ

, No b-tag, Medium-Dµe

210 310
 (GeV)tot

Tm

1

2

O
bs

./E
xp

.

 Bkg.ττ tt

QCD multijet Others

Observed Bkg. unc.

 = 1.2 TeV)
φ

(m
 @ 3.1 fbφgg

 = 1.2 TeV)
φ

(m
 @ 1.0 fbφbb

 = 1 TeV)
U

(m
 = 1.2

U
VLQ, g

Observed Bkg. unc. φgg φbb VLQ

4−10

3−10

2−10

1−10
1

500

1000

1500

< 
Ev

en
ts

 / 
G

eV
 > CMS

Preliminary

 (13 TeV)-1138 fb
ζ

, b-tag, Medium-Dµe

210 310
 (GeV)tot

Tm

1

1.5

2

O
bs

./E
xp

.

 Bkg.ττ hτ→Jet

tt Others

Observed Bkg. unc.

 = 1.2 TeV)
φ

(m
 @ 3.1 fbφgg

 = 1.2 TeV)
φ

(m
 @ 1.0 fbφbb

 = 1 TeV)
U

(m
 = 1.2

U
VLQ, g

φgg φbb VLQ

Observed Bkg. unc.

3−10

1−10

10
210

10000

20000

30000

< 
Ev

en
ts

 / 
G

eV
 > CMS

Preliminary

 (13 TeV)-1138 fbT
, No b-tag Tight-mhτ+e

h
τµ

210 310
 (GeV)tot

Tm

1

2

O
bs

./E
xp

.

 Bkg.ττ hτ→Jet

tt Others

Observed Bkg. unc.

 = 1.2 TeV)
φ

(m
 @ 3.1 fbφgg

 = 1.2 TeV)
φ

(m
 @ 1.0 fbφbb

 = 1 TeV)
U

(m
 = 1.2

U
VLQ, g

φgg φbb VLQ

Observed Bkg. unc.

4−10

3−10

2−10

1−10
1

500

1000

1500

< 
Ev

en
ts

 / 
G

eV
 > CMS

Preliminary

 (13 TeV)-1138 fbT
, b-tag Tight-mhτ+e

h
τµ

210 310
 (GeV)tot

Tm

1

2

O
bs

./E
xp

.

 Bkg.ττ hτ→Jet

tt Others

Observed Bkg. unc.

 = 1.2 TeV)
φ

(m
 @ 3.1 fbφgg

 = 1.2 TeV)
φ

(m
 @ 1.0 fbφbb

 = 1 TeV)
U

(m
 = 1.2

U
VLQ, g

φgg φbb VLQ

Observed Bkg. unc.

3−10

1−10

10
210

2000

4000

6000

8000

< 
Ev

en
ts

 / 
G

eV
 > CMS

Preliminary

 (13 TeV)-1138 fb, No b-taghτhτ

210 310
 (GeV)tot

Tm

1

2

O
bs

./E
xp

.

 Bkg.ττ hτ→Jet

tt Others

Observed Bkg. unc.

 = 1.2 TeV)
φ

(m
 @ 3.1 fbφgg

 = 1.2 TeV)
φ

(m
 @ 1.0 fbφbb

 = 1 TeV)
U

(m
 = 1.2

U
VLQ, g

φgg φbb VLQ

Observed Bkg. unc.

4−10

3−10

2−10

1−10
1

100

200

300

< 
Ev

en
ts

 / 
G

eV
 > CMS

Preliminary

 (13 TeV)-1138 fb, b-taghτhτ

Figure 7: Distributions of mtot
T in the global (left) no b-tag and (right) b-tag categories in the

(upper row) eµ, (middle row) eth and µth, and (lower row) thth final states, for the most
signal sensitive categories. For the eµ final state, the Medium-Dz category is displayed, for
the eth and µth final states the Tight-mT categories are shown. The black horizontal line in
the upper panel of each subfigure indicates the change from logarithmic to linear scale on the
vertical axis. The distributions are shown for all data-taking years combined.

Source: HIG-21-001-PAS (CMS)

CMS 2021
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Figure 1: The mtot
T for the b-veto (left) and b-tag (right) categories of the ⌧lep⌧had channel (top) and ⌧had⌧had channel

(bottom). The binning displayed is that entering into the fit. The predictions and uncertainties for the background
processes are obtained from the fit assuming the background-only hypothesis. Expectations from signal processes
are superimposed. Overflows are included in the last bin of the distributions.
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2.2 Drell-Yan production: Overview

• Drell-Yan: clean and well-reconstructable experimental signature with excellent detection efficiency.

• A pillar of the research programme at LHC.

8. Results 11

Ev
en

ts
 / 

G
eV

4−10

3−10

2−10

1−10
1

10

210

310

410

510 Observed
 and single toptt

Diboson
QCD multijet
Z + jets
W + jets
Bkg. unc.

=1κ=1, β=2.5, λLQ, 2000 GeV, 
 fb19−

+20 = 62σScalar, 
 fb14−

+15 = 43σVector, 

 (13 TeV)1−137 fb

CMS
Preliminary

, 0bµe

 [GeV]MET
TS

500 1000 1500 2000 2500

O
bs

. /
 B

kg
.

0.5

1

1.5

Ev
en

ts
 / 

G
eV

4−10

3−10

2−10

1−10
1

10

210

310

410

510

610
Observed

 and single toptt
QCD multijet
Diboson
Z + jets
Bkg. unc.

=1κ=1, β=2.5, λLQ, 2000 GeV, 
 fb19−

+20 = 62σScalar, 
 fb14−

+15 = 43σVector, 

 (13 TeV)1−137 fb

CMS
Preliminary

1b≥, µe

 [GeV]MET
TS

500 1000 1500 2000 2500

O
bs

. /
 B

kg
.

0.5

1

1.5

Ev
en

ts
 / 

G
eV

4−10

3−10

2−10

1−10

1
10

210

310

410 Observed
hτhτ →Z 

 and single toptt
 fakeshτ →j 

hτ →Drell-Yan with l 
Diboson
Bkg. unc.

=1κ=1, β=2.5, λLQ, 2000 GeV, 
 fb19−

+20 = 62σScalar, 
 fb14−

+15 = 43σVector, 

 (13 TeV)1−137 fb

CMS
Preliminary

, 0bhτhτ

 [GeV]MET
TS

500 1000 1500 2000 2500

O
bs

. /
 B

kg
.

0.5

1

1.5

Ev
en

ts
 / 

G
eV

4−10

3−10

2−10

1−10

1

10

210

310

410
Observed

 and single toptt
 fakeshτ →j 

hτhτ →Z 
Bkg. unc.

=1κ=1, β=2.5, λLQ, 2000 GeV, 
 fb19−

+20 = 62σScalar, 
 fb14−

+15 = 43σVector, 

 (13 TeV)1−137 fb

CMS
Preliminary

1b≥, hτhτ

 [GeV]MET
TS

500 1000 1500 2000 2500

O
bs

. /
 B

kg
.

0.5

1

1.5

Figure 3: Postfit distributions of S
MET
T for the combined 2016–2018 dataset after a simultane-

ous fit of the scalar LQ signal to the data in each data-taking period. The last bin includes the
overflow. The eµ (top) and thth (bottom) channels in the 0b (left) and �1b (right) category
are shown. The fitted signal distributions for the total scalar (solid red) and vector LQ model
(dashed red) with a mass of 2000 GeV and a coupling strength of l = 2.5 are overlaid to illus-
trate the sensitivity. They include the single and pair LQ production, as well as the nonresonant
production of a t lepton pair. The lower panel shows the ratio between the observed data and
background from the S+B fit (black). The hatched uncertainty bands include the total postfit
uncertainties in the background.

Source: EXO-19-016-PAS (CMS)
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Figure 7: Distributions of mtot
T in the global (left) no b-tag and (right) b-tag categories in the

(upper row) eµ, (middle row) eth and µth, and (lower row) thth final states, for the most
signal sensitive categories. For the eµ final state, the Medium-Dz category is displayed, for
the eth and µth final states the Tight-mT categories are shown. The black horizontal line in
the upper panel of each subfigure indicates the change from logarithmic to linear scale on the
vertical axis. The distributions are shown for all data-taking years combined.

Source: HIG-21-001-PAS (CMS)

CMS 2021
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Figure 1: The mtot
T for the b-veto (left) and b-tag (right) categories of the ⌧lep⌧had channel (top) and ⌧had⌧had channel

(bottom). The binning displayed is that entering into the fit. The predictions and uncertainties for the background
processes are obtained from the fit assuming the background-only hypothesis. Expectations from signal processes
are superimposed. Overflows are included in the last bin of the distributions.
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Figure 3: Postfit distributions of S
MET
T for the combined 2016–2018 dataset after a simultane-

ous fit of the scalar LQ signal to the data in each data-taking period. The last bin includes the
overflow. The eµ (top) and thth (bottom) channels in the 0b (left) and �1b (right) category
are shown. The fitted signal distributions for the total scalar (solid red) and vector LQ model
(dashed red) with a mass of 2000 GeV and a coupling strength of l = 2.5 are overlaid to illus-
trate the sensitivity. They include the single and pair LQ production, as well as the nonresonant
production of a t lepton pair. The lower panel shows the ratio between the observed data and
background from the S+B fit (black). The hatched uncertainty bands include the total postfit
uncertainties in the background.

Source: EXO-19-016-PAS (CMS)
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Figure 7: Distributions of mtot
T in the global (left) no b-tag and (right) b-tag categories in the

(upper row) eµ, (middle row) eth and µth, and (lower row) thth final states, for the most
signal sensitive categories. For the eµ final state, the Medium-Dz category is displayed, for
the eth and µth final states the Tight-mT categories are shown. The black horizontal line in
the upper panel of each subfigure indicates the change from logarithmic to linear scale on the
vertical axis. The distributions are shown for all data-taking years combined.

Source: HIG-21-001-PAS (CMS)
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Figure 1: The mtot
T for the b-veto (left) and b-tag (right) categories of the ⌧lep⌧had channel (top) and ⌧had⌧had channel

(bottom). The binning displayed is that entering into the fit. The predictions and uncertainties for the background
processes are obtained from the fit assuming the background-only hypothesis. Expectations from signal processes
are superimposed. Overflows are included in the last bin of the distributions.
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Figure 6. Distributions of mtot
T in the no b -tag (left panel) and the b -tag (right panel) category

in the final state containing two hadronic tau leptons. The black curves correspond to the SM
expectations of the DY background provided by CMS in [54]. This search is based on 138 fb�1 of
integrated luminosity collected in pp collisions at

p
s = 13TeV. The yellow and red curves instead

represent the LQ LO and LQ NLO predictions assuming g4 = 1 and MU = 2TeV. In the case of the
solid (dashed) red lines the coloron mass is set to MG0 = 2TeV (MG0 = 5TeV). The blue histograms
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Input parameters

powheg.input
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init_couplings.f

Flavour structure 
and phase space

Born_phsp.f

init_processes.f

Matrix elements

Born.f

real.f

virtual.f

Input parameters: NLO width (PackageX, cross-checked with FormCalc):

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)
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2.2 Drell-Yan production: POWHEG-BOX implementation
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PhysPars.h 
init_couplings.f

Flavour structure 
and phase space

Born_phsp.f

init_processes.f

Matrix elements

Born.f

real.f

virtual.f

Kinematics the same as in the SM:  

• We focussed on .pp → τ+τ− + X
• There are ideas to extend this to  

.pp → τντ + X
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PhysPars.h 
init_couplings.f

Flavour structure 
and phase space

Born_phsp.f

init_processes.f

Matrix elements

Born.f

real.f

virtual.f

• Calculation with PackageX, cross-checked with FormCalc, numerical evaluation with LoopTools. 
• UV divergences cancel between the  and  contributions, IR divergences handled with dimensional 

regularisation. 
G G′ 
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• Our  code is available on GitLab (https://gitlab.com/lucschnell/Drell-Yan-LQ-NLO) and 
soon on the POWHEG-BOX website. 

U1

• It can be used to generate events (.lhe and .hepmc) for dedicated MC studies. 

• We have also implemented the contributions from SLQs, this is available on GitLab and the POWHEG-
BOX website, too. 
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2.2 Drell-Yan production: POWHEG-BOX implementation

https://gitlab.com/lucschnell/Drell-Yan-LQ-NLO
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Figure 4. Inclusive pp ! ⌧
+
⌧
� production cross sections as a function of m⌧⌧ for the parameter

choices g4 = 1 and MU = 2TeV. The yellow and red curves correspond to the LQ distributions
at the LO (LQ LO) and the NLO (LQ NLO) in QCD, respectively, while the blue histograms
illustrate the magnitude of the interference effects between the SM background and the LQ sig-
nal (SM-LQ LO). In the case of the solid (dashed) red line the coloron mass is set to MG0 = 2TeV
(MG0 = 5TeV). The lower panel depicts the ratios between the different LQ contributions and the
relevant LQ LO distribution.

that the NLO QCD effects play an important role in obtaining precise predictions as they
amount compared to the tree-level LQ prediction to around 40% (150%) at m⌧⌧ = 1.5TeV

(m⌧⌧ = 3TeV). Notice that at NLO in QCD the DY ditau production spectra resulting from
LQ exchange depend on the mass MG0 of the coloron. For the two choices of MG0 shown in
the figure we find relative differences of the order of 10% between the two distributions. The
observed effects are therefore similar in size to the MG0 dependence of the O(↵s) corrections
to the partial decay width of the U ! b⌧ channel (cf. Figure 3). The interference effects be-
tween the SM DY background and the LQ signal turn out to be destructive in the shown m⌧⌧

range,5 amounting to approximately 15% (5%) for m⌧⌧ = 1.5TeV (m⌧⌧ = 3TeV).
In Figure 5 we furthermore display the ratios between the individual LQ contributions

and the DY ditau SM background. The normalisation is calculated at the NLO in QCD
and we select events with two opposite-sign same-flavour tau leptons that are both required
to have a transverse momentum of pT,⌧ > 30GeV and a pseudorapidity of |⌘⌧ | < 2.5.
The invariant masses of the ditau pairs must fall into the range m⌧⌧ 2 [1300, 5000]GeV.

5
The SM-LQ LO results shown in Figures 4, 5 and 6 represent the magnitudes of the corresponding

predictions for the interference effects between the SM background and the LQ signal.

– 9 –

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)
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Figure 6. Distributions of mtot
T in the no b -tag (left panel) and the b -tag (right panel) category

in the final state containing two hadronic tau leptons. The black curves correspond to the SM
expectations of the DY background provided by CMS in [54]. This search is based on 138 fb�1 of
integrated luminosity collected in pp collisions at

p
s = 13TeV. The yellow and red curves instead

represent the LQ LO and LQ NLO predictions assuming g4 = 1 and MU = 2TeV. In the case of the
solid (dashed) red lines the coloron mass is set to MG0 = 2TeV (MG0 = 5TeV). The blue histograms
illustrate the size of the interference effects between the LQ signal and the SM background called
SM-LQ LO. The definition of the signal regions (SRs) and other experimental details can be found
in the main text.

The solid (dashed) red LQ NLO results assume MG0 = 2TeV (MG0 = 5TeV). All predic-
tions correspond to 138 fb�1 of pp data collected at

p
s = 13TeV. From the lower left panel

one sees that in the no b -tag category the NLO LQ contribution amounts to a relative
correction of less than 10% compared to the SM DY background for m

tot
T > 1300GeV.

For what concerns the b -tag category, one instead observes from the lower right panel that
in the highest m

tot
T bin with m

tot
T > 900GeV the NLO LQ signal constitutes around 85%

of the SM DY background. This feature clearly shows that for third-generation vector LQs
the sensitivity of DY searches notably improves by demanding an additional b -jet in the
final state. It is furthermore important to realise that the NLO QCD effects enhance
the LO LQ predictions in the no b -tag (b -tag) category by approximately 35% (30%) in the
highest m

tot
T bin, making higher-order QCD effects phenomenologically relevant. On the

other hand, the dependence of the NLO LQ distributions on MG0 is weak. This renders the
constraints derived below model-independent in the sense that one can set a limit on g4 as a
function of MU essentially without making a reference to the choice of the coloron mass as

– 12 –

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)

• Full NLO+PS analysis, LHC cuts 
modelled in MadAnalysis5 
(normal + expert mode).
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Figure 7: Distributions of mtot
T in the global (left) no b-tag and (right) b-tag categories in the

(upper row) eµ, (middle row) eth and µth, and (lower row) thth final states, for the most
signal sensitive categories. For the eµ final state, the Medium-Dz category is displayed, for
the eth and µth final states the Tight-mT categories are shown. The black horizontal line in
the upper panel of each subfigure indicates the change from logarithmic to linear scale on the
vertical axis. The distributions are shown for all data-taking years combined.

Source: HIG-21-001-PAS (CMS)
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Figure 3: Postfit distributions of S
MET
T for the combined 2016–2018 dataset after a simultane-

ous fit of the scalar LQ signal to the data in each data-taking period. The last bin includes the
overflow. The eµ (top) and thth (bottom) channels in the 0b (left) and �1b (right) category
are shown. The fitted signal distributions for the total scalar (solid red) and vector LQ model
(dashed red) with a mass of 2000 GeV and a coupling strength of l = 2.5 are overlaid to illus-
trate the sensitivity. They include the single and pair LQ production, as well as the nonresonant
production of a t lepton pair. The lower panel shows the ratio between the observed data and
background from the S+B fit (black). The hatched uncertainty bands include the total postfit
uncertainties in the background.

Source: EXO-19-016-PAS (CMS)
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Figure 1: The mtot
T for the b-veto (left) and b-tag (right) categories of the ⌧lep⌧had channel (top) and ⌧had⌧had channel

(bottom). The binning displayed is that entering into the fit. The predictions and uncertainties for the background
processes are obtained from the fit assuming the background-only hypothesis. Expectations from signal processes
are superimposed. Overflows are included in the last bin of the distributions.

7

Source: ArXiv:2002.12223 (ATLAS)

2. Constraints from the LHC

https://cds.cern.ch/record/2803739/files/HIG-21-001-pas.pdf
https://cds.cern.ch/record/2815309/files/EXO-19-016-pas.pdf
https://arxiv.org/pdf/2002.12223.pdf
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Figure 7: Distributions of mtot
T in the global (left) no b-tag and (right) b-tag categories in the

(upper row) eµ, (middle row) eth and µth, and (lower row) thth final states, for the most
signal sensitive categories. For the eµ final state, the Medium-Dz category is displayed, for
the eth and µth final states the Tight-mT categories are shown. The black horizontal line in
the upper panel of each subfigure indicates the change from logarithmic to linear scale on the
vertical axis. The distributions are shown for all data-taking years combined.

Source: HIG-21-001-PAS (CMS)
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Figure 3: Postfit distributions of S
MET
T for the combined 2016–2018 dataset after a simultane-

ous fit of the scalar LQ signal to the data in each data-taking period. The last bin includes the
overflow. The eµ (top) and thth (bottom) channels in the 0b (left) and �1b (right) category
are shown. The fitted signal distributions for the total scalar (solid red) and vector LQ model
(dashed red) with a mass of 2000 GeV and a coupling strength of l = 2.5 are overlaid to illus-
trate the sensitivity. They include the single and pair LQ production, as well as the nonresonant
production of a t lepton pair. The lower panel shows the ratio between the observed data and
background from the S+B fit (black). The hatched uncertainty bands include the total postfit
uncertainties in the background.

Source: EXO-19-016-PAS (CMS)

2. Constraints from the LHC

https://cds.cern.ch/record/2803739/files/HIG-21-001-pas.pdf
https://cds.cern.ch/record/2815309/files/EXO-19-016-pas.pdf
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2.2 Drell-Yan production: Phenomenology

Exclusion limits: 

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)Figure 8. As Figure 7 but using a recast of the results of the ATLAS [51] and CMS [55] ditau
search in the left and right panel, respectively. For additional details see the text.

b -tagger can reach up to 90% but degrades down to approximately 60% for pT,b > 500GeV.
To remove DY background an additional cut on the invariant mass mvis of the visible tau
decay products of mvis > 100GeV is applied. The scalar sum

S
MET
T = pT,⌧1 + pT,⌧2 + pT,j + ET,miss , (B.1)

built from the transverse momenta pT,⌧1 and pT,⌧2 of the two ⌧ candidates, the transverse
momentum pT,j of the leading jet and the missing transverse energy ET,miss is used in the
analysis [55] as a discriminating variable. Furthermore, two orthogonal event categories
are constructed: one which requires no b -jet with pT,b > 50GeV and another one which
requires at least one such jet.

The 95% CL exclusion bounds on the MU –g4 plane that follow from the recast of
the ATLAS [51] and CMS [55] search are shown in the left and right panel of Figure 8,
respectively. For simplicity we again employ MG0 = MU when determining the exclusion
limits. Compared to the constraints depicted in Figure 7, one observes that the difference
between the no b -tag and b -tag bounds that derive from the considered ATLAS analysis
is much smaller. This feature is readily understood by noticing that the ATLAS search,
unlike the CMS analysis [54] does not see an excess in the high-mass m

tot
T distribution in

the no b -tag category. In fact, ATLAS observes small deficits compared to the expected SM
background in the tails of the m

tot
T spectra, which explains why for large values of MU the

95% CL limits on g4 as shown in the left panel of Figure 8 are notably better than those
displayed in Figure 7. To understand the shape of the exclusion limits following from the
CMS search [55] presented on the right-hand side in Figure 8, one has to realise that the
latter search observes a non-resonant excess with a significance of a bit more than 3� above
the SM expectation in the data. As a result, the obtained 95% CL limits in the MU –g4
plane turn out to be weaker than expected, in particular in the large mass regime.
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Figure 7: Distributions of mtot
T in the global (left) no b-tag and (right) b-tag categories in the

(upper row) eµ, (middle row) eth and µth, and (lower row) thth final states, for the most
signal sensitive categories. For the eµ final state, the Medium-Dz category is displayed, for
the eth and µth final states the Tight-mT categories are shown. The black horizontal line in
the upper panel of each subfigure indicates the change from logarithmic to linear scale on the
vertical axis. The distributions are shown for all data-taking years combined.

Source: HIG-21-001-PAS (CMS)
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Figure 3: Postfit distributions of S
MET
T for the combined 2016–2018 dataset after a simultane-

ous fit of the scalar LQ signal to the data in each data-taking period. The last bin includes the
overflow. The eµ (top) and thth (bottom) channels in the 0b (left) and �1b (right) category
are shown. The fitted signal distributions for the total scalar (solid red) and vector LQ model
(dashed red) with a mass of 2000 GeV and a coupling strength of l = 2.5 are overlaid to illus-
trate the sensitivity. They include the single and pair LQ production, as well as the nonresonant
production of a t lepton pair. The lower panel shows the ratio between the observed data and
background from the S+B fit (black). The hatched uncertainty bands include the total postfit
uncertainties in the background.

Source: EXO-19-016-PAS (CMS)

2. Constraints from the LHC

https://arxiv.org/pdf/2209.12780.pdf
https://cds.cern.ch/record/2803739/files/HIG-21-001-pas.pdf
https://cds.cern.ch/record/2815309/files/EXO-19-016-pas.pdf


18
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Exclusion limits: 

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)Figure 8. As Figure 7 but using a recast of the results of the ATLAS [51] and CMS [55] ditau
search in the left and right panel, respectively. For additional details see the text.

b -tagger can reach up to 90% but degrades down to approximately 60% for pT,b > 500GeV.
To remove DY background an additional cut on the invariant mass mvis of the visible tau
decay products of mvis > 100GeV is applied. The scalar sum

S
MET
T = pT,⌧1 + pT,⌧2 + pT,j + ET,miss , (B.1)

built from the transverse momenta pT,⌧1 and pT,⌧2 of the two ⌧ candidates, the transverse
momentum pT,j of the leading jet and the missing transverse energy ET,miss is used in the
analysis [55] as a discriminating variable. Furthermore, two orthogonal event categories
are constructed: one which requires no b -jet with pT,b > 50GeV and another one which
requires at least one such jet.

The 95% CL exclusion bounds on the MU –g4 plane that follow from the recast of
the ATLAS [51] and CMS [55] search are shown in the left and right panel of Figure 8,
respectively. For simplicity we again employ MG0 = MU when determining the exclusion
limits. Compared to the constraints depicted in Figure 7, one observes that the difference
between the no b -tag and b -tag bounds that derive from the considered ATLAS analysis
is much smaller. This feature is readily understood by noticing that the ATLAS search,
unlike the CMS analysis [54] does not see an excess in the high-mass m

tot
T distribution in

the no b -tag category. In fact, ATLAS observes small deficits compared to the expected SM
background in the tails of the m

tot
T spectra, which explains why for large values of MU the

95% CL limits on g4 as shown in the left panel of Figure 8 are notably better than those
displayed in Figure 7. To understand the shape of the exclusion limits following from the
CMS search [55] presented on the right-hand side in Figure 8, one has to realise that the
latter search observes a non-resonant excess with a significance of a bit more than 3� above
the SM expectation in the data. As a result, the obtained 95% CL limits in the MU –g4
plane turn out to be weaker than expected, in particular in the large mass regime.

– 17 –

CMS 2021ATLAS 2020 CMS 2022

8. Results 11

Ev
en

ts
 / 

G
eV

4−10

3−10

2−10

1−10
1

10

210

310

410

510 Observed
 and single toptt

Diboson
QCD multijet
Z + jets
W + jets
Bkg. unc.

=1κ=1, β=2.5, λLQ, 2000 GeV, 
 fb19−

+20 = 62σScalar, 
 fb14−

+15 = 43σVector, 

 (13 TeV)1−137 fb

CMS
Preliminary

, 0bµe

 [GeV]MET
TS

500 1000 1500 2000 2500

O
bs

. /
 B

kg
.

0.5

1

1.5

Ev
en

ts
 / 

G
eV

4−10

3−10

2−10

1−10
1

10

210

310

410

510

610
Observed

 and single toptt
QCD multijet
Diboson
Z + jets
Bkg. unc.

=1κ=1, β=2.5, λLQ, 2000 GeV, 
 fb19−

+20 = 62σScalar, 
 fb14−

+15 = 43σVector, 

 (13 TeV)1−137 fb

CMS
Preliminary

1b≥, µe

 [GeV]MET
TS

500 1000 1500 2000 2500

O
bs

. /
 B

kg
.

0.5

1

1.5

Ev
en

ts
 / 

G
eV

4−10

3−10

2−10

1−10

1
10

210

310

410 Observed
hτhτ →Z 

 and single toptt
 fakeshτ →j 

hτ →Drell-Yan with l 
Diboson
Bkg. unc.

=1κ=1, β=2.5, λLQ, 2000 GeV, 
 fb19−

+20 = 62σScalar, 
 fb14−

+15 = 43σVector, 

 (13 TeV)1−137 fb

CMS
Preliminary

, 0bhτhτ

 [GeV]MET
TS

500 1000 1500 2000 2500
O

bs
. /

 B
kg

.
0.5

1

1.5

Ev
en

ts
 / 

G
eV

4−10

3−10

2−10

1−10

1

10

210

310

410
Observed

 and single toptt
 fakeshτ →j 

hτhτ →Z 
Bkg. unc.

=1κ=1, β=2.5, λLQ, 2000 GeV, 
 fb19−

+20 = 62σScalar, 
 fb14−

+15 = 43σVector, 

 (13 TeV)1−137 fb

CMS
Preliminary

1b≥, hτhτ

 [GeV]MET
TS

500 1000 1500 2000 2500

O
bs

. /
 B

kg
.

0.5

1

1.5

Figure 3: Postfit distributions of S
MET
T for the combined 2016–2018 dataset after a simultane-

ous fit of the scalar LQ signal to the data in each data-taking period. The last bin includes the
overflow. The eµ (top) and thth (bottom) channels in the 0b (left) and �1b (right) category
are shown. The fitted signal distributions for the total scalar (solid red) and vector LQ model
(dashed red) with a mass of 2000 GeV and a coupling strength of l = 2.5 are overlaid to illus-
trate the sensitivity. They include the single and pair LQ production, as well as the nonresonant
production of a t lepton pair. The lower panel shows the ratio between the observed data and
background from the S+B fit (black). The hatched uncertainty bands include the total postfit
uncertainties in the background.

Source: EXO-19-016-PAS (CMS)
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2.2 Drell-Yan production: Phenomenology

Exclusion limits: 

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)Figure 7. Comparison of the 95% CL constraints on the MU –g4 plane that arise from the latest
LHC Run II hadronic ditau analysis [54]. The red (green) exclusion corresponds to the no b -tag (b -
tag) category of the latter search, while the hatched grey parameter space is excluded by strong
pair production of third-generation LQs [113]. Consult the main text for additional explanations.

long as MG0 = O(MU ). One finally sees that the considered SM-LQ LO interference ef-
fects amount to a few permille in the case of the no b -tag category, while they can exceed
the level of 5% if one requires the presence of a b -tag in the events. In contrast to what
has been suggested in the recent work [54], interference effects therefore play only a minor
role in the SRs that are relevant for non-resonant DY searches for third-generation singlet
vector LQs at the LHC.

Based on the ditau search strategies detailed above, we now derive NLO+PS accurate
95% confidence level (CL) limits on the MU –g4 plane. Since we have seen that the choice
of coloron mass has only a minor impact on the m

tot
T spectrum, we employ MG0 = MU

for simplicity when determining the exclusion bounds. Figure 7 shows our 95% CL limits
on the MU –g4 parameter space that follow from the two b -jet categories considered in the
CMS search [54] for two hadronic tau leptons. The red and green exclusion corresponds
to the no b -tag and the b -tag category of this analysis, respectively, while the parameter
space excluded by strong pair production of third-generation LQs [53] is indicated by the
hatched grey vertical band. This search excludes MU < 1650GeV at 95% CL. The signifi-
cance of the individual b -jet categories of the search [54] is calculated as a ratio of Poisson
likelihoods modified to incorporate systematic uncertainties on the background as Gaus-
sian constraints [114]. Our statistical analysis includes the six (three) highest m

tot
T bins in

the case of the no b -tag (b -tag) category. One first observes that the bound on g4 that
follows from the search with a b -tag is more stringent than the one that derives from a
strategy that requires no b -jet. We add that the difference between the no b -tag and b -tag
constraints is rather pronounced in the case of the CMS analysis [54], because this search
observes a resonant-like excess with a significance of around 3� at m

tot
T ' 1.2TeV in the

– 13 –

Figure 8. As Figure 7 but using a recast of the results of the ATLAS [51] and CMS [55] ditau
search in the left and right panel, respectively. For additional details see the text.

b -tagger can reach up to 90% but degrades down to approximately 60% for pT,b > 500GeV.
To remove DY background an additional cut on the invariant mass mvis of the visible tau
decay products of mvis > 100GeV is applied. The scalar sum

S
MET
T = pT,⌧1 + pT,⌧2 + pT,j + ET,miss , (B.1)

built from the transverse momenta pT,⌧1 and pT,⌧2 of the two ⌧ candidates, the transverse
momentum pT,j of the leading jet and the missing transverse energy ET,miss is used in the
analysis [55] as a discriminating variable. Furthermore, two orthogonal event categories
are constructed: one which requires no b -jet with pT,b > 50GeV and another one which
requires at least one such jet.

The 95% CL exclusion bounds on the MU –g4 plane that follow from the recast of
the ATLAS [51] and CMS [55] search are shown in the left and right panel of Figure 8,
respectively. For simplicity we again employ MG0 = MU when determining the exclusion
limits. Compared to the constraints depicted in Figure 7, one observes that the difference
between the no b -tag and b -tag bounds that derive from the considered ATLAS analysis
is much smaller. This feature is readily understood by noticing that the ATLAS search,
unlike the CMS analysis [54] does not see an excess in the high-mass m

tot
T distribution in

the no b -tag category. In fact, ATLAS observes small deficits compared to the expected SM
background in the tails of the m

tot
T spectra, which explains why for large values of MU the

95% CL limits on g4 as shown in the left panel of Figure 8 are notably better than those
displayed in Figure 7. To understand the shape of the exclusion limits following from the
CMS search [55] presented on the right-hand side in Figure 8, one has to realise that the
latter search observes a non-resonant excess with a significance of a bit more than 3� above
the SM expectation in the data. As a result, the obtained 95% CL limits in the MU –g4
plane turn out to be weaker than expected, in particular in the large mass regime.
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Figure 3: Postfit distributions of S
MET
T for the combined 2016–2018 dataset after a simultane-

ous fit of the scalar LQ signal to the data in each data-taking period. The last bin includes the
overflow. The eµ (top) and thth (bottom) channels in the 0b (left) and �1b (right) category
are shown. The fitted signal distributions for the total scalar (solid red) and vector LQ model
(dashed red) with a mass of 2000 GeV and a coupling strength of l = 2.5 are overlaid to illus-
trate the sensitivity. They include the single and pair LQ production, as well as the nonresonant
production of a t lepton pair. The lower panel shows the ratio between the observed data and
background from the S+B fit (black). The hatched uncertainty bands include the total postfit
uncertainties in the background.

Source: EXO-19-016-PAS (CMS)
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Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)Figure 7. Comparison of the 95% CL constraints on the MU –g4 plane that arise from the latest
LHC Run II hadronic ditau analysis [54]. The red (green) exclusion corresponds to the no b -tag (b -
tag) category of the latter search, while the hatched grey parameter space is excluded by strong
pair production of third-generation LQs [113]. Consult the main text for additional explanations.

long as MG0 = O(MU ). One finally sees that the considered SM-LQ LO interference ef-
fects amount to a few permille in the case of the no b -tag category, while they can exceed
the level of 5% if one requires the presence of a b -tag in the events. In contrast to what
has been suggested in the recent work [54], interference effects therefore play only a minor
role in the SRs that are relevant for non-resonant DY searches for third-generation singlet
vector LQs at the LHC.

Based on the ditau search strategies detailed above, we now derive NLO+PS accurate
95% confidence level (CL) limits on the MU –g4 plane. Since we have seen that the choice
of coloron mass has only a minor impact on the m

tot
T spectrum, we employ MG0 = MU

for simplicity when determining the exclusion bounds. Figure 7 shows our 95% CL limits
on the MU –g4 parameter space that follow from the two b -jet categories considered in the
CMS search [54] for two hadronic tau leptons. The red and green exclusion corresponds
to the no b -tag and the b -tag category of this analysis, respectively, while the parameter
space excluded by strong pair production of third-generation LQs [53] is indicated by the
hatched grey vertical band. This search excludes MU < 1650GeV at 95% CL. The signifi-
cance of the individual b -jet categories of the search [54] is calculated as a ratio of Poisson
likelihoods modified to incorporate systematic uncertainties on the background as Gaus-
sian constraints [114]. Our statistical analysis includes the six (three) highest m

tot
T bins in

the case of the no b -tag (b -tag) category. One first observes that the bound on g4 that
follows from the search with a b -tag is more stringent than the one that derives from a
strategy that requires no b -jet. We add that the difference between the no b -tag and b -tag
constraints is rather pronounced in the case of the CMS analysis [54], because this search
observes a resonant-like excess with a significance of around 3� at m

tot
T ' 1.2TeV in the

– 13 –

Figure 8. As Figure 7 but using a recast of the results of the ATLAS [51] and CMS [55] ditau
search in the left and right panel, respectively. For additional details see the text.

b -tagger can reach up to 90% but degrades down to approximately 60% for pT,b > 500GeV.
To remove DY background an additional cut on the invariant mass mvis of the visible tau
decay products of mvis > 100GeV is applied. The scalar sum

S
MET
T = pT,⌧1 + pT,⌧2 + pT,j + ET,miss , (B.1)

built from the transverse momenta pT,⌧1 and pT,⌧2 of the two ⌧ candidates, the transverse
momentum pT,j of the leading jet and the missing transverse energy ET,miss is used in the
analysis [55] as a discriminating variable. Furthermore, two orthogonal event categories
are constructed: one which requires no b -jet with pT,b > 50GeV and another one which
requires at least one such jet.

The 95% CL exclusion bounds on the MU –g4 plane that follow from the recast of
the ATLAS [51] and CMS [55] search are shown in the left and right panel of Figure 8,
respectively. For simplicity we again employ MG0 = MU when determining the exclusion
limits. Compared to the constraints depicted in Figure 7, one observes that the difference
between the no b -tag and b -tag bounds that derive from the considered ATLAS analysis
is much smaller. This feature is readily understood by noticing that the ATLAS search,
unlike the CMS analysis [54] does not see an excess in the high-mass m

tot
T distribution in

the no b -tag category. In fact, ATLAS observes small deficits compared to the expected SM
background in the tails of the m

tot
T spectra, which explains why for large values of MU the

95% CL limits on g4 as shown in the left panel of Figure 8 are notably better than those
displayed in Figure 7. To understand the shape of the exclusion limits following from the
CMS search [55] presented on the right-hand side in Figure 8, one has to realise that the
latter search observes a non-resonant excess with a significance of a bit more than 3� above
the SM expectation in the data. As a result, the obtained 95% CL limits in the MU –g4
plane turn out to be weaker than expected, in particular in the large mass regime.
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Figure 3: Postfit distributions of S
MET
T for the combined 2016–2018 dataset after a simultane-

ous fit of the scalar LQ signal to the data in each data-taking period. The last bin includes the
overflow. The eµ (top) and thth (bottom) channels in the 0b (left) and �1b (right) category
are shown. The fitted signal distributions for the total scalar (solid red) and vector LQ model
(dashed red) with a mass of 2000 GeV and a coupling strength of l = 2.5 are overlaid to illus-
trate the sensitivity. They include the single and pair LQ production, as well as the nonresonant
production of a t lepton pair. The lower panel shows the ratio between the observed data and
background from the S+B fit (black). The hatched uncertainty bands include the total postfit
uncertainties in the background.

Source: EXO-19-016-PAS (CMS)
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Exclusion limits: 

Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)Figure 7. Comparison of the 95% CL constraints on the MU –g4 plane that arise from the latest
LHC Run II hadronic ditau analysis [54]. The red (green) exclusion corresponds to the no b -tag (b -
tag) category of the latter search, while the hatched grey parameter space is excluded by strong
pair production of third-generation LQs [113]. Consult the main text for additional explanations.

long as MG0 = O(MU ). One finally sees that the considered SM-LQ LO interference ef-
fects amount to a few permille in the case of the no b -tag category, while they can exceed
the level of 5% if one requires the presence of a b -tag in the events. In contrast to what
has been suggested in the recent work [54], interference effects therefore play only a minor
role in the SRs that are relevant for non-resonant DY searches for third-generation singlet
vector LQs at the LHC.

Based on the ditau search strategies detailed above, we now derive NLO+PS accurate
95% confidence level (CL) limits on the MU –g4 plane. Since we have seen that the choice
of coloron mass has only a minor impact on the m

tot
T spectrum, we employ MG0 = MU

for simplicity when determining the exclusion bounds. Figure 7 shows our 95% CL limits
on the MU –g4 parameter space that follow from the two b -jet categories considered in the
CMS search [54] for two hadronic tau leptons. The red and green exclusion corresponds
to the no b -tag and the b -tag category of this analysis, respectively, while the parameter
space excluded by strong pair production of third-generation LQs [53] is indicated by the
hatched grey vertical band. This search excludes MU < 1650GeV at 95% CL. The signifi-
cance of the individual b -jet categories of the search [54] is calculated as a ratio of Poisson
likelihoods modified to incorporate systematic uncertainties on the background as Gaus-
sian constraints [114]. Our statistical analysis includes the six (three) highest m

tot
T bins in

the case of the no b -tag (b -tag) category. One first observes that the bound on g4 that
follows from the search with a b -tag is more stringent than the one that derives from a
strategy that requires no b -jet. We add that the difference between the no b -tag and b -tag
constraints is rather pronounced in the case of the CMS analysis [54], because this search
observes a resonant-like excess with a significance of around 3� at m

tot
T ' 1.2TeV in the

– 13 –

Figure 8. As Figure 7 but using a recast of the results of the ATLAS [51] and CMS [55] ditau
search in the left and right panel, respectively. For additional details see the text.

b -tagger can reach up to 90% but degrades down to approximately 60% for pT,b > 500GeV.
To remove DY background an additional cut on the invariant mass mvis of the visible tau
decay products of mvis > 100GeV is applied. The scalar sum

S
MET
T = pT,⌧1 + pT,⌧2 + pT,j + ET,miss , (B.1)

built from the transverse momenta pT,⌧1 and pT,⌧2 of the two ⌧ candidates, the transverse
momentum pT,j of the leading jet and the missing transverse energy ET,miss is used in the
analysis [55] as a discriminating variable. Furthermore, two orthogonal event categories
are constructed: one which requires no b -jet with pT,b > 50GeV and another one which
requires at least one such jet.

The 95% CL exclusion bounds on the MU –g4 plane that follow from the recast of
the ATLAS [51] and CMS [55] search are shown in the left and right panel of Figure 8,
respectively. For simplicity we again employ MG0 = MU when determining the exclusion
limits. Compared to the constraints depicted in Figure 7, one observes that the difference
between the no b -tag and b -tag bounds that derive from the considered ATLAS analysis
is much smaller. This feature is readily understood by noticing that the ATLAS search,
unlike the CMS analysis [54] does not see an excess in the high-mass m

tot
T distribution in

the no b -tag category. In fact, ATLAS observes small deficits compared to the expected SM
background in the tails of the m

tot
T spectra, which explains why for large values of MU the

95% CL limits on g4 as shown in the left panel of Figure 8 are notably better than those
displayed in Figure 7. To understand the shape of the exclusion limits following from the
CMS search [55] presented on the right-hand side in Figure 8, one has to realise that the
latter search observes a non-resonant excess with a significance of a bit more than 3� above
the SM expectation in the data. As a result, the obtained 95% CL limits in the MU –g4
plane turn out to be weaker than expected, in particular in the large mass regime.
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Source: ArXiv:2209.12780 (U. Haisch, LS, S. Schulte)Figure 7. Comparison of the 95% CL constraints on the MU –g4 plane that arise from the latest
LHC Run II hadronic ditau analysis [54]. The red (green) exclusion corresponds to the no b -tag (b -
tag) category of the latter search, while the hatched grey parameter space is excluded by strong
pair production of third-generation LQs [113]. Consult the main text for additional explanations.

long as MG0 = O(MU ). One finally sees that the considered SM-LQ LO interference ef-
fects amount to a few permille in the case of the no b -tag category, while they can exceed
the level of 5% if one requires the presence of a b -tag in the events. In contrast to what
has been suggested in the recent work [54], interference effects therefore play only a minor
role in the SRs that are relevant for non-resonant DY searches for third-generation singlet
vector LQs at the LHC.

Based on the ditau search strategies detailed above, we now derive NLO+PS accurate
95% confidence level (CL) limits on the MU –g4 plane. Since we have seen that the choice
of coloron mass has only a minor impact on the m

tot
T spectrum, we employ MG0 = MU

for simplicity when determining the exclusion bounds. Figure 7 shows our 95% CL limits
on the MU –g4 parameter space that follow from the two b -jet categories considered in the
CMS search [54] for two hadronic tau leptons. The red and green exclusion corresponds
to the no b -tag and the b -tag category of this analysis, respectively, while the parameter
space excluded by strong pair production of third-generation LQs [53] is indicated by the
hatched grey vertical band. This search excludes MU < 1650GeV at 95% CL. The signifi-
cance of the individual b -jet categories of the search [54] is calculated as a ratio of Poisson
likelihoods modified to incorporate systematic uncertainties on the background as Gaus-
sian constraints [114]. Our statistical analysis includes the six (three) highest m

tot
T bins in

the case of the no b -tag (b -tag) category. One first observes that the bound on g4 that
follows from the search with a b -tag is more stringent than the one that derives from a
strategy that requires no b -jet. We add that the difference between the no b -tag and b -tag
constraints is rather pronounced in the case of the CMS analysis [54], because this search
observes a resonant-like excess with a significance of around 3� at m

tot
T ' 1.2TeV in the
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Figure 8. As Figure 7 but using a recast of the results of the ATLAS [51] and CMS [55] ditau
search in the left and right panel, respectively. For additional details see the text.

b -tagger can reach up to 90% but degrades down to approximately 60% for pT,b > 500GeV.
To remove DY background an additional cut on the invariant mass mvis of the visible tau
decay products of mvis > 100GeV is applied. The scalar sum

S
MET
T = pT,⌧1 + pT,⌧2 + pT,j + ET,miss , (B.1)

built from the transverse momenta pT,⌧1 and pT,⌧2 of the two ⌧ candidates, the transverse
momentum pT,j of the leading jet and the missing transverse energy ET,miss is used in the
analysis [55] as a discriminating variable. Furthermore, two orthogonal event categories
are constructed: one which requires no b -jet with pT,b > 50GeV and another one which
requires at least one such jet.

The 95% CL exclusion bounds on the MU –g4 plane that follow from the recast of
the ATLAS [51] and CMS [55] search are shown in the left and right panel of Figure 8,
respectively. For simplicity we again employ MG0 = MU when determining the exclusion
limits. Compared to the constraints depicted in Figure 7, one observes that the difference
between the no b -tag and b -tag bounds that derive from the considered ATLAS analysis
is much smaller. This feature is readily understood by noticing that the ATLAS search,
unlike the CMS analysis [54] does not see an excess in the high-mass m

tot
T distribution in

the no b -tag category. In fact, ATLAS observes small deficits compared to the expected SM
background in the tails of the m

tot
T spectra, which explains why for large values of MU the

95% CL limits on g4 as shown in the left panel of Figure 8 are notably better than those
displayed in Figure 7. To understand the shape of the exclusion limits following from the
CMS search [55] presented on the right-hand side in Figure 8, one has to realise that the
latter search observes a non-resonant excess with a significance of a bit more than 3� above
the SM expectation in the data. As a result, the obtained 95% CL limits in the MU –g4
plane turn out to be weaker than expected, in particular in the large mass regime.
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Figure 8. As Figure 7 but using a recast of the results of the ATLAS [51] and CMS [55] ditau
search in the left and right panel, respectively. For additional details see the text.

b -tagger can reach up to 90% but degrades down to approximately 60% for pT,b > 500GeV.
To remove DY background an additional cut on the invariant mass mvis of the visible tau
decay products of mvis > 100GeV is applied. The scalar sum

S
MET
T = pT,⌧1 + pT,⌧2 + pT,j + ET,miss , (B.1)

built from the transverse momenta pT,⌧1 and pT,⌧2 of the two ⌧ candidates, the transverse
momentum pT,j of the leading jet and the missing transverse energy ET,miss is used in the
analysis [55] as a discriminating variable. Furthermore, two orthogonal event categories
are constructed: one which requires no b -jet with pT,b > 50GeV and another one which
requires at least one such jet.

The 95% CL exclusion bounds on the MU –g4 plane that follow from the recast of
the ATLAS [51] and CMS [55] search are shown in the left and right panel of Figure 8,
respectively. For simplicity we again employ MG0 = MU when determining the exclusion
limits. Compared to the constraints depicted in Figure 7, one observes that the difference
between the no b -tag and b -tag bounds that derive from the considered ATLAS analysis
is much smaller. This feature is readily understood by noticing that the ATLAS search,
unlike the CMS analysis [54] does not see an excess in the high-mass m

tot
T distribution in

the no b -tag category. In fact, ATLAS observes small deficits compared to the expected SM
background in the tails of the m

tot
T spectra, which explains why for large values of MU the

95% CL limits on g4 as shown in the left panel of Figure 8 are notably better than those
displayed in Figure 7. To understand the shape of the exclusion limits following from the
CMS search [55] presented on the right-hand side in Figure 8, one has to realise that the
latter search observes a non-resonant excess with a significance of a bit more than 3� above
the SM expectation in the data. As a result, the obtained 95% CL limits in the MU –g4
plane turn out to be weaker than expected, in particular in the large mass regime.
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FIG. 1. Determination of Cc
LL and Cc

LR from a �2-fit to low-
energy observables. The Wilson coe�cients, assumed to be
real, are renormalized at the reference scale ⇤UV = 1 TeV.
The blue ellipses denote the 1, 2, and 3� contours fitting only
b ! c observables. The black dot indicates the best fit point
of (0.05,�0.02). The dotted lines are obtained including also
B
�
B�

u ! ⌧ ⌫̄
�
in the limit of up alignment. The ��2 = 1

regions preferred by each observable are also indicated, except
in the case of R⇤b where we give the 90% CL region (due to
the large error).

⇤UV = 1 TeV, which is the most appropriate scale
to compare low- and high-energy observables. Taking
into account only the QCD-induced running, we set
C
c

LL
(mb) = C

c

LL
(⇤UV) and

C
c

LR
(mb) = ⌘S C

c

LR
(⇤UV) , ⌘S ⇡ 1.6 . (35)

The first point to notice is that the SM point (Cc

LL
=

C
c

LR
= 0) is excluded at the 3� level. The b ! c observ-

ables favor a region compatible with both a pure left-
handed interaction (Cc

LR
= 0) as well as the case with

equal magnitude right-handed currents Cc

LL
= �C

c

LR
. In

both cases, the pull of the U1 LQ hypothesis with re-
spect to the SM is ��2 = �2

SM � �2
NP ⇡ 11, which

is at the 3� level. As first pointed out in [10], the
case where C

c

LL
= �C

c

LR
is a natural benchmark for a

flavor non-universal gauge model, where both left- and
right-handed third-family quarks and leptons are uni-
fied in fundamental representations of SU(4). As indi-
cated by the dashed blue lines, the preferred region is
essentially unchanged if B(B�

! ⌧ ⌫̄) is added under
the hypothesis of non-minimal U(2)Q breaking and up-
alignment. In either case, we find a best fit point of
C
c

LL
= 0.05 and C

c

LR
= �0.02. On the other hand, the

inclusion of B(B�
! ⌧ ⌫̄) under the hypothesis of mini-

mal U(2)Q breaking (dark green band) disfavors sizable
right-handed currents.

Loop-induced contribution to b ! s`¯̀

This analysis is focused on the leading couplings of the
U1 field to third-generation leptons. Hence, we do not
discuss b ! s`` transitions (` = e, µ) in detail here. How-
ever, we recall that the operator O

sb⌧⌧

LL
mixes via QED

running [57] into operators with light leptons (⌧ ⌧̄ ! `¯̀

loop). This results into a lepton-universal contribution
to the b ! s`¯̀Wilson coe�cient C9 [58], defined accord-
ing to standard conventions (see e.g. [59, 60]). We will
estimate the size of this e↵ect using the results of the fit
in Fig. 1.
To this purpose, we note that besides the leading-log

running from the high-energy matching scale (i.e. MU )
down to mb, we should also include long distance (LD)
contributions resulting from the one-loop matrix element
of the semi-leptonic operator Osb⌧⌧

LL
[61]. Such contribu-

tions are analogous to the LD contributions from charm
penguins where the only di↵erence is that the charm is
replaced by a tau lepton. This can be taken into account
defining a q2-dependent Ce↵

9 (q2), where q2 = m2
``
. Con-

sidering also this e↵ect, we find the following expression
for the correction to Ce↵

9 induced by the U1:

�Ce↵
9 (q2 = 0) =

Csb⌧⌧

LL

V ⇤
ts
Vtb

2

3


log

✓
M2

U

m2
⌧

◆
� 1

�
,

= �
C
c

LL

1 + |Vts|/✏q

2

3


log

✓
M2

U

m2
⌧

◆
� 1

�
. (36)

The last expression follows from the relation between
Csb⌧⌧

LL
and C

c

LL
, which can be deduced from Sect. II A.

For C
c

LL
= 0.05 (best fit point in Fig. 1), MU = 3 TeV,

and ✏q = 2|Vts|, we get �Ce↵
9 (0) ⇡ �0.3. While not

solving all b ! s`¯̀ anomalies, such a correction leads to
a significant improvement in the description of b ! s`¯̀

data [16, 59, 60].

B. High-energy

Collider observables are known to provide rich informa-
tion on the parameter space of vector leptoquark mod-
els [31, 38, 44] explaining the B-meson anomalies, that is
complementary to low-energy data [16, 62]. A variety of
di↵erent underlying processes can be relevant at hadron
colliders such as the LHC. The most important channels
involving the U1 leptoquark are:

• Pair production pp ! U⇤
1U1,

• Quark-gluon scattering qg ! U1`,

• Quark-lepton fusion q` ! U1,

• Drell-Yan pp ! `¯̀.

The main decay channels in models where the leptoquark
predominantly couples to third generation fermions are
U1 ! b⌧+ and U1 ! t⌫̄⌧ . In the case of interest where

Source: ArXiv:2210.13422 (J. Aebischer, G. Isidori, 
M. Pesut, B.A. Stefanek, F. Wilsch)

Low-energy fit:

https://arxiv.org/pdf/2210.13422.pdf
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. In
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cated by the dashed blue lines, the preferred region is
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U1 field to third-generation leptons. Hence, we do not
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ever, we recall that the operator O
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loop). This results into a lepton-universal contribution
to the b ! s`¯̀Wilson coe�cient C9 [58], defined accord-
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9 (0) ⇡ �0.3. While not

solving all b ! s`¯̀ anomalies, such a correction leads to
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data [16, 59, 60].
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1U1,

• Quark-gluon scattering qg ! U1`,

• Quark-lepton fusion q` ! U1,
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predominantly couples to third generation fermions are
U1 ! b⌧+ and U1 ! t⌫̄⌧ . In the case of interest where
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Low-energy fit:

Source: ArXiv:2210.13422 (J. Aebischer, G. Isidori, 
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FIG. 3. High-pT constraints superimposed on the low-energy
fit. The red and blue bands represent the ��2 = 1 regions
preferred by RD and RD⇤ . The blue lines correspond to the
1�, 2�, and 3� contours of the combined low-energy fit in-
cluding all b ! c observables (dot = best fit point). The
high-pT exclusion limits derived from the b-tag channel of the
CMS [36] (ATLAS [39]) search are given by the gray (green)
lines. The green shaded region gives a projection of the al-
lowed parameter space from high-pT searches (in absence of
a signal) with a luminosity of 3 ab�1. Finally, the region to
the right of the red line is excluded by ⌧ -LFU tests assuming
leading log running of C33⌧⌧

LL . See text for more details.

in Fig. 3, where the red and blue bands represent the
preferred ��2 = 1 regions for the measurements of RD

and RD⇤ . The blue lines correspond to the 1�, 2�, and
3� contours of the combined low-energy fit including all
b ! c observables, whereas the gray (green) lines indicate
the 95% CL exclusion contours for the CMS (ATLAS)
di-tau search using the b-tag channel.8 The solid and
dashed lines correspond to the constraints obtained as-
suming ✏q = 3|Vts| and ✏q = 2|Vts|, respectively.

As can be seen, the high-energy constraints are already
very close to the parameter region favored by low-energy
data. To this purpose, it should be noted that scenarios
with smaller ✏q are more constrained by high-pT as they
require a lower scale ⇤U to explain the charged-current
anomalies (see Eq. (25)). On the other hand, values of
✏q larger than 3|Vts| are both unnatural and highly dis-
favoured by �F = 2 constraints in UV complete models
in the absence of fine-tuning.

Due to the excess of events currently observed by CMS,
the corresponding limits are significantly weaker than

8
Notice that the high-pT constraints are pinched at Cc

LL = 0 since

this point corresponds to the limit �R ! 1 [see Eq. (25)].

those of ATLAS. If interpreted as a signal, the CMS ex-
cess (which is further supported by a dedicated t-channel
analysis [37]) would favour the parameter region close to
the CMS exclusion bounds in Fig. 3. Given the low-
energy constraints, this would in turn prefer a scenario
with sizable right-handed couplings. On the other hand,
ATLAS data are more compatible with low-energy data
in the region of a pure left-handed coupling (though right-
handed couplings remain viable).
Overall, the plot in Fig. 3 shows that low- and high-

energy data yield complementary constraints, and that
a U1 explanation of RD(⇤) is compatible with present
pp ! ⌧ ⌧̄ data. This plot also shows that future high-
energy data will play an essential role in testing the U1

explanation of charged-current B anomalies. To illus-
trate this point, we indicate the projection for an inte-
grated luminosity of 3 ab�1 by the shaded green central
region in Fig. 3, which shows the potential of the high-
luminosity phase of LHC assuming ✏q = 2|Vts|. The pro-
jection was derived using the ATLAS b-tag search assum-
ing that background uncertainties scale as the square-
root of the luminosity. This projection shows that a large
part of the relevant parameter space will be probed with
the data sets expected from Run-III and the LHC high-
luminosity phase.
For completeness, in Fig. 3 we also indicate the region

disfavoured by LFU tests in ⌧ decays [77]: the region
to the right of the red line is excluded by the experi-
mental determination of (gW

⌧
/gW

µ,e
)`,⇡,K [46], using the

leading-log (LL) running of C33⌧⌧
LL

(1 TeV) [77], and set-
ting ✏q = 3|Vts| (most conservative choice). Due to their
purely left-handed nature, ⌧ -LFU tests provide a strong
constraint on the left-handed only hypothesis, potentially
favouring scenarios with right-handed currents. However,
this point comes with the caveat that additional contribu-
tions from new states in UV complete models can soften
these bounds [78].

IV. CONCLUSIONS

In this paper we have analyzed the compatibility of
the U1 LQ explanation of the charged-current B-meson
anomalies in light of new low- and high-energy data. To
this purpose, we have first re-analysed in a bottom-up
and, to large extent, model-independent approach the as-
sumptions necessary to relate the U1 couplings appearing
in b ! c⌧ ⌫̄, b ! u⌧ ⌫̄, and bb̄ ! ⌧ ⌧̄ transitions.

Updating the fit to the low-energy data, we find that
the region preferred by b ! c observables is equally
compatible with a purely left-handed interaction, as well
as with a scenario with right-handed currents of equal
magnitude. The latter option is quite interesting, given
sizable right-handed currents are a distinctive signature
of models where the U1 is embedded in a flavor non-
universal gauge group [10]. In both cases, the pull of the
U1 hypothesis is at the 3� level. The present low-energy
fit already highlights the role of Bu ! ⌧ ⌫̄ in pinning

High-energy constraints:

https://arxiv.org/pdf/2210.13422.pdf
https://arxiv.org/pdf/2210.13422.pdf
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⇤UV = 1 TeV, which is the most appropriate scale
to compare low- and high-energy observables. Taking
into account only the QCD-induced running, we set
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is a natural benchmark for a

flavor non-universal gauge model, where both left- and
right-handed third-family quarks and leptons are uni-
fied in fundamental representations of SU(4). As indi-
cated by the dashed blue lines, the preferred region is
essentially unchanged if B(B�

! ⌧ ⌫̄) is added under
the hypothesis of non-minimal U(2)Q breaking and up-
alignment. In either case, we find a best fit point of
C
c

LL
= 0.05 and C

c

LR
= �0.02. On the other hand, the

inclusion of B(B�
! ⌧ ⌫̄) under the hypothesis of mini-

mal U(2)Q breaking (dark green band) disfavors sizable
right-handed currents.

Loop-induced contribution to b ! s`¯̀

This analysis is focused on the leading couplings of the
U1 field to third-generation leptons. Hence, we do not
discuss b ! s`` transitions (` = e, µ) in detail here. How-
ever, we recall that the operator O

sb⌧⌧

LL
mixes via QED

running [57] into operators with light leptons (⌧ ⌧̄ ! `¯̀

loop). This results into a lepton-universal contribution
to the b ! s`¯̀Wilson coe�cient C9 [58], defined accord-
ing to standard conventions (see e.g. [59, 60]). We will
estimate the size of this e↵ect using the results of the fit
in Fig. 1.
To this purpose, we note that besides the leading-log

running from the high-energy matching scale (i.e. MU )
down to mb, we should also include long distance (LD)
contributions resulting from the one-loop matrix element
of the semi-leptonic operator Osb⌧⌧

LL
[61]. Such contribu-

tions are analogous to the LD contributions from charm
penguins where the only di↵erence is that the charm is
replaced by a tau lepton. This can be taken into account
defining a q2-dependent Ce↵

9 (q2), where q2 = m2
``
. Con-

sidering also this e↵ect, we find the following expression
for the correction to Ce↵

9 induced by the U1:

�Ce↵
9 (q2 = 0) =

Csb⌧⌧

LL

V ⇤
ts
Vtb

2

3


log

✓
M2

U

m2
⌧

◆
� 1

�
,

= �
C
c

LL

1 + |Vts|/✏q

2

3


log

✓
M2

U

m2
⌧

◆
� 1

�
. (36)

The last expression follows from the relation between
Csb⌧⌧

LL
and C

c

LL
, which can be deduced from Sect. II A.

For C
c

LL
= 0.05 (best fit point in Fig. 1), MU = 3 TeV,

and ✏q = 2|Vts|, we get �Ce↵
9 (0) ⇡ �0.3. While not

solving all b ! s`¯̀ anomalies, such a correction leads to
a significant improvement in the description of b ! s`¯̀

data [16, 59, 60].

B. High-energy

Collider observables are known to provide rich informa-
tion on the parameter space of vector leptoquark mod-
els [31, 38, 44] explaining the B-meson anomalies, that is
complementary to low-energy data [16, 62]. A variety of
di↵erent underlying processes can be relevant at hadron
colliders such as the LHC. The most important channels
involving the U1 leptoquark are:

• Pair production pp ! U⇤
1U1,

• Quark-gluon scattering qg ! U1`,

• Quark-lepton fusion q` ! U1,

• Drell-Yan pp ! `¯̀.

The main decay channels in models where the leptoquark
predominantly couples to third generation fermions are
U1 ! b⌧+ and U1 ! t⌫̄⌧ . In the case of interest where

Source: ArXiv:2210.13422 (J. Aebischer, G. Isidori, 
M. Pesut, B.A. Stefanek, F. Wilsch)

Low-energy fit:

Source: ArXiv:2210.13422 (J. Aebischer, G. Isidori, 
M. Pesut, B.A. Stefanek, F. Wilsch)
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FIG. 3. High-pT constraints superimposed on the low-energy
fit. The red and blue bands represent the ��2 = 1 regions
preferred by RD and RD⇤ . The blue lines correspond to the
1�, 2�, and 3� contours of the combined low-energy fit in-
cluding all b ! c observables (dot = best fit point). The
high-pT exclusion limits derived from the b-tag channel of the
CMS [36] (ATLAS [39]) search are given by the gray (green)
lines. The green shaded region gives a projection of the al-
lowed parameter space from high-pT searches (in absence of
a signal) with a luminosity of 3 ab�1. Finally, the region to
the right of the red line is excluded by ⌧ -LFU tests assuming
leading log running of C33⌧⌧

LL . See text for more details.

in Fig. 3, where the red and blue bands represent the
preferred ��2 = 1 regions for the measurements of RD

and RD⇤ . The blue lines correspond to the 1�, 2�, and
3� contours of the combined low-energy fit including all
b ! c observables, whereas the gray (green) lines indicate
the 95% CL exclusion contours for the CMS (ATLAS)
di-tau search using the b-tag channel.8 The solid and
dashed lines correspond to the constraints obtained as-
suming ✏q = 3|Vts| and ✏q = 2|Vts|, respectively.

As can be seen, the high-energy constraints are already
very close to the parameter region favored by low-energy
data. To this purpose, it should be noted that scenarios
with smaller ✏q are more constrained by high-pT as they
require a lower scale ⇤U to explain the charged-current
anomalies (see Eq. (25)). On the other hand, values of
✏q larger than 3|Vts| are both unnatural and highly dis-
favoured by �F = 2 constraints in UV complete models
in the absence of fine-tuning.

Due to the excess of events currently observed by CMS,
the corresponding limits are significantly weaker than

8
Notice that the high-pT constraints are pinched at Cc

LL = 0 since

this point corresponds to the limit �R ! 1 [see Eq. (25)].

those of ATLAS. If interpreted as a signal, the CMS ex-
cess (which is further supported by a dedicated t-channel
analysis [37]) would favour the parameter region close to
the CMS exclusion bounds in Fig. 3. Given the low-
energy constraints, this would in turn prefer a scenario
with sizable right-handed couplings. On the other hand,
ATLAS data are more compatible with low-energy data
in the region of a pure left-handed coupling (though right-
handed couplings remain viable).
Overall, the plot in Fig. 3 shows that low- and high-

energy data yield complementary constraints, and that
a U1 explanation of RD(⇤) is compatible with present
pp ! ⌧ ⌧̄ data. This plot also shows that future high-
energy data will play an essential role in testing the U1

explanation of charged-current B anomalies. To illus-
trate this point, we indicate the projection for an inte-
grated luminosity of 3 ab�1 by the shaded green central
region in Fig. 3, which shows the potential of the high-
luminosity phase of LHC assuming ✏q = 2|Vts|. The pro-
jection was derived using the ATLAS b-tag search assum-
ing that background uncertainties scale as the square-
root of the luminosity. This projection shows that a large
part of the relevant parameter space will be probed with
the data sets expected from Run-III and the LHC high-
luminosity phase.
For completeness, in Fig. 3 we also indicate the region

disfavoured by LFU tests in ⌧ decays [77]: the region
to the right of the red line is excluded by the experi-
mental determination of (gW

⌧
/gW

µ,e
)`,⇡,K [46], using the

leading-log (LL) running of C33⌧⌧
LL

(1 TeV) [77], and set-
ting ✏q = 3|Vts| (most conservative choice). Due to their
purely left-handed nature, ⌧ -LFU tests provide a strong
constraint on the left-handed only hypothesis, potentially
favouring scenarios with right-handed currents. However,
this point comes with the caveat that additional contribu-
tions from new states in UV complete models can soften
these bounds [78].

IV. CONCLUSIONS

In this paper we have analyzed the compatibility of
the U1 LQ explanation of the charged-current B-meson
anomalies in light of new low- and high-energy data. To
this purpose, we have first re-analysed in a bottom-up
and, to large extent, model-independent approach the as-
sumptions necessary to relate the U1 couplings appearing
in b ! c⌧ ⌫̄, b ! u⌧ ⌫̄, and bb̄ ! ⌧ ⌧̄ transitions.

Updating the fit to the low-energy data, we find that
the region preferred by b ! c observables is equally
compatible with a purely left-handed interaction, as well
as with a scenario with right-handed currents of equal
magnitude. The latter option is quite interesting, given
sizable right-handed currents are a distinctive signature
of models where the U1 is embedded in a flavor non-
universal gauge group [10]. In both cases, the pull of the
U1 hypothesis is at the 3� level. The present low-energy
fit already highlights the role of Bu ! ⌧ ⌫̄ in pinning

High-energy constraints:

Our NLO results

https://arxiv.org/pdf/2210.13422.pdf
https://arxiv.org/pdf/2210.13422.pdf
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FIG. 1. Determination of Cc
LL and Cc

LR from a �2-fit to low-
energy observables. The Wilson coe�cients, assumed to be
real, are renormalized at the reference scale ⇤UV = 1 TeV.
The blue ellipses denote the 1, 2, and 3� contours fitting only
b ! c observables. The black dot indicates the best fit point
of (0.05,�0.02). The dotted lines are obtained including also
B
�
B�

u ! ⌧ ⌫̄
�
in the limit of up alignment. The ��2 = 1

regions preferred by each observable are also indicated, except
in the case of R⇤b where we give the 90% CL region (due to
the large error).

⇤UV = 1 TeV, which is the most appropriate scale
to compare low- and high-energy observables. Taking
into account only the QCD-induced running, we set
C
c

LL
(mb) = C

c

LL
(⇤UV) and

C
c

LR
(mb) = ⌘S C

c

LR
(⇤UV) , ⌘S ⇡ 1.6 . (35)

The first point to notice is that the SM point (Cc

LL
=

C
c

LR
= 0) is excluded at the 3� level. The b ! c observ-

ables favor a region compatible with both a pure left-
handed interaction (Cc

LR
= 0) as well as the case with

equal magnitude right-handed currents Cc

LL
= �C

c

LR
. In

both cases, the pull of the U1 LQ hypothesis with re-
spect to the SM is ��2 = �2

SM � �2
NP ⇡ 11, which

is at the 3� level. As first pointed out in [10], the
case where C

c

LL
= �C

c

LR
is a natural benchmark for a

flavor non-universal gauge model, where both left- and
right-handed third-family quarks and leptons are uni-
fied in fundamental representations of SU(4). As indi-
cated by the dashed blue lines, the preferred region is
essentially unchanged if B(B�

! ⌧ ⌫̄) is added under
the hypothesis of non-minimal U(2)Q breaking and up-
alignment. In either case, we find a best fit point of
C
c

LL
= 0.05 and C

c

LR
= �0.02. On the other hand, the

inclusion of B(B�
! ⌧ ⌫̄) under the hypothesis of mini-

mal U(2)Q breaking (dark green band) disfavors sizable
right-handed currents.

Loop-induced contribution to b ! s`¯̀

This analysis is focused on the leading couplings of the
U1 field to third-generation leptons. Hence, we do not
discuss b ! s`` transitions (` = e, µ) in detail here. How-
ever, we recall that the operator O

sb⌧⌧

LL
mixes via QED

running [57] into operators with light leptons (⌧ ⌧̄ ! `¯̀

loop). This results into a lepton-universal contribution
to the b ! s`¯̀Wilson coe�cient C9 [58], defined accord-
ing to standard conventions (see e.g. [59, 60]). We will
estimate the size of this e↵ect using the results of the fit
in Fig. 1.
To this purpose, we note that besides the leading-log

running from the high-energy matching scale (i.e. MU )
down to mb, we should also include long distance (LD)
contributions resulting from the one-loop matrix element
of the semi-leptonic operator Osb⌧⌧

LL
[61]. Such contribu-

tions are analogous to the LD contributions from charm
penguins where the only di↵erence is that the charm is
replaced by a tau lepton. This can be taken into account
defining a q2-dependent Ce↵

9 (q2), where q2 = m2
``
. Con-

sidering also this e↵ect, we find the following expression
for the correction to Ce↵

9 induced by the U1:

�Ce↵
9 (q2 = 0) =

Csb⌧⌧

LL

V ⇤
ts
Vtb

2

3


log

✓
M2

U

m2
⌧

◆
� 1

�
,

= �
C
c

LL

1 + |Vts|/✏q

2
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log

✓
M2

U

m2
⌧

◆
� 1

�
. (36)

The last expression follows from the relation between
Csb⌧⌧

LL
and C

c

LL
, which can be deduced from Sect. II A.

For C
c

LL
= 0.05 (best fit point in Fig. 1), MU = 3 TeV,

and ✏q = 2|Vts|, we get �Ce↵
9 (0) ⇡ �0.3. While not

solving all b ! s`¯̀ anomalies, such a correction leads to
a significant improvement in the description of b ! s`¯̀

data [16, 59, 60].

B. High-energy

Collider observables are known to provide rich informa-
tion on the parameter space of vector leptoquark mod-
els [31, 38, 44] explaining the B-meson anomalies, that is
complementary to low-energy data [16, 62]. A variety of
di↵erent underlying processes can be relevant at hadron
colliders such as the LHC. The most important channels
involving the U1 leptoquark are:

• Pair production pp ! U⇤
1U1,

• Quark-gluon scattering qg ! U1`,

• Quark-lepton fusion q` ! U1,

• Drell-Yan pp ! `¯̀.

The main decay channels in models where the leptoquark
predominantly couples to third generation fermions are
U1 ! b⌧+ and U1 ! t⌫̄⌧ . In the case of interest where

Source: ArXiv:2210.13422 (J. Aebischer, G. Isidori, 
M. Pesut, B.A. Stefanek, F. Wilsch)

Low-energy fit:

Source: ArXiv:2210.13422 (J. Aebischer, G. Isidori, 
M. Pesut, B.A. Stefanek, F. Wilsch)
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FIG. 3. High-pT constraints superimposed on the low-energy
fit. The red and blue bands represent the ��2 = 1 regions
preferred by RD and RD⇤ . The blue lines correspond to the
1�, 2�, and 3� contours of the combined low-energy fit in-
cluding all b ! c observables (dot = best fit point). The
high-pT exclusion limits derived from the b-tag channel of the
CMS [36] (ATLAS [39]) search are given by the gray (green)
lines. The green shaded region gives a projection of the al-
lowed parameter space from high-pT searches (in absence of
a signal) with a luminosity of 3 ab�1. Finally, the region to
the right of the red line is excluded by ⌧ -LFU tests assuming
leading log running of C33⌧⌧

LL . See text for more details.

in Fig. 3, where the red and blue bands represent the
preferred ��2 = 1 regions for the measurements of RD

and RD⇤ . The blue lines correspond to the 1�, 2�, and
3� contours of the combined low-energy fit including all
b ! c observables, whereas the gray (green) lines indicate
the 95% CL exclusion contours for the CMS (ATLAS)
di-tau search using the b-tag channel.8 The solid and
dashed lines correspond to the constraints obtained as-
suming ✏q = 3|Vts| and ✏q = 2|Vts|, respectively.

As can be seen, the high-energy constraints are already
very close to the parameter region favored by low-energy
data. To this purpose, it should be noted that scenarios
with smaller ✏q are more constrained by high-pT as they
require a lower scale ⇤U to explain the charged-current
anomalies (see Eq. (25)). On the other hand, values of
✏q larger than 3|Vts| are both unnatural and highly dis-
favoured by �F = 2 constraints in UV complete models
in the absence of fine-tuning.

Due to the excess of events currently observed by CMS,
the corresponding limits are significantly weaker than

8
Notice that the high-pT constraints are pinched at Cc

LL = 0 since

this point corresponds to the limit �R ! 1 [see Eq. (25)].

those of ATLAS. If interpreted as a signal, the CMS ex-
cess (which is further supported by a dedicated t-channel
analysis [37]) would favour the parameter region close to
the CMS exclusion bounds in Fig. 3. Given the low-
energy constraints, this would in turn prefer a scenario
with sizable right-handed couplings. On the other hand,
ATLAS data are more compatible with low-energy data
in the region of a pure left-handed coupling (though right-
handed couplings remain viable).
Overall, the plot in Fig. 3 shows that low- and high-

energy data yield complementary constraints, and that
a U1 explanation of RD(⇤) is compatible with present
pp ! ⌧ ⌧̄ data. This plot also shows that future high-
energy data will play an essential role in testing the U1

explanation of charged-current B anomalies. To illus-
trate this point, we indicate the projection for an inte-
grated luminosity of 3 ab�1 by the shaded green central
region in Fig. 3, which shows the potential of the high-
luminosity phase of LHC assuming ✏q = 2|Vts|. The pro-
jection was derived using the ATLAS b-tag search assum-
ing that background uncertainties scale as the square-
root of the luminosity. This projection shows that a large
part of the relevant parameter space will be probed with
the data sets expected from Run-III and the LHC high-
luminosity phase.
For completeness, in Fig. 3 we also indicate the region

disfavoured by LFU tests in ⌧ decays [77]: the region
to the right of the red line is excluded by the experi-
mental determination of (gW

⌧
/gW

µ,e
)`,⇡,K [46], using the

leading-log (LL) running of C33⌧⌧
LL

(1 TeV) [77], and set-
ting ✏q = 3|Vts| (most conservative choice). Due to their
purely left-handed nature, ⌧ -LFU tests provide a strong
constraint on the left-handed only hypothesis, potentially
favouring scenarios with right-handed currents. However,
this point comes with the caveat that additional contribu-
tions from new states in UV complete models can soften
these bounds [78].

IV. CONCLUSIONS

In this paper we have analyzed the compatibility of
the U1 LQ explanation of the charged-current B-meson
anomalies in light of new low- and high-energy data. To
this purpose, we have first re-analysed in a bottom-up
and, to large extent, model-independent approach the as-
sumptions necessary to relate the U1 couplings appearing
in b ! c⌧ ⌫̄, b ! u⌧ ⌫̄, and bb̄ ! ⌧ ⌧̄ transitions.

Updating the fit to the low-energy data, we find that
the region preferred by b ! c observables is equally
compatible with a purely left-handed interaction, as well
as with a scenario with right-handed currents of equal
magnitude. The latter option is quite interesting, given
sizable right-handed currents are a distinctive signature
of models where the U1 is embedded in a flavor non-
universal gauge group [10]. In both cases, the pull of the
U1 hypothesis is at the 3� level. The present low-energy
fit already highlights the role of Bu ! ⌧ ⌫̄ in pinning

High-energy constraints:

Our NLO results

Best fit point currently 
still allowed.
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- I showed the current situation for the LFU ratios R(D), R(D*).

• The  can be embedded into a UV-complete gauge model, which however entails 
more structure, specifically a  and a .

U1
Z′ G′ 

- LFUV couplings mainly to the third fermion generation. 

- Leptons and quarks are unified into  quadruplets.SU(4)

• We implemented the  effects in  at NLO QCD in POWHEG-BOX-V2. U1 pp → τ−τ+

- High-luminosity LHC will be able to probe the relevant parameter space.  
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