



CERN



Dilia María PORTILLO on behalf of the ATLAS Collaboration

Kruger 2022

# **Beyond the Standard Model (BSM) physics**

•The Standard Model (SM) has been experimentally validated and proven to be impressively precise. However, it cannot explain some of the important questions in physics:



Several BSM models extends the SM by introducing new symmetries and particles/fields.

Some of the most popular in BSM searches at LHC:

 Minimal Supersymmetric Standard Model (MSSM) solution to "hierarchy problem" and has DM candidate
 Two Higgs Doublet Models (2HDM) extend beyond the SM Higgs sector to include two complex Higgs Doublets (subset of MSSM, could introduce baryon asymmetry or a DM candidate or neutrino masses)
 Heavy Vector Triplet model: Simplified model used to capture the phenomenology of a new resonance
 Radion model that includes Kaluza-Klein gauge bosons

Effective Field Theory (EFT): Contact interactions for a more model-independent description
 Simplified Models for DM: Usually adding a massive mediator (e.g. Z')

# LHC operation and ATLAS detector



SM is successful for particle collisions

■Discrepancies may indicate new physics = new particles/fields



## **Limits for BSM searches**

#### ATL-PHYS-PUB-2022-034



†Small-radius (large-radius) jets are denoted by the letter j (J).

~100 decay channels studied for various models that predict certain production rate (extra dimensions, gauge bosons, contact interactions, dark matter, heavy quarks, excited fermions, leptoquarks, etc.)
 Commonly excluded masses ~ 0.4 – 12 TeV

Limits for SUSY searches here: <u>ATL-PHYS-PUB-2022-013</u> (and in bonus slides)

Dilia Portillo

## Some of the latest results

Using full Run 2 date-set!

| ArXiv 2207.00230              | July 2022                                                                                                                                                                                                                                                                                                                         |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATLAS-CONF-2022-028           | May, 2022                                                                                                                                                                                                                                                                                                                         |
| ATL-PHYS-PUB-2022-04          | Sep. 2022<br>3                                                                                                                                                                                                                                                                                                                    |
| <b>}-</b><br>ArXiv 2211.02617 | Nov. 2022                                                                                                                                                                                                                                                                                                                         |
| s<br><u>ArXiv. 2211.08945</u> | Nov. 2022                                                                                                                                                                                                                                                                                                                         |
| d<br><u>ArXiv 2211.08028</u>  | Nov. 2022                                                                                                                                                                                                                                                                                                                         |
|                               |                                                                                                                                                                                                                                                                                                                                   |
| ATLAS-CONF-2022-066           | Nov. 2022                                                                                                                                                                                                                                                                                                                         |
| ArXiv 2207.03925              | Sep 2022                                                                                                                                                                                                                                                                                                                          |
| <u>ArXiv 2210.05415</u>       | July, 2022                                                                                                                                                                                                                                                                                                                        |
| ATLAS-CONF-2022-039           | June, 2022                                                                                                                                                                                                                                                                                                                        |
|                               | 1 0000                                                                                                                                                                                                                                                                                                                            |
|                               | ArXiv 2207.00230         ATLAS-CONF-2022-028         ATL-PHYS-PUB-2022-043         ATL-PHYS-PUB-2022-043         ArXiv 2211.02617         S         ArXiv. 2211.08945         ArXiv 2211.08945         ArXiv 2211.08028         ATLAS-CONF-2022-066         ArXiv 2207.03925         ArXiv 2210.05415         ATLAS-CONF-2022-039 |

More papers and conference notes to be found in ATLAS publications page for Exotics: <u>EXOT</u>, Higgs/Diboson searches: <u>HDBS</u>, and Supersymmetry: <u>SUSY</u>

# $A/V' \rightarrow Zh(\rightarrow bb)$ : Search for heavy resonances decaying into a Z or W and a Higgs boson in final states with leptons ArXiv 2207.00230

Dilia Portillo

•Search for new resonances decaying into Z or W and a SM Higgs boson • $\nu\nu b\bar{b}$ ,  $\ell\ell b\bar{b}$ ,  $\ell\nu b\bar{b}$  final states **bbA** 

## **Theory Models**

Heavy CP-odd scalar boson A from a generic two Higgs Doublet Model (<u>2HDM</u>)
 Z' or W' from Heavy Vector Triplet (HVT)

## Selection

•Events with exactly 0, 1 or 2 charged leptons are selected with  $E_{\rm T}^{\rm miss}$  or a combination of single-lepton triggers



 Higgs (bb) is reconstructed either as two small-R jets (resolved category) or as a single large-R jet (merged category)



# $A/V' \rightarrow Zh(\rightarrow bb)$ : Search for heavy resonances decaying into a Z or W and a Higgs boson in final states with leptons ArXiv 2207.00230



 Largest deviation is found in the Z' and ggA searches for a mass of 500 GeV with a local (global) significance of 2.1 σ (1.1 σ)

#### **Results: Exclusion in HVT parameter space**



#### **Results: Exclusion in 2HDM parameter space**



# **Combination of searches for heavy resonances**

ATLAS-CONF-2022-028

Direct searches for new heavy resonances are a staple of the LHC physics program
 Combine 13 ATLAS publications during 2018 - 2022!

#### Final states:

- VV:  $WZ \rightarrow qqqq$ , vvqq, lvqq, llqq, lvll,  $WW \rightarrow qqqq$ ,
- •VH:  $WH \rightarrow \underline{qqbb}$ ,  $\underline{\ell vbb}$ ,  $\underline{ZH} \rightarrow vvbb$ ,  $\underline{\ell \ell bb}$
- •Leptonic  $\underline{ll}$ ,  $\underline{lv}$ ,  $\underline{\tau v}$

Analyses generally search for narrow-width resonances in the final-state mass distribution

### **Theory Models**

Spin-1 mass-degenerate Heavy Vector Triplet model (HVT) [arXiv: 1402.4431]

•Leads to W'±, and Z', collectively denoted V'

• Model A: Weakly-coupled model, couplings gH = -0.56, gf = -0.55

• model B: Strongly-coupled model, couplings gH = -2.9, gf = 0.14

#### Selection

| Analysis                       | leptons              | $E_{T_{miss}}$ | jets     | b-tags  | Discr.         |
|--------------------------------|----------------------|----------------|----------|---------|----------------|
| $WW/WZ \rightarrow qqqq$       | 0                    | Veto           | ≥2J      | -       | $m_{VV}$       |
| $WZ \rightarrow \nu \nu q q$   | 0                    | Yes            | ≥1J      | 0       | $m_{VV}$       |
| $WZ \rightarrow \ell \nu q q$  | 1e, 1µ               | Yes            | ≥2j, ≥1J | 0, 1, 2 | $m_{VV}$       |
| $WZ \rightarrow \ell \ell q q$ | 2e, 2µ               | -              | ≥2j, ≥1J | 0       | $m_{VV}$       |
| $WZ \to \ell \nu \ell \ell$    | $3 \subset (e, \mu)$ | Yes            | -        | 0       | $m_{VV}$       |
| $WH \rightarrow qqbb$          | 0                    | Veto           | ≥2J      | 1, 2    | $m_{VH}$       |
| $ZH \rightarrow \nu \nu bb$    | 0                    | Yes            | ≥2j, ≥1J | 1, 2    | $m_{VH}$       |
| $WH \rightarrow \ell \nu bb$   | 1e, 1µ               | Yes            | ≥2j, ≥1J | 1, 2    | $m_{VH}$       |
| $ZH \rightarrow \ell\ell bb$   | 2e, 2µ               | Veto           | ≥2j, ≥1J | 1, 2    | $m_{VH}$       |
| ℓv                             | 1e, 1µ               | Yes            | -        | -       | $m_T$          |
| τν                             | $1\tau$              | Yes            | -        | -       | $m_T$          |
| ll                             | $\geq 2e, \geq 2\mu$ | -              | -        | -       | $m_{\ell\ell}$ |



# **Combination of searches for heavy resonances**

ATLAS-CONF-2022-028



Dilia Portillo

# Summary for beyond Standard Model Higgs boson benchmarks





# Summary for beyond Standard Model Higgs boson benchmarks

Benchmark scenario of type-I 2HDM

• assumptions: 
$$m_H = m_A = m_{H^{\pm}}$$
,  $m_h = 125 \text{ GeV}$ ,  $m_{12}^2 = m_A^2 \sin \beta \cos \beta$ 

Assume a narrow width (< 5%) Higgs boson.</p>



 $\cos(\beta - \alpha) = -0.1$ 

 $\cos(\beta - \alpha) = +0.1$ 

# Search for new phenomena in multi-body invariant masses in events with at least one lepton and two jets ArXiv. 2211.08945



## **Theory Models**

Sequential Standard Model, SSM

Includes new heavy gauge bosons W' and Z'
 Simplified dark matter model with a Z' mediator

Radion model that includes Kaluza-Klein gauge bosons coupling to a radion that decays to gluons
 Composite lepton model contains two composite SU(2) fermion doublets that mix to create a new vector boson (Z') and lepton (E)

## Strategy

Search for an observable excess of events in multibody invariant masses  $(m_{jj\ell}, m_{jj\ell\ell})$  on a smooth, decreasing fitted background.



SSM

**DM model** 

 $\mathcal{X}'$ 

W/Z

 $v_e/v_\mu$  or  $e/\mu$ 

e/µ

 $v_e/v_u$ 

**Radion model** 

**Composite lepton model** 

 $\mathcal{N}$ 

мкк 2000 ж.К. 2000 ж.К. 2000 ж.К. 2000 ж.К. 2000 ж.К. 2000 ж.К.

Z/h

e/µ

 $v_e/v_\mu$ 

# Search for new phenomena in multi-body invariant masses in events with at least one lepton and two jets ArXiv. 2211.08945

#### **Results: Limits**





# WH(→WW): Search for heavy Higgs bosons decaying into vectorbosons in same-sign two-lepton final statesArXiv 2211.02617

#### **Results: Exclusion contours**



# Search for SUSY in final states with missing transverse momentum

## and three or more *b*-jets

ArXiv 2211.08028

## **Theory Model**

- Search for stops, sbottoms and neutralinos in pair-produced gluino events
- •Lightest Stable Particle:  $\chi_1^{0}$

•Gtt/Gbb: Simplified models with off-shell stops and sbottoms

## Strategy

- Targeting final states with large amount of MET and many b-jets
- Neural Network (NN) trained on four-vector inputs
  - NN defines the probability of an event to be a Gtt or a Gbb
  - Maximise model-dependent sensitivity to models
- •Gbb: 4 Signal Regions, 4 Control Regions (CRs) to constraint ttbar & 4 CR for Z+Jets

Gtt: 4 Signal Regions, 4 CRs to constraint ttbar



## Control Regions (CRs)



## Signal Regions (SRs)

# Search for SUSY in final states with missing transverse momentum and three or more *b*-jets Image: ArXiv 2211.08028 Image: Image:



 Gluinos with masses below 2.44 TeV (2.35 TeV) are excluded at 95% CL for massless neutralinos in the Gtt (Gbb) models.

•These limits represent a substantial increase in over previous ATLAS analysis!

• A cut-and count analysis was also performed considering the processes where both gluinos can have different decays in a event (Gtb) in combination of Gbb and Gtt processes. Exclusion limits for gluino branching ratios to  $b\bar{b}_{\chi_1^0}^0$ ,  $t\bar{t}_{\chi_1^0}^0$  and  $t\bar{b}_{\chi_1^-}^-$ ,  $t\bar{b}_{\chi_1^-}^+$ .

# Conclusions

ATLAS continues exploring the energy frontier: Extensive program for searches for new heavy particles!

•No evidence yet but no shortage of models predicting exotic heavy particles

Strong constraints have been placed on the production of such new heavy particles and on BSM parameter space.

More results with full Run 2 data are still being released.

## Run 3 already started!

Opportunities at Run 3:

- ■13 TeV  $\rightarrow$  13.6 TeV CM energy
- Increase in luminosity (x 2, statistics!)Cutting edge analysis techniques



## Thank you!

Dilia Portillo



## **Limits for SUSY searches**

#### • <u>ATL-PHYS-PUB-2022-013</u>

#### ATLAS SUSY Searches\* - 95% CL Lower Limits March 2022

| ATLAS SUSY Searches* - 95% CL Lower Limits March 2022 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                    | <b>ATLAS</b> Preliminary $\sqrt{s} = 13$ TeV                                                                                                                                                                                                                                                                      |                                                                                                                                     |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                                       | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sig                                                                                                                                   | nature                                                                                            | ∫ <i>L dt</i> [1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | fb <sup>-1</sup> ] | Mass limit                                                                                                         |                                                                                                                                                                                                                                                                                                                   | Reference                                                                                                                           |
| Si                                                    | $\tilde{q}\tilde{q},\tilde{q}{\rightarrow}q\tilde{\chi}^0_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 e,µ<br>mono-jet                                                                                                                     | 2-6 jets 1<br>1-3 jets 1                                                                          | $T_T^{miss}$ 139<br>$T_T^{miss}$ 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | [1x, 8x Degen.] 1.0<br>[8x Degen.] 0.9                                                                             | 1.85 m( $\tilde{\chi}_1^0$ )<400 GeV<br>m( $\tilde{q}$ )-m( $\tilde{\chi}_1^0$ )=5 GeV                                                                                                                                                                                                                            | 2010.14293<br>2102.10874                                                                                                            |
| Inclusive Searche                                     | $\tilde{g}\tilde{g},  \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 <i>e</i> , <i>µ</i>                                                                                                                 | 2-6 jets 1                                                                                        | $T_T^{miss}$ 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | Forbidden                                                                                                          | 2.3         m(t̃ <sup>0</sup> <sub>1</sub> )=0 GeV           1.15-1.95         m(t̃ <sup>0</sup> <sub>1</sub> )=1000 GeV                                                                                                                                                                                          | 2010.14293<br>2010.14293                                                                                                            |
|                                                       | $\begin{array}{l} \widetilde{g}\widetilde{g}, \ \widetilde{g}  ightarrow q \overline{q} W \widetilde{\chi}_1^0 \\ \widetilde{g}\widetilde{g}, \ \widetilde{g}  ightarrow q \overline{q} (\ell \ell) \widetilde{\chi}_1^0 \\ \widetilde{g}\widetilde{g}, \ \widetilde{g}  ightarrow q W Z \widetilde{\chi}_1^0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 e,μ 5<br>ee,μμ<br>0 e,μ 7                                                                                                           | 2-6 jets<br>2 jets 1<br>7-11 jets 1                                                               | 139<br>T 139<br>T 139<br>T 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                                                                                                                    | $\begin{array}{ccc} \textbf{2.2} & m(\tilde{\chi}_1^0) < 600 \ \text{GeV} \\ \textbf{2.2} & m(\tilde{\chi}_1^0) < 700 \ \text{GeV} \\ \textbf{1.97} & m(\tilde{\chi}_1^0) < 600 \ \text{GeV} \end{array}$                                                                                                         | 2101.01629<br>CERN-EP-2022-014<br>2008.06032                                                                                        |
|                                                       | $\tilde{g}\tilde{g},  \tilde{g} \rightarrow t t \tilde{\chi}_1^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS e,μ<br>0-1 e,μ<br>SS e,μ                                                                                                           | 6 jets<br>3 <i>b 1</i><br>6 jets                                                                  | 139<br>T 79.8<br>139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | 1.15                                                                                                               | m( $	ilde{g}$ )-m( $	ilde{Y}_1^{'}$ )=200 GeV<br>2.25 m( $	ilde{X}_1^{(0)}$ )<200 GeV<br>5 m( $	ilde{g}$ )-m( $	ilde{X}_1^{(0)}$ )=300 GeV                                                                                                                                                                        | 1909.08457<br>ATLAS-CONF-2018-041<br>1909.08457                                                                                     |
|                                                       | $\tilde{b}_1 \tilde{b}_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 <i>e</i> , <i>µ</i>                                                                                                                 | 2 b 1                                                                                             | $T_T^{miss}$ 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                  | 0.68                                                                                                               | 5 m( $\tilde{\chi}_1^0$ )<400 GeV<br>10 GeV< ∆m $\tilde{\chi}_1^0$ >20 GeV                                                                                                                                                                                                                                        | 2101.12527<br>2101.12527                                                                                                            |
| 3 <sup>rd</sup> gen. squarks<br>direct production     | $\tilde{b}_1 \tilde{b}_1,  \tilde{b}_1 {\rightarrow} b \tilde{\chi}^0_2 {\rightarrow} b h \tilde{\chi}^0_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 <i>e</i> ,μ<br>2 τ                                                                                                                  | 6 <i>b</i> 1<br>2 <i>b</i> 1                                                                      | $T_T^{miss} = 139$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                  | Forbidden 0.23-1.                                                                                                  | <b>.35</b> $\Delta m(\tilde{k}_2^0, \tilde{k}_1^0) = 130 \text{ GeV}, m(\tilde{k}_1^0) = 100 \text{ GeV}$<br>$\Delta m(\tilde{k}_2^0, \tilde{k}_1^0) = 130 \text{ GeV}, m(\tilde{k}_1^0) = 0 \text{ GeV}$                                                                                                         | 1908.03122<br>2103.08189                                                                                                            |
|                                                       | $ \begin{array}{l} \tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{t}_1^0 \\ \tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow Wb\tilde{\chi}_1^0 \\ \tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 bv, \tilde{\tau}_1 \rightarrow \tau \tilde{G} \\ \tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{c} \tilde{\chi}_1^0 / \tilde{c}\tilde{c}, \tilde{c} \rightarrow \tilde{c} \tilde{\chi}_1^0 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                    | 0-1 <i>e</i> , μ<br>1 <i>e</i> , μ 3<br>1-2 τ 2<br>0 <i>e</i> , μ<br>0 <i>e</i> , μ π                                                 | $\geq 1$ jet<br>$\beta$ jets/1 b<br>$\beta$ jets/1 b<br>2 c<br>mono-jet b                         | ${ \begin{array}{ccc} miss \\ T \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 1.25<br>Forbidden 0.65<br>Forbidden 0.85<br>0.55                                                                   | 5 $m(\xi^0)=1 \text{ GeV}$<br>$m(\xi^0)=500 \text{ GeV}$<br>1.4 $m(\tau_1)=800 \text{ GeV}$<br>$m(\tau_1^0)=00 \text{ GeV}$<br>$m(\xi^0_1)=0 \text{ GeV}$                                                                                                                                                         | 2004.14060.2012.03799<br>2012.03799<br>2108.07665<br>1805.01649<br>2102.10874                                                       |
|                                                       | $ \begin{array}{l} \tilde{t}_1 \tilde{t}_1,  \tilde{t}_1 {\rightarrow} t \tilde{\chi}_2^0,  \tilde{\chi}_2^0 {\rightarrow} Z/h \tilde{\chi}_1^0 \\ \tilde{t}_2 \tilde{t}_2,  \tilde{t}_2 {\rightarrow} \tilde{t}_1 + Z \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-2 <i>e</i> , μ<br>3 <i>e</i> , μ                                                                                                    | 1-4 <i>b l</i><br>1 <i>b l</i>                                                                    | $T_T^{miss}$ 139<br>$T_T^{miss}$ 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | 1 0.067-1.18<br>2 Forbidden 0.86                                                                                   | $m(\tilde{\chi}_{1}^{0})=500 \text{ GeV}$<br>$m(\tilde{\chi}_{1}^{0})=360 \text{ GeV}, m(\tilde{r}_{1})-m(\tilde{\chi}_{1}^{0})=40 \text{ GeV}$                                                                                                                                                                   | 2006.05880<br>2006.05880                                                                                                            |
| EW<br>direct                                          | ${	ilde \chi}_1^{\pm} {	ilde \chi}_2^0$ via $WZ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Multiple $\ell$ /jets $ee, \mu\mu$                                                                                                    | ∠ljet l                                                                                           | $T_T^{miss}$ 139<br>$T_T^{miss}$ 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | $\frac{1}{4}/\tilde{\chi}_{2}^{0}$ 0.96                                                                            | $m(\tilde{\chi}_1^0)=0$ , wino-bino<br>$m(\tilde{\chi}_1^{\pm})$ - $m(\tilde{\chi}_1^0)=5$ GeV, wino-bino                                                                                                                                                                                                         | 2106.01676, 2108.07586<br>1911.12606                                                                                                |
|                                                       | $ \begin{split} \tilde{\chi}_1^{\dagger} \tilde{\chi}_1^{\dagger} & \text{via } WW \\ \tilde{\chi}_1^{\dagger} \tilde{\chi}_2^0 & \text{via } Wh \\ \tilde{\chi}_1^{\dagger} \tilde{\chi}_1^{\dagger} & \text{via } \tilde{\ell}_L/ \wp \\ \tilde{\tau}_1^{\dagger} \tilde{\tau}_1^{\dagger} & \text{via } \tilde{\ell}_L R_1^0 \\ \tilde{\ell}_{\text{LR}} \tilde{\ell}_{\text{LR}}, \tilde{\ell} \to \ell \tilde{\chi}_1^0 \end{split} $                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 2 \ e, \mu \\ \text{Multiple } \ell/\text{jets} \\ 2 \ e, \mu \\ 2 \ \tau \\ 2 \ e, \mu \\ ee, \mu \mu \end{array}$ | 0 jets 1<br>2<br>≥ 1 jet 1                                                                        | ${ { { { { { T} } { T } } } } { { T } } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { { T } } { {$ |                    | t 0.42<br>/ k <sup>2</sup> Forbidden 1.06<br>t ( <sup>7</sup> L, <sup>7</sup> R,L) 0.16-0.3 0.12-0.39<br>0.256 0.7 | $\begin{split} & m(\tilde{\xi}_1^0){=}0, \text{ wino-bino} \\ & m(\tilde{\xi}_1^0){=}70 \text{ GeV, wino-bino} \\ & m(\tilde{\ell},\tilde{v}){=}0.5(m(\tilde{\xi}_1^0){+}m(\tilde{\xi}_1^0)) \\ & m(\tilde{\ell},\tilde{v}){=}0 \\ & m(\tilde{\xi}_1^0){=}0 \\ & m(\tilde{\xi}_1^0){=}10 \text{ GeV} \end{split}$ | 1908.08215<br>2004.10894,2108.07586<br>1908.08215<br>1911.06660<br>1908.08215<br>1911.12606                                         |
|                                                       | ĤĤ, Ĥ→hĜ/ZĜ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{l} 0 \ e, \mu \\ 4 \ e, \mu \\ 0 \ e, \mu \end{array} \ge 2$                                                           | $\geq 3 b$ 1<br>0 jets 1<br>2 large jets 1                                                        | $\sum_{T}^{miss}$ 36.1<br>$\sum_{T}^{miss}$ 139<br>T 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | r 0.13-0.23 0.29-0.88<br>r 0.55<br>r 0.45-0.93                                                                     | $\begin{array}{l} BR(\tilde{k}_{1}^{O} \to h\bar{G}) \!=\! 1 \\ BR(\tilde{k}_{1}^{O} \to Z\bar{G}) \!=\! 1 \\ BR(\tilde{k}_{1}^{O} \to Z\bar{G}) \!=\! 1 \end{array}$                                                                                                                                             | 1806.04030<br>2103.11684<br>2108.07586                                                                                              |
| ٦                                                     | Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Disapp. trk                                                                                                                           | 1 jet 1                                                                                           | $\Sigma_T^{\text{miss}}$ 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | ± 0.66                                                                                                             | Pure Wino<br>Pure higgsino                                                                                                                                                                                                                                                                                        | 2201.02472<br>2201.02472                                                                                                            |
| Long-lived<br>particles                               | Stable $\tilde{g}$ R-hadron<br>Metastable $\tilde{g}$ R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$<br>$\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell \tilde{G}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pixel dE/dx<br>pixel dE/dx<br>Displ. lep<br>pixel dE/dx                                                                               | E<br>I<br>I                                                                                       | $\begin{array}{ccc} T_T & 139\\ T_T & 139\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | [r(ĝ) =10 ns]<br>,μ 0.34 0.7<br>0.36                                                                               | 2.05<br>2.2 $m(\tilde{t}^0_1)=100 \text{ GeV}$<br>$\tau(\tilde{t})=0.1 \text{ ns}$<br>$\tau(\tilde{t})=0.1 \text{ ns}$<br>$\tau(\tilde{t})=10 \text{ ns}$                                                                                                                                                         | CERN-EP-2022-029<br>CERN-EP-2022-029<br>2011.07812<br>2011.07812<br>CERN-EP-2022-029                                                |
| RPV                                                   | $\begin{array}{c} \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{+},\tilde{\chi}_{1}^{0},\tilde{\chi}_{1}^{+}\rightarrow\mathcal{Z}\ell\rightarrow\ell\ell\ell\ell\\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{+},\tilde{\chi}_{2}^{0}\rightarrow WW/Z\ell\ell\ell\ell\nu\nu\\ \tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0}\rightarrow WW/Z\ell\ell\ell\ell\nu\nu\\ \tilde{\chi}_{3}^{0},\tilde{\chi}_{1}^{0}\rightarrow Uhs\\ \tilde{\pi}_{1},\tilde{\pi}_{1}\rightarrow \tilde{\chi}_{1}^{0},\tilde{\chi}_{1}^{0}\rightarrow Uhs\\ \tilde{\pi}_{1},\tilde{\pi}_{1}\rightarrow bs\\ \tilde{\eta}_{1}\tilde{\eta}_{1},\tilde{\eta}\rightarrow bs\\ \tilde{\eta}_{1}\tilde{\eta}_{1},\tilde{\eta}\rightarrow d\ell\\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0},\tilde{\chi}_{1}^{0},\sigma\rightarrow ths,\tilde{\chi}_{1}^{+}\rightarrow bbs\end{array}$ | $3 e, \mu$<br>$4 e, \mu$<br>4.5<br>1<br>2 ]<br>$2 e, \mu$<br>$1 \mu$<br>$1.2 e, \mu$                                                  | 0 jets $b$<br>i large jets<br>Multiple<br>$\geq 4b$<br>jets + 2 $b$<br>2 b<br>DV<br>$\geq 6$ jets | 139<br>T 139<br>36.1<br>36.1<br>139<br>36.7<br>36.1<br>139<br>36.7<br>36.1<br>136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                            | $\begin{array}{c c} & & & & & \\ \textbf{1.55} & & & & & & \\ \textbf{1.3} & \textbf{1.9} & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ \textbf{1.4.5} & & & & & \\ \textbf{1.6} & & & & & \\ & & & & & & \\ & & & & & & $                                                | 2011.10543<br>2103.11684<br>1804.03568<br>ATLAS-CONF-2018-003<br>2010.01015<br>1710.07171<br>1710.05544<br>2003.11956<br>2106.09609 |
| Only                                                  | a selection of the available ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ass limits on ne                                                                                                                      | w states (                                                                                        | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                 |                                                                                                                    | Mass scale [TeV]                                                                                                                                                                                                                                                                                                  |                                                                                                                                     |

\*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Dilia Portillo

# Search for heavy resonances in the decay channel WW $\!\!\rightarrow\!\!ev\mu v$

 Search for the neutral heavy resonances, e.g. heavy CP even Higgs (ggF + VBF) and neutral GM Higgs (VBF)

#### **Interpretations**

Interpreted in 5 models

GM

2HDM

HVT

Radion in Randall-Sundrum modelSpin-2 graviton



ATLAS-CONF-2022-066

#### Selection

3 signal categories (ggF, VBF+1jet, VBF+2jets)

## Strategy

•Discriminating variable:  $m_T = \sqrt{(E_T^{\ell \ell} + E_T^{\text{miss}})^2 - |\vec{p}_T^{\ell \ell} + \vec{E}_T^{\text{miss}}|^2}$ 



22

# Search for heavy resonances in the decay channel WW $\rightarrow$ evµv







# $H \pm \rightarrow WZ \rightarrow l\nu l' l'$ : Search for resonant $WZ \rightarrow \ell \nu \ell' \ell'$ production

**Drell-Yan** 

ArXiv 2207.03925

(c)



#### Interpretation

- Heavy vector triplet model HVT
- <u>Georgi-Machacek (GM)</u> fermiophobic charged Higgs boson from the fiveplet:  $(H_5^{++}, H_5^+, H_5^0, H_5^-, H_5^{--})$

#### Selection

2 signal regions: Drell-Yan and VBF

#### Strategy

VBF category: NN is adopted to enhance signal



Dilia Portillo





Vector Boson Fusion (VBF)



Dilia Portillo

# VH(→hh): Search for Higgs boson pair production in association with a vector boson ArXiv:2210.05415

Search for a neutral heavy CP-even scalar H→hh→bbbb in association with a vector boson (W/Z)
 First analysis targeting Vhh final state.

### Interpretation

Two signal scenarios are considered:

1) Generic neutral CP-even scalar H

2) CP-odd scalar A decaying into Z and a CP-even scalar *H* 



## Selection

 Three leptonic channels (0L, 1L, 2L)targeting vvbbbb, lvbbbb, llbbbb final states

Invariant mass resolution improved by scaling the b-jet momenta with the ratio of the measured di-b-jet mass to 125 GeV.



•The relative mass resolution improves by a factor of  $\sim$ 3!

## Strategy

BDTs used as final discriminants trained with jets kinematic information in each SR



## $VH(\rightarrow hh)$ : Search for Higgs boson pair production in association with a vector boson ArXiv:2210.05415



#### Largest deviation

Narrow width A boson

(mA, mH) = (800, 300) Local: 3.6 σ Global: 1.6 σ Large-width (20%) A boson

(mA, mH) = (420, 320) Local: 3.8 σ Global: 2.8 σ

Constraints in the 2HDM type-I parameter space





## Search for heavy flavour-violating Higgs bosons in multilepton plus b-jets final states ATLAS-CONF-2022-039

#### Interpretation

•General two Higgs doublet model (g2HDM) without Z2symmetry, featuring FCNH (Flavour Changing Neutral Higgs) couplings.

Couplings of H involving top-quark: ptt, ptc, and ptu.

First analysis to target BSM production leading to three-top final states and the first to probe g2HDM. Sensitive probe of new physics: same-sign (SS) top, 3-top, 4-top final states.



## Strategy



Scan ptt, ptc, ptu couplings and heavy Higgs masses 200 GeV < mH < 1000 GeV

Most significant deviation observed at mH=1000 GeV with local significance of 2.810 local

0.5

Results are also interpreted in **RPV SUSY model.** 

28

# Search for type-III seesaw heavy leptons in leptonic final states

#### ArXiv 2202.02039

#### Interpretation

•At least one extra fermionic SU(2)L triplet predicted by the type-III seesaw mechanism: •Pair production of new heavy charged ( $L^{\pm}$ ) and neutral ( $N^{0}$ ) lepton particles

## Selection and strategy



# Search for electroweakinos production in final states with one lepton, jets and MET ATLAS-CONF-2022-059

First search targeting these processes in the 1Lepton channels

#### **Event Selection**

| Variable                                                           | C1C1-WW model |             |       | C1N2-WZ model    |         |       |  |
|--------------------------------------------------------------------|---------------|-------------|-------|------------------|---------|-------|--|
|                                                                    | SRLM          | SRMM        | SRHM  | SRLM             | SRMM    | SRHM  |  |
| $N_{\text{lep}} (p_{\text{T}} > 25 \text{ GeV})$                   |               |             | 1     | 1                |         |       |  |
| $N_{\rm jet} (p_{\rm T} > 30  {\rm GeV})$                          |               |             | 1 -   | - 3              |         |       |  |
| $N_{\text{large-Rjet}} (p_{\text{T}} > 250 \text{ GeV})$           |               |             |       |                  |         |       |  |
| $E_{\rm T}^{\rm miss}$ [GeV]                                       | > 200         |             |       |                  |         |       |  |
| $\Delta \dot{\phi}(\ell, \mathrm{E}_{\mathrm{T}}^{\mathrm{miss}})$ | < 2.6         |             |       |                  |         |       |  |
| large-R jet type                                                   | W-tagged      |             |       | Z-tagged         |         |       |  |
| $m_{\rm T}$ [GeV]                                                  | 120-200       | 200-300     | > 300 | 120-200          | 200-300 | > 300 |  |
|                                                                    | Exclusion SR  |             |       |                  |         |       |  |
| $m_{\rm eff}$ [GeV] (excl.)                                        | [60           | 0-850, > 85 | 50]   | [600-850, > 850] |         |       |  |
| $m_{\rm ii}[{\rm GeV}]$ (excl.)                                    | [70–90, - ]   |             |       | [80–100, - ]     |         |       |  |
| $\sigma_{E_{T}^{\text{miss}}}$ (excl.)                             | [> 12, > 15]  |             |       | [> 12, > 12]     |         |       |  |
| <b>i</b>                                                           | Discovery SR  |             |       |                  |         |       |  |
| $m_{\rm eff}$ [GeV] (disc.)                                        | > 600         | > 600       | > 850 | > 600            | > 850   | > 850 |  |
| m <sub>ii</sub> [GeV] (disc.)                                      | -             | -           | -     | 80-100           | -       | -     |  |
| $\bar{\sigma}_{E_{\mathrm{T}}^{\mathrm{miss}}}$ (disc.)            | > 15          | > 15        | > 15  | > 12             | > 12    | > 12  |  |

## Strategy





Results  $\widetilde{\chi}_{*}^{\pm}\widetilde{\chi}_{*}^{\mp} \rightarrow WW \ \widetilde{\chi}_{*}^{0}\widetilde{\chi}_{*}^{0}, W \rightarrow Iv, W \rightarrow q\overline{q}$ 400  $n(\widetilde{\chi}_{1}^{0})$  [GeV] ATLAS Preliminary 350 √s=13 TeV, 139 fb<sup>-1</sup>, All limits at 95% CL Expected Limit  $(\pm 1 \sigma_{exp})$ 300 Observed Limit (±1 of theory) 250 200 150 100 50 0[ 200 300 400 500 600 700 800 900 1000  $m(\tilde{\chi}_{1}^{\pm})$  [GeV]

- •For the  $\chi^{-1} + \chi^{-1}$  model, chargino masses ranging from 260 to 520 GeV can be excluded for a massless  $\chi^{-1}$ 0
- x<sup>-1</sup>± x<sup>-20</sup> process, degenerate chargino/ neutralino masses ranging from 260 to 420 GeV can be excluded for a massless x<sup>-10</sup>