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Introduction
Objective

» After the discovery of the Higgs boson new a (23 ) (o | (0T e w128 Geve
opportunity opens for the search of direct evidence @@ |- 0 . . @
of physics beyond the Standard Model (SM). w J|_chem J| tp JL guon | 5odd
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« Semi-supervised machine learning can play a L T hewan. |
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« To quantify the fake signal generated in the training
of semi-supervised DNN classifier




Introduction
Machine Learning

= Machine learning algorithms are used to make a prediction or classification. Based on some input
data, which can be labelled or unlabeled, algorithm will produce an estimate about a pattern in the
data and try imitate the way that humans learn, gradually improving its accuracy.

= Machine learning algorithms are generally used for different applications such as weather
forecasting, stock trading, facial recognition, medical prediction, spam detection and commodity

sales among others.

= Machine learning is a sub-fields of artificial intelligence.

Ref: https://www.ibm.com/za-en/cloud/learn/machine-learning#toc-machine-le-SzgJbkmk




Introduction
Machine Learning

Supervised machine learning

Supervised machine learning, is defined by its use of labeled datasets to train algorithms that to classify data or
predict outcomes accurately. Supervised learning helps organizations solve for a variety of real-world problems
at scale, such as classifying spam in a separate folder from your inbox.

Unsupervised machine learning

Unsupervised machine learning, uses machine learning algorithms to analyze and cluster unlabeled datasets.
These algorithms discover hidden patterns or data groupings without the need for human intervention.

Semi-supervised learning

Semi-supervised learning offers a happy medium between supervised and unsupervised learning. During
training, it uses a smaller labeled data set to guide classification and feature extraction from a larger, unlabeled
data set.

Ref: https://www.ibm.com/za-en/cloud/learn/machine-learning#toc-machine-le-SzgJbkmk




Introduction
Why Machine Learning?

 Synthetic data generated using machine learning based on Kernel density estimation.
 Quantify fake signals in generated data trained on weak supervised DNN classifiers.

« A Deep Neural Network (DNN) model based on weak supervision trained on generated Zy
background data to perform binary classification.

« MC simulation at LHC is CPU intensive, machine learning reduce CPU pressure.

 Toreduce model dependencies and for frequentist study.




Methodology
Kernel Density Estimation

Kernel density estimation or KDE is a non-parametric way to estimate the probability density
function of a random variable. In other words, the aim of KDE is to find probability density function
(PDF) for a given dataset. With this generative model, new samples can be drawn.
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For a sample of (x;,X,,...,X,) the kernel density estimate, is given by:
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Density function
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Source: Wikipedia

where K(a) is the kernel function and h is the smoothing parameter, also called the bandwidth.

Ref:
https://en.wikipedia.org/wiki/Kernel _density_estimation#:~:text=In%20statistics%2C%20kernel%20density%20estimation,on%2

0a%20finite%20data%20sample.




Methodology
Kernel Density Estimation

o Kernel Density Estimation (KDE) uses the Ball Tree or KD Tree
algorithms for efficient queries.

 KDE are some of the most popular and useful density estimation
techniques.

 The general idea of machine learning is to get a model to learn
distribution of real data and be able to reproduce synthetic data with

similar distribution.




Methodology
Tuning of the bandwidth parameter

- The scikit-learn library allows the tuning of the

Effect of varnious bandwidth values

bandwidth parameter via cross-validation and The larger the bandwidth, the smoother the approximation becomes
returns the parameter value that maximizes the —— bandwidth = 0.2
log-likelihood of data. — a1 8

006 1
- The function we can use to achieve this is

GridSearchCV(), which requires different values e |
of the bandwidth parameter.
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Methodology
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Methodology

Dataset

In the search for new bosons, the Zy final = Tl ’

state data is used as a pure background "I
Monte Carlo(MC) sample. Using Scikit-learn “
and NumPy libraries the KDE generative
Is constructed to take the pre- -
processed Zy data and generate a sample =)

model

dataset.

dataset:
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lipt_mlly] 8

m
=l - (] HE B T E ) ™ oK | 5y (=1 m, (=l
5 e W B A
i Ea w .
wn i Wi ~
A e - 1
e
w it
- o an
i B s
e w B e
i w B B
m = — B — —
t ¢t B o : Tl ! 1 B ¥4 B @ N 1 1
dll all el 2 0
= = wn =]
w| 1 oms| Ao OKE| | e Mg e S K ELL e e T K 4
;s L T wnl |
Ly - i w ||
= r H m
m m
w L, o . 3
M5 L ) B
L oo W _ =
w % . B S
LM e B T
: B e
B N . B
. . ) B
m - T E —— - ] g B K OMm OB
] H Tl H 1 I B : : B 3
ml el T
s ) W | TS =T o Ok Clm el L Mt
1 '
o
4 23 4
R B
W
- " i
w
B07S 4 N
- 1 e
BORC - ,-
s i 1 L
o — - _‘\'H-\_
1o H : m ow oW oW W t B I 1 Vo121 1 & sk
my £y 1 [ L]




Methodology
Parameters:

algorithm{‘kd_tree’, ‘ball_tree’, ‘auto’}: = auto
bandwidth: = 0.001
breadth_first’: = True

kernel: = gaussian

leaf size: =40

metric: ='euclidean’,
metric_params: = None,
rtol: =0



Results
Comparison of for MC and Generated datasets
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Results _ _
Correlation Matrix

Generated Data

 Each cell in the
figure shows the
correlation
between two
variables.




Results
DNN structure on weakly supervised learning

)

» DNN with four hidden layers of 20 nodes.

» Hidden Layers of the DNN used RelLu for an
activation function and sigmoid for the output.

» DNN Model is trained on Zy final state data as
pure background.

» During the weak supervised learning study, the
generated data set is divided into mass window
and side band :

= Sideband is labeled as 1
= Mass window is labeled as O

L
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Results
DNN Response

 DNN classifier based on weak supervision trained on generated dataset which is pure
background.

« The DNN should not find any separation between samples as it has no signals in the samples.

« Quantify the fake signal generated.
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Results
DNN Response

Model Loss
—— tain
ROC curve: 5 —— alidation
10 | —— MArea=0524 44
LR
08 |
\
i
2
£ 06 0 E % @ @ %
= Epoch
=
7]
E_ Model Accuracy
= 0675 1 F?
0650 4
0z 0625 1
g 0600 4
£
0.575 1 J
0.0
0550 4
— i- H
0.0 02 04 06 08 10 0525 | J —man

False positive rate . . . . . .
0 E 4 & & 100




Proceedings of IC-NIDC 2018

GENERATIVE MODEL WITH KERNEL DENSITY
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Abstract: In this paper, a novel generative model is
proposed based on kernel density estimation. Different
from other generative models like GANs [1] and VAEs
[2], the model directly learns the distribution of training
dataset in a non-parametric way. The mean absolute
error (MAE) between the estimated probability density
of the real and generated samples is used as loss function
for model to train. To address the sparsity of
high-dimensional distribution, we associate the proposed
generative model with an encoder, by which the
observed high-dimensional data can be transformed to
low-dimensional latent features. Results on the MNIST
dataset show that our proposed model is able to generate
samples visually indistinguishable from the real ones.

Keywords: Generative model; kernel density estimation;

deep learning; probability density function

1 Introduction

In recent years, generative models have received
tremendous attention and have been extensively applied

of the time it is hard to capture the true distribution of
training datasets in a parametric way, e.g., with
analytical expressions. This is especially the case for
high-dimensional data, such as images that usually
consist of thousands of pixels.

Based on such motivation, in this paper, we propose a
novel generative model based on kemnel density
estimation, which directly learns the distribution of
training datasets in a non-parametric way. In statistics,
kemnel density estimation is a non-parametric model to
estimate the probability density function of a random
variable. In theory, it is capable of modeling the true
probability density function of any high-dimensional
dataset with its kernel and bandwidth properly selected.
Therefore, the difference between the estimated
probability density of the real training data and the
generated samples can serve as a measure of the
performance of a generator. In other words, we are able
to generate more realistic samples by properly designing
a generator to intentionally decrease such difference.

Tha ract af thic nanar ic arsanizad ac fallaae Qantian 7
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An Empirical Analysis of KDE-based Generative Models on Small
Datasets

Ekaterina Plesovskaya®*, Sergey Ivanov?®

2 ITMO University, 49 Kronverksky Pr., St. Petersburg, 197101, Russia

Abstract

One of the approaches to deal with the small dataset problem is synthetic data generation. Kernel density estimation is a common
method to approximate the underlying probability distribution of a small dataset. The present paper aims to analyze the
generation capability of KDE-based models by evaluating their samples. For this purpose, we introduce a framework for
synthetic dataset quality estimation which also accounts for the overfitting of a generative model. The performance of KDE is
analyzed on samples from theoretical distributions and real datasets. The results state that KDE generates synthetic samples of a
good quality and outperforms its competitors on small datasets.

© 2021 The Authors. Published by Elsevier B.V.
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Conclusion

« Kernel density estimation (KDE ) sampling model performs well.

 The model able to generate synthetic dataset similar distribution as Monte Carlo(MC)
dataset.

 Used semi-supervised leaning to quantify fake signal and reduce model dependencies.

* In KDE performance worsens exponentially with high dimensional data sets, this
phenomenon is called “curse of dimensionality”.

« Continue investigation for better KDE performance on new datasets.
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