hadronization of the QGP
remarks in memory of Jean Cleymans

« some historical comments: my 1% contact with Jean

 the early years: 1970 — 1990

 the beginning of work on the QCD phase diagram and
hadron production 1991 - 1996

 the development of the statistical hadronization model

e transverse momentum distributions and the Tsallis approach

» system size dependence and canonical thermodynamics
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Jean Cleymans

1944 born in Turnhout, Belgium

1970 doctorate in physics Louvain, Belgium

1970 — 1975 fellow positions in Aachen, SLAC, CERN
1975 — 1986 Bielefeld, Extraordinary Professor 1977

1986 - 2021 Cape Town Professor of Theoretical Physics

see also:
Satz, H. The Abundance of the
Species Physics 2022, 4, 912-919.

https://doi.org/10.3390/physics403005
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hadronization of the QGP
the title of one of Jean Cleymans' transformational papers
Z.Phys.C 58 (1993) 347-356
currently a core physics topic of
the CERN ALICE collaboration

Jean Cleymans led South African physicists into the ALICE collaboration
established the UCT-CERN research center
established the South Africa-CERN program
successfully supervised 17 PhD candidates

played an important role in physics collaborations connected to CERN,
JINR Dubna, GSI, iThemba LABS and a number of universities

Jean Cleymans
the theorist, the phenomenologist,
the organizer
the inspiring teacher



my first encounter with Jean Cleymans was more than 37 years ago:

an inspiring and influential review paper (more than 400 citations today)
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from 1975 on: focus on statistical QCD

very impressive and unique publication record

without ALICE papers

including ALICE papers

Citation Summary

[] Exclude self-citations @

Citeable ® Published ()
Papers 252 166
Citations 9,417 8,866
h-index @ 45 45
Citations/paper (avg) 374 53.4

Papers
120

— Citeable - Publlshed

100

80

60

40

N 2020 25
0 I

10-49

50-99 100-249 250-499

500+
Citations

Citation Summary

Exclude self-citations (?)

Citeable @
Papers 623
Citations 53,230
h-index @ 119
Citations/paper (avg) 85.4
Papers — Citeable —Publlshed
250
200
150
100 95 94 82 81
50
10-49 50-99 100-249

42 42

250-499

Published (?)

530
52,429
119

98.9

14 14
-

500+ |
Citations



Thermal hadron production in high energy heavy ion collisions
J. Cleymans'? and H. Satz?? Z. Phys. C 57, 135-147 (1993)
the very beginnings; focus on strange particles; no consistent analysis

possible because of data situation, experimental acceptances, and many
difficulties with weak decays, protons left out,

data from WAS85 collaboration data from NA35 collaboration
strange baryon ratios N/h- ratios

inconclusive results




next steps: analysis of all hadrons including protons and pions

from AGS and SPS experiments
P. Braun-Munzinger, J. Stachel, J.P. Wessels, and N. Xu
Phys. Lett. B344 (1995) 43, B365 (1996) 1
first consistent results for T and yp = 540 MeV

for central collisions of 14.6 A GeV/c Si + Au(Pb).

Particles Thermal Model Data
T=.120 GeV T=.140 GeV exp. ratio rapidity ref.
7/(p+n) 1.29 1.34 1.05(5) 0.6 - 2.8 [4,3]
d/(p+n) 4.3 - 1072 58 -1072 3.0(3) - 1072 0.4-1.6 [4]
p/p 1.47 - 1074 5.8 - 1074 4.5(5) - 104 0.8 - 2.2 [15]
K+/mt 0.23 0.27 0.19(2) 0.6 - 2.2 4]
K—/m~ 5.0 - 1072 6.2 - 1072 3.5(5) - 102 0.6 - 2.3 4]
K%/t 0.14 0.16 9.7(15) - 1072 2.0-3.5 [16,4,21]
K+ /K~ 4.6 4.3 4.4(4) 0.7-2.3 [4]
A/(p+n) 9.5 - 102 0.11 8.0(16) - 102 14-29 [16,4,3]
A/A 8.8 - 1074 3.7 1073 2.0(8) - 1073 1.2- 1.7 [15]
¢/ (KT+K™) 2.4 .1072 3.6 - 1072 1.34(36) - 1072 1.2-20 [15]
27 /A 6.4 - 1072 7.2 1072 0.12(2) 1.4-29 [17]
d/p 1.1-107° 4.7 -107° 1.0(5)- 107° 2.0 [18]




P. Braun-Munzinger, J. Stachel, J.P. Wessels, and N. Xu

Phys. Lett. B344 (1995) 43, B365 (1996) 1
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next steps:
P.Braun-Munzinger and J. Stachel, Nucl.Phys. A 638 (1998) 3-18, nucl-ex/9803015

>
v
A SPS . .
§ 160 AGeV first experimental 'freeze-out' curve
++ AGS
150 ——— 11AGeV
100 SIS \ Deconfinement
%2&%3 *l}p' Chiral Restoration
ey o N
TAPS Neutron
025 AGeV Stars
| T L @) -
0 02 04 06 08 10 12
U, [GeV]

J. Cleymans and K. Redlich, Phys.Rev.Lett. 81 (1998) 5284-5286, nucl-th/9808030
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peak structure in the energy dependence of particle ratios

the 'NA49 horn' is a natural
consequence of the transition from
baryon dominated to meson dominated
matter

see below

pbm, Cleymans, Oeschler, Redlich

Nucl.Phys.A 697 (2002) 902-912
hep-ph/0106066 [hep-ph]

my first paper with Jean
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net baryon densities along the chemical freeze-out curve

in relativistic nuclear collisions

J. Randrup and J. Cleymans,

“"Maximum freeze-out baryon density in nuclear collisions,"
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...and Jean developed a thermal model code

S. Wheaton and J. Cleymans,
“THERMUS: A Thermal model package for ROOT,"
Comput. Phys. Commun. 180 (2009), 84-106

this code is in use throughout the community

Citations per year

30
20

10

2004 2009 2014 2019 2022



(u,d,s) hadrons and the QGP phase boundary

13



statistical hadronization of (u,d,s) hadrons
A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561 (2018) 321
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at LHC energy, production of (u,d,s) hadrons is governed

by mass and quantum numbers only
quark content does not matter
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J. Cleymans, H. Oeschler, K. Redlich and S. Wheaton,
" "Comparison of chemical freeze-out criteria in heavy-

ion collisions, ''
Phys. Rev. C{73} (2006) ,034905
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energy dependence of hadron production described

quantitatively
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together with known energy dependence of
charged hadron production in Pb-Pb collisions we can predict
yield of all hadrons at all energies with < 10% accuracy
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the QGP phase diagram, LatticeQCD, and hadron

production data

note: all coll. at SIS, AGS, SPS, RHIC and LHC involved in data taking
each entry is result of several years of experiments, variation of ug via variation of cm energy
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experimental determination of phase boundary at
Tc=156.6 £ 1.7 (stat.) £ 3 (syst.) MeV and uyg =0 MeV

Nature 561 (2018) 321

10°

quantitative agreement of
chemical freeze-out parameters
with most recent LQCD
predictions for baryo-chemical
potential < 300 MeV

cross over transition at
Mg = 0 MeV, no experimental

confirmation

should the transition be 1
order for large ug (large net

baryon density)?

then there must be a critical
endpoint in the phase

diagram '



exploration of 'Tsallis' entropy formulation
for particle production at the LHC

background: in 1988, Constantino Tsallis,Greek-born Brazilian physicist, published a
seminal paper::

C. Tsallis,
“Possible Generalization of Boltzmann-Gibbs Statistics,"
J. Statist. Phys. {52} (1988), 479-487

this new concept was introduced by Tsallis to
generalize the entropy concept in standard
statistical mechanics by allowing entropy to be

Citations per year

non-additive. 120
100
Tsallis statistics and entropy are applied to 20
describe:
« cold atoms in optical traps >
velocity distributions in a dusty plasma s citatione: 7
spin glasses 20 Year: 1996

hadron transverse momentum distributions

1991 1999 2007 2015

Jean Cleymans developed and applied
this concept successfully to describe
LHC data

2022
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J. Cleymans, G. Lykasov, A. S. Parvan, A. S. Sorin, O. V. Teryaev and
D. Worku,

" Systematic properties of the Tsallis Distribution: Energy Dependence
of Parameters in High-Energy p-p Collisions,"
Phys. Lett. B {723} (2013), 351-354

thermodynamics in the Tsallis approach with new parameter q

for g = 1 all distributions converge to Boltzmann-Gibbs
thermodynamics
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Tsallis fits for charged hadron data from UA1, ALICE, ATLAS
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interpretation, in Jean's words:

The extremely large range of pr described by Tsallis distribution makes
it applicable in the region usually considered to be the domain of QCD hard
scattering. This may be interpreted as a manifestation of the “duality” be-
tween the statistical and dynamical description of strong interactions _
In this sense Tsallis statistics may be considered as an effective theory al-
lowing for an extension of the region of applicability of perturbative QCD
from large to low pp. It is not unnatural, as approximate scale invariance
manifested in QCD both at large and small momentum scales is qualita-

tively similar to power law statistics. It remains to be understood whether

anv further relations can be found, like the dynamical origins of thermal
spectra

J. Cleymans, G.I. Lykasov, A.N. Sissakian, A.S. Sorin and O.V. Teryaev,
arXiv:1004.2770[hep-ph].

J. Cleymans, G.I. Lykasov, A.S. Sorin and O.V. Teryaev, Phys. Atom.
Nucl. 75, 725 (2012) [arXiv:1104.0620 [hep-ph]].
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statistical hadronization for small systems

ALICE data: J.~Adam et al. [ALICE],

“"Enhanced production of multi-strange hadrons in high-multiplicity
proton-proton collisions,"

Nature Phys. {13} (2017), 535-539

Jean Cleymans, Pok Man Lo, Krzysztof Redlich, Natasha Sharma

arXiv:2009.04484, Phys.Rev.C 103 (2021) 1, 01490
arXiv:2010.02714, CPOD

It is shown that the number of charged hadrons is linearly proportional
to the volume of the system. For small multiplicities the canonical
ensemble with local strangeness conservation restricted to mid-rapidity
leads to a stronger suppression of (multi-)strange baryons than seen in
the data. This is compensated by introducing a global conservation of
strangeness in the whole phase-space which is parameterized by the
canonical correlation volume larger than the fireball volume at the mid-
rapidity. The results on comparing the hadron resonance gas model
with and without S-matrix corrections, are presented in detail. It is
shown that the interactions introduced by the phase shift analysis via
the S-matrix formalism are essential for a better description of the
yields data. 23



very good agreement from pp to pPb to central Pb-Pb
arXiv:2009.04484

key new ingredient: strangeness conservation over the volume of the whole

fireball, not in the slice at mid-rapidity
this is same as for baryons, see
pbm, Rustamov, Stachel, arXiv:1907.03032
ALICE coall., Phys.Lett B 807 (2020) 135564
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Jean Cleymans was a world-wide respected and influential scientist
who steered South-African Nuclear and Particle Physics
for more than two decades into the
‘International Scientific Champions League’

It was a great joy and priviledge to work with him as friend and colleague. He is missed but
remembered fondly.
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