Nucleon spin structure with NICA SPD

> A. Guskov DLNP, JINR

Fundamental interactions

Star systems

Planet systems

	Interaction		Weak	Electromagnetic	Strong	
	Gra	Gravitational	Electroweak		Fundamental	Residual
and the second	Acts on:	Mass - Energy	Flavor	Electric charge	Color charge	Atomic nuclei
9	Particles experiencing:	All particles	quarks, lepton s	Electrically charged	Quarks, Gluons	Hadrons
	Particles mediating:	Graviton (Not yet observed)	W⁺, W⁻ and Z⁰	γ (photon)	Gluons	Mesons
	Strength at the scale of quarks:	10 ⁻⁴¹ (predicted)	10-4	1	60	Not applicable to quarks
	Strength at the scale of protons/neutrons:	10 ⁻³⁶ (predicted)	10-7	1	Not applicable to hadrons	20

Rutherford experiment

E. Rutherford 1909-1913

Proton size

R. Hofstadter - the Nobel Prize in 1961

1

0.8

0.6

0.4

0.2

-0.2^L

1.2 $4\pi r^2 \rho_e(r)/e$, fm⁻¹

n

0.5

р

1

r, fm

1.5

Quarks

M. Gell-Mann and G. Zweig -Nobel Prize in 1969

Alexey Guskov, Joint Institute for Nuclear Research

Partons - point-like objects inside the proton

Partonic model - 1969

R. Feynman

In the beginning of 70th charged partons were associated with quarks

Quark size?

HERA - high-energy electron-proton collider at DESY (1992-2007)

> At the moment there is no indication that quarks have an internal structure

 $r_a < 0.7 \times 10^{-3} \text{ fm}$

Quantum ChromoDynamics - QCD

QCD - main directions

Hadron spectroscopy

Hadron structure

<image>

Hadronic matter under extremal conditions

Problem to describe hadrons ab initio

Confinement is not strictly proven!

low energies

Factorization theorem

Parton Distribution Functions

Parton Distribution Functions PDFs f(x,Q²) describes probability for given Q² to find inside the proton a parton carrying momentum fraction x

PDFs are universal, they are independent on the hard process

PDFs cannot be calculated in QCD from the first principles!

Parton Distribution Functions

Sea partons becomes more important at high Q²

QCD evolution equations: $f(x, Q_1^2) \rightarrow f(x, Q_2^2)$

How to measure PDFs ?

Deep Inelastic Scattering (DIS)

 $\sigma = \int \hat{\sigma} q(x) dx$

Hadronic interactions

DIS is ideal to access quarks For gluons hadronic interactions are preferable

Why we should measure PDFs?

Parton Distribution Functions of hadron are as fundamental quantities as its mass, magnetic moment, electromagnetic radius, etc.

Parton Distribution Functions, due to their universality, are a necessary ingredient for the search and exploration of a new physics.

Proton mass

Model-dependent decomposition of the proton mass

9 MeV

The Higgs mechanism has 938 MeV almost nothing to do with the formation of proton mass!

Proton mass

9 MeV The Higgs mechanism has 938 MeV almost nothing to do with the **S!** It seems, gluons are even more important than M quarks! 37(5)%

QCD

trace anomaly

glue energy

Spin

Angular momentum is a measure of the amount of rotation

Spin of fundamental particle is its intrinsic angular momentum not related with rotation

Spin is a solely quantum-mechanical phenomenon

Every particle can have an orbital momentum and a spin at the same time

 \mathbf{L}

m×v

Total momentum (spin) of a composite particle is determined the particle's spin is determined by the spin and the angular momenta of its components

Polarized proton

Spin crisis

Naive quark model

L - orbital moments of quarks and gluons

Real situation

$$S_{N} = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L$$

Spin crisis

<u>ПрLongitudinal polarization of</u>

... and gluons:

3D-tomography of proton

Where transverse momentum come from?

TMD PDF

Nucleon Spin Polarization

5 additional (TMD) functions describing the correlation between the nucleon spin, parton spin, and parton transverse momentum.

TMD effects: Sivers effect

Probabilities to meet in a transversely polarized proton a parton moving to the left and to the right with respect to the (\vec{S}, \vec{p}) plane are different!

EMC-effect

Deuteron

More gluons at large x with respect to nucleon?

Deuteron as spin-1 particle

 Vector polarization

 $N_{1/2} - N_{-1/2}$
 $N_{1/2} + N_{-1/2}$

Tensor polarization $2N_0 - (N_{-1} + N_1)$ $2N_0 + N_{1/2} + N_{-1/2}$

New "tensor" PDFs, mostly unknown

New possibilities for gluons:

hard processes with gluon spin flip are impossible in spin-1/2 nucleon

but possible in deuteron!

SPD at NICA

SPD and gluon structure of nucleon

SPD and gluon structure of nucleon

SPD and others

polarized hadron collisions

Possibility to collide polarized deuterons is unique!

SPD experimental setup

SPD international collaboration

31 institutes from 14 countries, ~300 members

SPD Conceptual Design Report was issued in the beginning of 2021

It was approved by the international **Detector Advisory Committee and the JINR Program Advisory Committee for Particle Physics**

Growth of Knowledge

Continental drift, 1912

Age of Discovery, XV-XIX centuries

Alexey Guskov, Joint Institute for Nuclear Research

Summary

≶ 0.01 m Crystal

1/10,000,000

10⁻⁹ m Molecule

1/10

10⁻¹⁰ m Atom

1/10,000

10⁻¹⁴ m Atomic nucleus

1/10

10⁻¹⁵ m Proton

1/1,000

< 10⁻¹⁸ m Electron, Quark The point in the study of the internal structure of nucleons has not been set. This part of particle physics awaits new researchers, both theorists and experimentalists. A future SPD experiment at the NICA collider gives a chance to do the next step.

