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Small peak, in the dipole strength distribution,  at energies lower 
than the GDR (few % of EWSR). For nuclei with neutron excess.
A.Tamii et al., PRL 107 (2011) 062502     
proton beam of 295 MeV at RCNP, Osaka, Japan  

Experimental evidences for the PDR 

Quasiparticle-Phonon 
Model (QPM) 
calculations contain up 
to 3-phonon 
configurations at low 
energy

Relativistic Time-Blocking 
Approximation (RTBA) 
based on a particle-hole 
⊗ phonon model space 
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From the theoretical point of view they are studied 
with  

Incompressible three fluid model: Steinwedel-Jensen  
Inert core oscillating against a neutron skin: Goldhaber-
Teller

Macroscopic model

Microscopic model



Inert core oscillating against a neutron skin: Goldhaber-Teller
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From the theoretical point of view they are studied 
with  

Incompressible three fluid model: Steinwedel-Jensen  
Inert core oscillating against a neutron skin: Goldhaber-
Teller

HF + RPA with Skyrme interaction 
Relativistic RPA and relativistic QRPA 
HFB + QRPA with Skyrme or Gogny interactions 
Second RPA (SRPA) and Subtracted SRPA (SSRPA) 
Quasi particle phonon model (QPM) 
Relativistic Quasi-particle Time Blocking Approximation 
(RQTBA)  
……

Macroscopic model

Microscopic model

}
coupling to more complex 

configurations



Transition density for a state 𝝂 with an angular momentum λ in the RPA 
approach 
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Subtracted second RPA (SSRPA) model to avoid double counting correlations 

QPM and RQTBA explicitly couple the 1p − 1h configuration with two- or 
three-phonon states. 

|Φα > = ∑
ν1

cα
ν1

|ν1 > + ∑
ν1ν2

cα
ν1ν2

|ν1ν2 > + ∑
ν1ν2ν3

cα
ν1ν2ν3

|ν1ν2ν3 >



D. SAVRAN et al. PHYSICAL REVIEW C 84, 024326 (2011)

sensitivity and thus can be expected to be observed in the
experiment. Of course, to allow such a kind of comparison
the fragmentation of the E1 strength has to be reproduced
correctly in the model in order to account for the experimental
sensitivity. The QPM calculations presented in the next section
fulfill this requirement, as we will show in Sec. V.

IV. QPM CALCULATIONS

Excited states of even-even nuclei are treated in the QPM
[39] in terms of phonons with spin and parity λπ ; the ground
state is considered to be a phonon vacuum. The phonons are
made up of quasiparticle pairs. Their spectra and internal
fermion structure are obtained by solving the quasi-particle
random phase approximation (QRPA) equations for each
multipolarity. The QRPA involves 0p4h, 2p2h, and 4p0h
terms of the residual two-body interaction. This interaction in
the QPM has a simple separable form. The remaining 1p3h and
3p1h terms of the residual interaction are responsible for the
mixing between one- and two-phonon, two- and three-phonon,
etc., configurations. Accordingly, the wave function of excited
states in the QPM is written as a composition of one-phonon,
two-phonon, etc., configurations. The energies of excited states
and components of their wave functions are found from a
diagonalization of the model Hamiltonian on the set of these
wave functions.

Although the QPM wave functions have a complex form,
their one-phonon components play a decisive role in the
excitation process of these states from the ground state by an
external field (e.g., electromagnetic) described by a one-body
operator. Two-phonon components are also excited from the
QRPA ground state. An example is the first 1− state in spherical
nuclei, which has almost pure [2+

1 ⊗ 3−
1 ]1− nature. But, in

general, their transition matrix elements are much smaller
compared to the ones of one-phonon components. Thus,
complex (two- and three-phonon) configurations participate
in the creation of the fragmentation pattern of the excitation
strength but add very little to the total strength.

The formation of the fragmentation pattern is demonstrated
in Fig. 5, in which the distribution of the E1 strength of the
PDR in 136Xe is presented. Figure 5(a) presents the results
obtained in the one-phonon approximation. One notices that
the E1 strength in this energy region originates from four one-
phonon states. Calculations performed with the wave function
containing one- and two-phonon configurations are shown in
Fig. 5(b). The B(E1) value for each individual 1− state drops
dramatically as compared to the results in Fig. 5(a). This is
due to the fact that the number of two-phonon configurations
in this energy interval is much larger. Interaction between one-
and two-phonon configurations leads to their mixing, and the
contribution of the one-phonon configurations (which carry
E1 strength) to the wave function norm does not exceed a
few percent for each state. Note also the appearance of the
two-phonon 1− state discussed above at around 4.5 MeV in this
step. The fragmentation progresses further when three-phonon
configurations are added [Fig. 5(c)]. Many states with rather
small B(E1) values appear, especially at higher energies with
rapid increase of the density of three-phonon configurations.
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FIG. 5. The QPM calculations of the B(E1) strength distribution
in 136Xe performed (a) in one-phonon approximation and with the
wave function containing (b) one- and two-phonon and (c) one-,
two-, and three-phonon configurations. The summed strength is
hardly influenced, while the fragmentation increases rapidly.

The QPM calculations of the fine structure of the PDR in
the N = 82 isotones in this paper extend previous calculations
in 138Ba [40] and 140Ce [8], which together with Ref. [9]
were the first theoretical studies on the topic. Compared to
the old calculations we have enlarged the basis of complex
configurations: two- and three-phonon configurations have
been built up from phonons with the multipolarity from 1±

up to 9± with the excitation energy below 8.5 MeV. Since
the density of four-phonon configurations (not included in the
wave function) is still very low at these energies, our basis
is almost complete. The number of complex configurations
fluctuates slightly from nucleus to nucleus. On average, our
basis contains about 350 two-phonon and 900 three-phonon
configurations. To account for admixture of the giant dipole
resonance (GDR) in the low-energy region, all 1− one-phonon
configurations below 20 MeV have been included in the wave
function of excited states.

The calculations in all N = 82 isotones have been per-
formed with the same mean field, which has been described
by the Woods-Saxon potential with parameters taken from a
global parametrization [41] and the same monopole pairing
strength. Single-particle energies of the mean field near the
Fermi surface have been corrected to reproduce the experi-
mentally known single-particle levels in neighboring odd-mass
nuclei in the calculations with the wave function containing
“[quasiparticle ⊗ N phonon]” (N = 0, 1, 2, 3) components.

024326-6

QPM for 136Xe for several approximations 

Coupling to only one-phonon 
states

Coupling to also two-phonon 
states

Coupling to also two- and 
three-phonon states



The isoscalar dipole channel receive contributions from the 
toroidal and compressional modes. 
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The operators generating the toroidal and compressional modes are 
obtained as a second-order terms in a long wavelength limit of the 

electric multipole operator. 
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They were predicted many years 
ago, but clear experimental 
evidence is lacking so far. 

See Peter von Neumann-Cosel talk 



The low-lying dipole states can be a good 
laboratory to study the interplay between 

isoscalar and isovector modes

Therefore they can be studied by both 
isoscalar and isovector probes

It is well established that the low-lying 
dipole states (PDR) have a strong isoscalar 

component.



Experimentally they are studied with  

Relativistic Coulomb excitation at GSI 
Nuclear resonance fluorescence (NRF) technique:  (γ, γ’) at 
Darmstadt 
Coulomb excitation by proton scattering: (p, p’) in Osaka and 
iThemba LABS

(α, α’ γ) At KVI 
(17O, 17O’ γ) on various target 208Pb, 90Zr, 140Ce at Legnaro lab 
(LNL-INFN) 
(68Ni, 68Ni’ γ) on 12C at INFN-LNS, Catania

Isovector probes

Isoscalar probes

For the Isoscalar probes, inelastic cross sections are also 
measured



J. Enders et al., PRL 105 (2010) 212503

Splitting of the low-lying dipole strength

Eα=136 MeV

This effect has been examined by microscopic calcula-
tions. The (!, !0) cross sections can be directly compared
to calculated nuclear response to the electromagnetic di-
pole operator r Y1. The calculation of the (", "0) cross
sections involves the Coulomb and nucleon-nucleon terms
of the "-particle interaction with the target nucleus. We
have checked that the former term plays a marginal role
(less than 10%) under conditions of the present experi-
ment. Then, accounting for a small q value of the reaction
which is about 0:33 fm!1, the (", "0) cross section is
proportional with a good accuracy to the response to the
isoscalar dipole operator r3 Y1. The spurious center-of-
mass motion has been removed (see, e.g., [33] for details).

The nuclear structure part of these calculations has
been performed within the QPM [34] and the relativistic

quasiparticle time-blocking approximation (RQTBA) [35],
the most representative combination of the microscopic
nuclear structure models beyond quasiparticle random-
phase approximation (QRPA). The QPM wave functions
of nuclear excited states are composed from one-, two-
and three-phonon components. The phonon spectrum is cal-
culated within the QRPA on top of the Woods-Saxon mean
field with single-particle energies corrected to reproduce the
experimentally known single-particle levels in neighboring
odd-mass nuclei. The details of calculations are similar to
the ones in Refs. [3,14,17]. The results are presented in
Fig. 2. Figure 2(d) shows that the electromagnetic strength
is strongly fragmented with two pronounced peaks at about
6.3 and 7.5 MeV, in good agreement with the measured
(!, !0) data. The isoscalar response in Fig. 2(c) reveals the
suppression of the strength in the higher energy part of the
spectrum, in good qualitative agreement with the data.
The RQTBA is based on the covariant energy-density

functional and employs a fully consistent parameter-free
technique (for details seeRef. [35]) to account for nucleonic
configurations beyond the simplest two-quasiparticle
ones. The RQTBA excited states are built of the two-
quasiparticle-phonon (2q " phonon) configurations, so that
themodel space is constructedwith the quasiparticles of the
relativistic mean field and the phonons computed within the
self-consistent relativistic QRPA. Phonons of multipolar-
ities 2þ, 3!, 4þ, 5!, 6þ with energies below 10 MeV are
included in themodel space. The result of these calculations
is shown in Figs. 2(e) and 2(f). Compared to the experi-
mental and to the QPM spectra, the structural features are
shifted by about 600 keV towards higher energies for theE1
electromagnetic strength and even more for the isoscalar
dipole strength. Furthermore, the obtained fragmentation is
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FIG. 3. (a) Differential cross section obtained from the
124Snð";"0!Þ experiment integrated to bins with a width of
100 keV. (b) Energy integrated cross section measured in
124Snð!;!0Þ integrated to bins with a width of 100 keV.
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FIG. 2 (color online). (a) Singles cross section for the excitation of the J# ¼ 1! states in 124Sn obtained in the (", "0!) coincidence
experiment. The solid line shows the energy-dependent experimental sensitivity limit. (b) BðE1Þ " strength distribution measured with
the (!, !0) reaction. The middle column shows the QPM transition probabilities in 124Sn for the isoscalar (c) and electromagnetic
(d) dipole operators. The RQTBA strength functions in 124Sn for the isoscalar and electromagnetic dipole operators are shown in
(e) and (f), respectively.
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For the isoscalar case the comparison is between cross 
section  and  Bis(E1) 

The lower lying group of states is excited by both isoscalar and isovector 
probes while the states at higher energy are excited by photons only.

V. Yu. Ponomarev calculations E. Litvinova calculations



- DWBA, first order theory 
- Coupled Channel, high order effect 

important 
- Semiclassical approximations  

(semiclassical Coupled Channel Equations)

In semiclassical models it is assumed that the motion of the two 
nuclei can be described according to the classical mechanics.  This 
is true when the De Broglie wave length is small with respect to the 
distance of closest approach.

d =
ZAZBe2

µv2
� =

h

µv
<<

The description of inelastic cross section with 
isoscalar probes 



Time dependent Semiclassical Approximation to the 
Coupled Channel method

The two colliding nuclei move according to a classical trajectory 
determined by the Coulomb plus nuclear fields, while the inelastic 

excitations are described according to quantum mechanics. 
This is realized by building a set of coupled first order differential 
equations for the time dependent coefficients C(t) of the channels 

wave functions
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t-dependence through R(t)
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The two nuclei move according to a classical trajectory while quantum 
mechanics is used to describe  the internal degrees of freedom

Semiclassical Model
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The term W00 represents the interaction of the two colliding nuclei in 
their ground state; in the present case it has also an imaginary part 

that describes the absorption due to the nonelastic channels.  
The term W10 connect states differing by one phonon
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H
0|�↵ >= E↵|�↵ >

Calling |Φα> the eigenstates of the internal Hamiltonian 

To solve the Schrödinger equation
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The time dependent state is

The wave function of the system | (t) >= | A(t) > | B (t) >

SEMICLASSICAL COUPLED CHANNEL EQUATIONS

The Schrödinger equation can be cast into a set of linear 
differential equations
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T(b): transmission coefficient taking into account process not 
explicitly included in the space model.  

It falls to zero as the overlap between the two nuclei increases.

its cross section is 

Probability to excite the state Φα

 b  impact parameter
P↵(b) = |C↵(b,+1)|2

The semiclassical coupled channel equations have to be  
solved for each impact parameter, then C(b,α,t)



SEMICLASSICAL COUPLED CHANNEL EQUATIONS
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The fundamental ingredients for the calculation of the 
excitation process are the optical potential and the radial form 
factor. Both of them are calculated within the double folding 

procedure.
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Only a limited range of impact parameters give contribution to the nuclear 
part; for the Coulomb part the range of b is much larger.

As the incident energy goes down, the range of impact parameters 
participating to the Coulomb excitation process is decreasing. 

Partial waves 
cross section as 
function of the 

impact parameter. 
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The model have been successfully employed in 
several physical problem involving heavy ion 
collisions. 

Calculation of polarisation potential 

Multiphonons excitation in heavy ion 
collisions 

Isoscalar excitation of low-lying dipole 
(PDR) states in exotic and stable nuclei



Summary 

Semiclassical model have been usefully used for calculations 
and interpretations of various nuclear phenomena. 

The use of the semi-classical coupled-channel equations is 
more convenient than the quantum CC because the 

calculations can be guided by a physical insight and the 
number of channels included in the calculations can be 

orders of magnitude larger.  

Combined reactions processes involving the Coulomb and 
nuclear interactions can provide a clue to reveal 
characteristic features of some particular states. 



From the theoretical point of view the effort 
should be addressed to : 

a better knowledge of the “composition” of 
the low-lying dipole states,  

a better description of the response of 
deformed nuclei to isoscalar and isovector 

probes. 
improve the calculations of inelastic cross 
section (when isoscalar probes are used).
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