AFRICAN NUCLEAR PHYSICS CONFERENCE ANPC2023

Physics results

with the ultimate AGATA-MUGAST-VAMOS setup and ISOL beams at GANIL

Daniele Mengoni

Dept. Phyisics e Astronomy, Università di Padova & INFN Padova

African Nuclear Physics Conference 2023 28 Nov - 03 Dec, 2023 – Kruger

Physics with AGATA+MUGAST+VAMOS

UNIVERSITÀ DEGLI STUDI INFN

Outlook

On Nuclear Structure
 The leap
 Science campaign
 The future

Why NS?

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

Nuclear Structure (t)rail

2010

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

Technological leap leading to γ -ray tracking

 $\sim \sigma_{\theta}$ (relatively fast moving ions)

Outstanding sensitivity for lifetime measurement **(~**Ψ) Reduced minimum detectable limit σ (~E) **E**, $\Psi \leftrightarrow \mathcal{H}$: Coherent description of nuclear many body complex system and nuclear matter

but a price has to be payed ...

Daniele Mengoni

 ΔE_{ν}

Physics with AGATA+MUGAST+VAMOS

price to pay: complexity and cost

- 6660 high-resolution digital electronics channels
 High throughput DAQ / computational resources load
- Pulse Shape Analysis → position sensitive operation mode
- ■γ-ray tracking algorithms → maximum efficiency and P/T

Daniele Mengoni

Complementarity is key: factorized the sensitivity

In modern γ-ray spectroscopy, complementary instrumentation (magnetic spectrometers, particle and neutron array, high-efficiency scintillators, plunger etc etc) is key for challenging measurements at the limit of measurability

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

AGATA+MUGAST+VAMOS setup

DM et al. "Advances in nuclear structure via charged particle reaction with AGATA" EPJA 2023 M.Assié et al., "MUGAST-AGATA-VAMOS campaign: setup and performaces" NIMA 2021

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

AGATA+MUGAST+VAMOS set-up @ GANIL with Spiral1 beams

Unmatched worldwide performances and versatility for direct reactions

Daniele Mengoni

Accreting n stars and X ray bursts

- [Image credit: ESA] [Image credit: National Science Foundation/LIGO/Sonoma State
- NS accreting matter from companion; Accreted H is burned to He; ignition of Hot-**CNO** cycle
- Breakout from Neutron star Hot-CNO: $^{15}O(\alpha,\gamma)^{19}Ne$
- Ignition and repetition of X-ray burst

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

Tension in former

measurements, large

the rate through the

Spokespers: C.Diget(York), N.De Séréville(IJCLab) Ph.D : J.Sanchez Rojo (York)

¹⁵O(α,γ)¹⁹Ne←¹⁵O(⁷Li,t)¹⁹Ne

²²Mg uncertainty / inaccuracy 20 ²¹Na ¹⁹Na Challenge of measuring 4.033 MeV state in ¹⁹Ne ¹⁷Ne ¹⁹Ne ¹⁸Ne Sensitive determination of the alpha capture rate 18F 170140 13N 14N 15N¹⁶N 14C 15C 137

Pushing the limit of sensitivity

¹⁵O(α,γ)¹⁹Ne ← ¹⁵O(⁷Li,t)¹⁹Ne
 Beam rate : ~10⁷pps and triple coincidence: γ+t+¹⁹Ne
 Minimum detection limit: cross-section few µb/sr
 New accurate results

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

Partial width calculation

Background estimate and subtraction: channel leak ²⁰Ne and compton(simulation)

 C²Sα calculation: bench mark over bound states of 19Ne: 1508 keV, double check with the SF of the mirror nucleus
 ¹⁹F, assessed in literature

Extrapolation to the unbound states (integral cross section low stat)

New value for 4033 state, reduced of a factor of ~6

Daniele Mengoni

$$\Gamma_lpha=2P_l(r_c,E_r)rac{\hbar^2r_c}{2\mu}C^2S_lpha|\phi(r_c)|^2$$

	$\Gamma_{lpha} \; (\mu \mathrm{eV})$		
E_x (keV)	This work	[Tan09]	[FLS10]
4033	$3.0^{+4.0}_{-2.2}$	17 ± 13	24(18)
4140	0.28 ± 0.04	44 ± 20	
4197	3.0 ± 0.3	18 ± 9	
4379	128^{+123}_{-68}	160^{+110}_{-70}	150(6)
4600	$3.4^{+4.4}_{-2.2}\cdot 10^3$	$24^{+33}_{-10} \cdot 10^3$	$96(24) \cdot 10^3$

Calculation ongoing

@BCN and draft in

preparation

Lifetime measurements of 2_2^+ and 3_1^+ in ²⁰O by nucleon transfer

¹⁹O(d,pγ) + DSAM

- \rightarrow Constrain relative position of $s_{1/2}$ and $d_{3/2}$ in n-rich oxygen
- Probe the 3-body interaction

E. Clément (GANIL), A. Goasduf (INFN) Ph.D : I.Zanon (Ferrara U.)

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

¹⁹O(d,pγ)

Role of 3-body forces

Triple coincidences: reconstructed entry point (MUGAST) through transfer reaction to avoid top feeding + continuous-angle line shape (AGATA)+ channel selection (VAMOS)

- Lifetimes measured significanlty shorter than predictions for the 2⁺
- First lifetime measurement in the tens of femto-sec. scale (DSAM) using transfer reaction in inverse kinematics

sub-fs lifetime measurable!!!

Theory

■ Energies well described
 ■ B(E2) overall underestimated of order of magnitude
 ■ B(E2;2⁺₂→2⁺₁) heavily underestimated:limited space or mixing
 ■ B(M1) also underestimated of factor 3

I.Zanon et al., PRL accepted Nov 21st

Physics with AGATA+MUGAST+VAMOS

Is there a problem with protons in N=28 ⁴⁶Ar?

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

ANPC'23

Ν

26

28

30

24

20

22

Ø 16 mm Opening angle: 130 deg. Havar windows: 3.8um T ~ 6-7 K. / P up to 1 bar Equivalent thickness 2 mg/cm² ³He recycling LHe open circuit

M. Pierens, V. Delpech, F. Galet, H. Saugnac (IJCLab) A. Giret & J. Goupil (GANIL)

The HEcTOR cryogenic ³He target_{F. Galtarossa} et al, NIMA (2021)

Monitoring of target with VAMOS :

- Target pressure & temperature stable
- Ice formation on the target with time

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

Future opportunities GANIL and beyond

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

LISE Campaign @ GANIL

Physics with AGATA+MUGAST+VAMOS

Mid-term plan initiatives @ INFN national labs

https://web.infn.it/nucphys-plan-italy/ https://doi.org/10.1140/epjp/s13360-023-04249-x

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

Conclusion and perspectives

- Technological leap is in mutual dependence with scientific findings
- Success of the direct measurement campaign using AGATA MUGAST VAMOS @ GANIL strongly depended on the enhanced resolving power of the complete detection setup
- Awesome science campaign is ongoing at LISE-GANIL and next at SPES-LNL

Daniele Mengoni

Daniele Mengoni

UNIVERSITÀ **DEGLI STUDI**

Daniele Mengoni

Daniele Mengoni

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

Background estimate

- Compton via simulation and peak normalization and gates at different exc energy: 0.67 count 4000 and 4075
- Leak from other channel (20Ne⁺⁹): 0.1 count between 4000 and 4075

C^2S_{α}

Bench mark over bound states of 19Ne: 1508 keV

- Transferred quantum number form SM calculations
- Double check with the SF of the mirror nucleus 19F, assessed in literature
- Angular distribution fit 0.24+-10% or integral of the cross section 0.23+-10%
- Extrapolation to the unbound states (low stat) second method: 0.06 +0.08 -0.04

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

ANPC'23

★ Partial widths and spin-parities determine the reaction rates

PARTIAL WIDTH CALCULATION

- New results for the * first 3 resonances
- For the 4033 keV state × $(1\sigma C.L.)$:

 $\Gamma_lpha=3.0^{+4.0}_{-2.2}~\mu{
m eV}$

Reduced by a factor of 6, \star and below the previous _____ lower (1σ) limit.

$$\Gamma_lpha=2P_l(r_c,E_r)rac{\hbar^2r_c}{2\mu}C^2S_lpha|\phi(r_c)|^2$$

	$\Gamma_{\alpha} \; (\mu \mathrm{eV})$			
E_x (keV)	This work	[Tan09]	[FLS10]	
4033	$3.0^{+4.0}_{-2.2}$	17 ± 13	24(18)	
4140	0.28 ± 0.04	44 ± 20		
4197	3.0 ± 0.3	18 ± 9		
4379	128^{+123}_{-68}	160^{+110}_{-70}	150(6)	
4600	$3.4^{+4.4}_{-2.2}\cdot 10^3$	$24^{+33}_{-10} \cdot 10^3$	$96(24) \cdot 10^3$	

- In medium symilarity renormalization group
- No core shell model
- New calculation ongoing

Physics with AGATA+MUGAST+VAMOS

More convincing evidence for the lifetime sensitivity: sub fs !!

¹⁴N(²H,n)¹⁵O reaction @ 32MeV (XTU LNL Tandem)

Direct lifetime measurement with 4 ATCs at backward angles (close to the beam-line)

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

Is there a problem with protons in N=28 ⁴⁶Ar?

SHELL MODEL Is there a problem with protons in N=28 nucleus ⁴⁶Ar ?

A.Gottardo INFN, M. Assié IIJCLab) D.M. (Univ of Padova) Ph.D : D.Brugnara (Padova U.)

⁴⁶**Ar**(³**He**,dγ)⁴⁷**K** proton transfer

GOAL: Proton shell structure at N=28

Measuring $\pi s1/2$ depletion in ⁴⁶Ar --> indication on possible change in the $\pi s_{1/2}$ - $\pi d_{3/2}$

First experiment with ³He cryogenic target !

Theory for neutrons WF :

- confirming N=28 shell closure in ⁴⁶Ar
- SDPF interaction describes valence-core neutrons interaction Large discrepancy with very well the measured B(E2) value at N=28: problem with the proton E2 contribution ?

Proton shell structure at N = 28^{3} inversion of $\pi s_{1/2}$ and $\pi d_{3/2}$

Measuring $\pi s1/2$ depletion in ⁴⁶Ar $\bigcup_{n=1}^{\infty}$ --> indication on possible change in the $\pi s1/2 - \pi d3/2$ positions

Central density depletion linked to spin-orbit splitting reduction

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

Physics with AGATA+MUGAST+VAMOS

Once upon a time (2015)

New Si DSSD for GASPARD-TRACE 1π AGATA at VAMOS New spiral1 beams Cryo target

First high-resolution direct reaction stu using AGATA and ISOL RIB beams (2019

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

Performance set-up

AGATA abs Eph ■ MUGAST at 18cm ■ 41 operational crystals

Doppler correction using:

- β beam at mid-target(red, 10 keV FWHM)
- Using light particle info in MUGAST (black, 7 keV FWHM)

Particle ID with MUGAST-VAMOS

M. Assié et al, NIMA (2021)

Physics with AGATA+MUGAST+VAMOS

Option for the reaction chamber

Daniele Mengoni

Simulations: photopeak efficiency and P/T ratio

- Absorption at low energies
- Worsening of efficiency and P/T
- Acceptable Øenepsiolutions? AluminPhysics with AGATA+MUGAST+VAMOS

Yield

UCx Target
 (... + not fissile also foreseen)

Expected intensity for reaccelerated beams

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

Beam selectivity with HRMS ($\Delta M/M=1/20000$)

GRIT (France-Italy-Spain-UK)

GRIT: Granularity, Resolution, Integration,Transparency,+ modularity + embedded PSA + cryo target

compatibility

ISOL beam factory

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

Simulations: the ¹³²Sn(d,p)¹³³Sn case

F'hysics with AGATA+MUGAST+VAMOS

A physics case: shell evolution at N=82

Simulations: the ¹³²Sn(d,p)¹³³Sn case

ANPC'23

★ Partial widths and spin-parities determine the reaction rates

PARTIAL WIDTH CALCULATION

- New results for the * first 3 resonances
- For the 4033 keV state × $(1\sigma C.L.)$:

 $\Gamma_lpha=3.0^{+4.0}_{-2.2}~\mu{
m eV}$

Reduced by a factor of 6, \star and below the previous _____ lower (1σ) limit.

$$\Gamma_lpha=2P_l(r_c,E_r)rac{\hbar^2r_c}{2\mu}C^2S_lpha|\phi(r_c)|^2$$

	$\Gamma_{\alpha} \; (\mu \mathrm{eV})$			
E_x (keV)	This work	[Tan09]	[FLS10]	
4033	$3.0^{+4.0}_{-2.2}$	17 ± 13	24(18)	
4140	0.28 ± 0.04	44 ± 20		
4197	3.0 ± 0.3	18 ± 9		
4379	128^{+123}_{-68}	160^{+110}_{-70}	150(6)	
4600	$3.4^{+4.4}_{-2.2}\cdot 10^3$	$24^{+33}_{-10} \cdot 10^3$	$96(24) \cdot 10^3$	

Angle \rightarrow Doppler Effect \rightarrow Lifetime

Continuous-angle DSAM represents an advancement of the "conventional" DSAM. It extends the γ -ray lineshapes analysis as a function of γ -ray energy to a lineshape analysis as a function of both γ -ray energy and polar angle of the γ -ray detection.

Ch. Stahl et al, CPC 214 (2017) 174

The Future

Daniele Mengoni

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

CSN3 Fisica Nucleare

Daniele Mengoni

The parcel

 Proton drip line: around ¹⁰⁰Sn using
 intense stable beams and AGATA+NEDA+EUCLIDES

Neutron drip line: around ¹³²Sn with
 SPES beam and AGATA+GRIT+PARIS

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS

From ground breaking to first commissioning 1 (26/4-3/5, 2022)

PRISMA setting ⁵⁸Ni @250MeV + ¹⁹⁷Au @ 0.2 mg/cm²

Multi-nucleon transfer ³²S @160MeV + ¹²⁴Sn @ 0.5 mg/cm² 2.5 mg/cm²

• Spokespersons: F. Crespi, F. Galtarossa, J. Pellumaj, M. Rocchini, M. Sedlak

Ground breaking 10/3/2021

Daniele Mengoni

Physics with AGATA+MUGAST+VAMOS