α knockout reaction from light to heavy nuclei

Kazuki Yoshida

December 2, 2023

Advanced Science Research Center, Japan Atomic Energy Agency

α knockout reaction

- One-step direct reaction with hundreds MeV incident energy
- Alpha is knocked out by a impulse collision
- Reaction probability (cross section) is proportional to the probability of the α cluster
- Cluster component only in the ground state of the target is probed
 - Little contribution from excited (resonance) states

Reaction model: Distorted Wave Impulse Approximation

- χ_i : Distorted waves under optical potentials
- $t_{p\alpha}$: p- α effective interaction in free space
- φ_{α} : Cluster wave function $\langle [\Phi_{\alpha}\otimes\Phi_{\mathrm{B}}] \, | \, \Phi_{\mathrm{A}} \rangle$

Knockout cross section (Triple differential cross section)

$$\frac{d^3\sigma}{dE_1d\Omega_1d\Omega_2} \propto |T|^2$$

Plane-wave limit (PWIA)

$$T \approx \langle \chi_{1}\chi_{2} | t_{p\alpha} | \chi_{0}\varphi_{\alpha} \rangle$$

$$\xrightarrow{(P.W.)} \langle \kappa' | t_{p\alpha} | \kappa \rangle_{s} \langle K_{1} + K_{2} - K_{0} | \varphi_{\alpha} \rangle_{R}$$

$$= \langle \kappa' | t_{p\alpha} | \kappa \rangle_{s} \langle -K_{B} | \varphi_{\alpha} \rangle_{R} \qquad (K_{B} = K_{0} - K_{1} - K_{2})$$

$$= \langle \kappa' | t_{p\alpha} | \kappa \rangle_{s} \qquad \tilde{\varphi}_{\alpha}(k_{\alpha}) \qquad (-K_{B} \approx k_{\alpha})$$

$$p-\alpha \text{ collision Structure}$$

Knockout cross section

$$|T|^2 \rightarrow \left[\frac{d\sigma_{p\alpha}}{d\Omega_{p\alpha}} \right] \left[\tilde{\varphi}_{\alpha}(\boldsymbol{k}_{\alpha}) \right]^2$$

Search for α clustering in the ground state

[1] T. A. Carey et al., PRC 29, 1273 (1984).

$\alpha + {}^{16}\text{O}$ cluster state in ${}^{20}\text{Ne}_{g.s.}$

- α cluster wave function by a Woods-Saxon potential
- $S_{\alpha} = 0.54$ (exp. + reaction)
- $S_{\alpha} = 0.18$
- 0.23 (Structure theory [2–4]) Inconsistent by a factor of two
- K. Yoshida et al. (2019) [5].
- DWIA + AMD wave function [6]
- $S_{\alpha} = 0.26$ (Consistent)

[1] T. A. Carey *et al.*, PRC **29**, 1273 (1984).
[2] W. Chung *et al.*, PLB **79**, 381 (1978).
[3] J. Draayer, NPA **237**, 157 (1975).
[4] K. Hecht and D. Braunschweig, NPA **244**, 365 (1975).
[5] K. Yoshida *et al.*, PRC **100**, 044601 (2019).
[6] Y. Chiba and M. Kimura, PTEP **2017**, 053D01 (2017).

Peripherality of reaction and surface α amplitude

- Pauli principle is taken into account within the Antisymmetrized Molecular Dynamics (AMD) framework
- Both wave functions agree on the surface
- Knockout cross section is determined by the surface α amplitude, not the whole region (S-factor).

Validity of optical potential

Nice fit of the optical potential by Michel *et al.* [7]

- $T_{\alpha} = 30 150 \text{ MeV}$
- Backward angles are perfectly reproduced

[7] F. Michel et al., PRC 28, 1904 (1983).

lpha-44Ca cluster of 48Ti

- $Z \neq N$ stable nucleus
- magic number 20 core 40 Ca + (2p + 6n)
- Structure theories based on the nucleon degrees of freedom are available

^[8] Y. Taniguchi et al., PRC 103, L031305 (2021).

$lpha+{}^{44}$ Ca cluster and 48 Ti $(p,plpha){}^{44}$ Ca reaction

Knockout cross section

 10^{1}

• Mean-field like structure fails to reproduce the reaction data

^[8] Y. Taniguchi et al., PRC 103, L031305 (2021).

$\alpha + {}^{44}$ Ca cluster and 48 Ti $(p,p\alpha)^{44}$ Ca reaction

[8] Y. Taniguchi et al., PRC 103, L031305 (2021).

$\alpha + {}^{44}$ Ca cluster and 48 Ti $(p,p\alpha)^{44}$ Ca reaction

[8] Y. Taniguchi et al., PRC 103, L031305 (2021).

Validity of optical potential

 α -⁴⁴Ca optical potential fit by Delbar *et al.* [9]

- $T_{\alpha} = 24.1 100 \text{ MeV}$
- Up to 180 deg.

^[9] T. Delbar et al., PRC 18, 1237 (1978).

α -knockout experiment from Sn isotopes

Formation of α clusters in dilute neutron-rich matter

Junki Tanaka^{1,2,3}*, Zaihong Yang^{3,4}*, Stefan Typel^{1,2}, Satoshi Adachi⁴, Shiwei Bai⁵, Patrik van Beek¹, Didier Beaumel⁶, Yuki Fujikawa⁷, Jiaxing Han⁵, Sebastian Heil¹, Siwei Huang⁵, Azusa Inoue⁴, Ying Jiang⁵, Marco Knösel¹, Nobuyuki Kobayashi⁴, Yuki Kubota³, Wei Lui⁵, Jianling Lou⁵, Yukie Maeda⁸, Yohei Matsuda⁹, Kenjiro Miki¹⁰, Shoken Nakamura⁴, Kazuyuki Ogata^{4,11}, Valerii Panin³, Heiko Scheit¹, Fabia Schindler¹, Philipp Schrock¹², Dmytro Symochko¹, Atsushi Tamii⁴, Tomohiro Uesaka³, Vadim Wagner¹, Kazuki Yoshida¹³, Juzo Zenihiro^{3,7}, Thomas Aumann^{1–2,14}

α -knockout experiment from Sn isotopes

- The experiment was performed at RCNP, Osaka Univ.
- Theoretical α-knockout cross sections are obtained by introducing a scaling factor of 0.148 for the imaginary potential depth (for all isotopes).
- An isotopic trend of the cross sections is well reproduced by the theoretical calculation using predicted α-particle density distribution.

[10] J. Tanaka et al., Science 371, 260 (2021).

PHYSICAL REVIEW C 94, 044604 (2016)

Investigating α clustering on the surface of ¹²⁰Sn via the $(p, p\alpha)$ reaction, and the validity of the factorization approximation

Kazuki Yoshida,^{*} Kosho Minomo, and Kazuyuki Ogata Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan (Received 2 March 2016; revised manuscript received 15 July 2016; published 10 October 2016)

α -knockout reaction as a probe for α on nuclear surface

- $\bullet\,$ Theoretical studied on the proton induced α knockout reaction from $^{120}{\rm Sn}$
- The reaction is sensitive surface region and only $r>6\ {\rm fm}$ region contributes to the reaction cross section

PHYSICAL REVIEW C 106, 014621 (2022)

α knockout reaction as a new probe for α formation in α -decay nuclei

Kazuki Yoshida^{1,*} and Junki Tanaka²

¹Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan ²RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako 351-0198, Japan

(Received 14 November 2021; accepted 15 July 2022; published 25 July 2022)

 α -decay lifetime and its width (independent of channel radius R)

$$T_{1/2} = \frac{\hbar \ln 2}{\Gamma_l},$$

$$\Gamma = 2 \frac{kR}{F^2(kR) + G^2(kR)} \frac{\hbar^2}{2\mu R} |RF(R)|^2$$
Penetrability reduced α width
$$= 2 P(R) \gamma^2(R)$$

 212 Po case, $T_{1/2}\sim 0.3~\mu s$, which means $\Gamma\sim 1.5\times 10^{-15}~{\rm MeV}$ (cf. $Q_{\alpha}\sim 9.0~{\rm MeV})$

α knockout reaction from decaying nuclei

K. Yoshida and J. Tanaka, PRC 106, 014621 (2022)

Knockout an α before it penetrates the barrier

- $T_{\rm decay}\sim 0.3~\mu s$ ($^{212}{\rm Po}$), $T_{\rm knockout}\sim 10^{-22}~s\sim 30~{\rm fm}/c$
- ullet Free from the penetration process, direct access to α amplitude
- \bullet Clean probe for the α component in the g.s.

lpha knockout from 210,212 Po case

[12] C. Qi et al., PRC 81, 064319 (2010).

lpha knockout from 210,212 Po case

[12] C. Qi et al., PRC 81, 064319 (2010).

lpha knockout from 210,212 Po case

Data: A. N. Andreyev *et al.*, PRL **110**, 242502 (2013) Difference is magnified by the peripherality of the reaction \rightarrow sensitive probe for preformed α particle on the surface

Beyond the α correlation: Onokoro project

Led by Uesaka-san(RIKEN), FY2021–2025

- Cluster knockout experiments to investigate
 - Non-uniform distribution in nuclear mean-field and nuclear matter (clustering)
 - *d*, *t*, ³He cluster formation and (local) spin symmetry breaking
 - Clustering in the sparse nuclear matter and the nuclear surface

d t	³ He	α 🛷
	•	
	0	•
0	•	

Summary

- $\bullet\,$ The knockout reaction is a good probe for the α clustering
 - One-to-one correspondence between the α amplitude (on nuclear surface) and $(p,p\alpha)$ cross section
 - \blacksquare Clean probe for the α clusters in the ground state
 - \blacksquare Less access to the α clustering in excited and resonance states
- $\bullet~{\rm Good}$ reproduction of the $^{20}{\rm Ne}(p,p\alpha)^{16}{\rm O}$
 - \blacksquare Both the peak height and the distribution of the $(p,p\alpha)$ cross section is reproduced
 - Peak height $\leftrightarrow \alpha$ Formation probability (at the surface)
 - Cross section distribution \leftrightarrow Momentum distribution of α
- Heavier mass region
 - \blacksquare Something is missing in ${\rm ^{48}Ti}(p,p\alpha){\rm ^{44}Ca}$ case
 - $(p, p\alpha)$ reaction on α decay nuclei will be a good probe for the α formation probability, reduced α width, etc.

Reference i

- [1] T. A. Carey *et al.*, PRC **29**, 1273 (1984) (cit. on pp. 5, 6).
- [2] W. Chung et al., PLB **79**, 381 (1978) (cit. on p. 6).
- [3] J. Draayer, NPA 237, 157 (1975) (cit. on p. 6).
- [4] K. Hecht and D. Braunschweig, NPA 244, 365 (1975) (cit. on p. 6).
- [5] K. Yoshida *et al.*, PRC **100**, 044601 (2019) (cit. on p. 6).
- [6] Y. Chiba and M. Kimura, PTEP **2017**, 053D01 (2017) (cit. on p. 6).
- [7] F. Michel *et al.*, PRC **28**, 1904 (1983) (cit. on p. 8).
- [8] Y. Taniguchi et al., PRC 103, L031305 (2021) (cit. on pp. 9–12).
- [9] T. Delbar et al., PRC 18, 1237 (1978) (cit. on p. 13).
- [10] J. Tanaka et al., Science **371**, 260 (2021) (cit. on pp. 14, 15).
- [11] K. Yoshida and J. Tanaka, PRC **106**, 014621 (2022) (cit. on p. 20).
- [12] C. Qi et al., PRC 81, 064319 (2010) (cit. on pp. 21, 22).
- [13] A. N. Andreyev et al., PRL **110**, 242502 (2013) (cit. on p. 23).