

Measurement of the ${}^{27}Al(p,\alpha){}^{24}Mg$ reaction using the THM

Marco La Cognata

AFRICAN NUCLEAR PHYSICS CONFERENCE ANPC2023

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud

Measurement of the ²⁷Al(p,α)²⁴Mg reaction using the THM

Marco La Cognata

AFRICAN NUCLEAR PHYSICS CONFERENCE ANPC2023

Themba Lational Research Constantion

²⁷AI: an ingredient in multimessenger astronomy

MgAI cycle in massive stars

 It is ignited at temperatures > 0.03 GK and it is important to determine the abundances of medium mass nuclei

Mg-Al Cycles

²⁶Al/²⁷Al abundance ratio

 ²⁶Al abundance is used to estimate the number of Galactic neutron stars and, therefore, of neutron star mergers (sources of GW)

The ²⁶Al/²⁷Al is generally estimated, so it is influenced by ²⁷Al abundance predictions

²⁷Al(p, α)²⁴Mg status of the art

*****	******	*****	******	*******
Upper I	Limits o	f Reso	nances	
Note: e	enter pa	rtial	width upp	er limit
Note:	PT <p< td=""><td>> for</td><td>g-rays [e</td><td>nter: "uj</td></p<>	> for	g-rays [e	nter: "uj
Ecm	DEcm	Jr	G1	DG1
71.5	0.5	2	7.4e-14	0.0
84.3	0.4	1	2.6e-12	0.0
193.5	0.7	2	7.5e-4	0.0
214.7	0.4	3	9.7e-5	3.9e-5
282.1	0.4	4	6.4e-5	2.6e-5
437.2	0.4	5	3.4e-5	0.0
*****	******	*****	*******	*******

The most recent review [Iliadis et al. (2010)] shows that for most low-energy resonances only an upper limit is known

→ These resonances are the most influent for astrophysics

The need of indirect methods: direct vs. indirect methods

The need of indirect methods: direct vs. indirect methods

Nuclear reaction theory required

ightarrow cross checks of the methods needed

 \rightarrow possible spurious contribution

 \rightarrow additional systematic errors (is the result model independent?)

Advantages include no need of low energies \rightarrow no straggling, no Coulomb suppression, no electron screening

Possibility to access astrophysical energies with high accuracy

To recall the previous sketch:

R. Tribble et al., Rep. Prog. Phys. **77** (2014) 106901

Nuclear reaction theory

Indirect methods are especially useful in the case of reactions involving **radioactive nuclei**

- Higher cross sections
- Possibility to study reactions induced by neutrons on radioactive nuclei
- Reactions among unstable nuclei
- Easier experimental procedures

The method (see PRL 101, 152501 (2008))

When narrow resonances dominate the S-factor the reaction rate can be calculated by means of the resonance strengths and resonance energies only. Both can be deduced from the THM cross section.

Let's focus on resonance strengths

$$\omega \gamma_i = \frac{2J_i + 1}{(2J_p + 1)(2J_{27}_{\text{Al}})} \frac{\Gamma_p^i \Gamma_\alpha^i}{\Gamma_{\text{tot}}}$$

The strengths are calculated from resonance partial widths

What is its physical meaning? Area of the Breit-Wigner describing the resonance

Advantage:

no need to know the resonance shape (moderate resolution necessary)

$$\omega \gamma_i^{\text{THM}} \approx \omega_i N_i \frac{\Gamma_{p, \text{ s.p.}}^i}{\sigma_{(d,n)}(\theta_n^{c.m.})}$$

In the THM approach we determine the strength in arb.units. Normalization to a known resonance is necessary

Data analysis: channel selection

Data analysis: relative energy spectra

²⁴Mg- α relative energy \rightarrow ²⁸Si excitation energies \rightarrow This is the spectrum of astrophysical interest ²⁴Mg-n relative energy \rightarrow ²⁵Mg excitation energies \rightarrow background (sequential decay) ⁴He+n relative energy \rightarrow ⁵He excitation energies \rightarrow background (sequential decay)

Data analysis 4: selection of QF process

When the breakup is quasifree, *n* retains the same momentum as inside *d* (adiabatic process). **So** *n***momentum distribution should be the same as in** *d*

We gate on a 50 keV energy window to keep the cross section constant

The red curve is the theoretical one: normalization is the only fitting parameter

Center-of-mass energy spectra

• For the analysis cuts we deduce the E_{cm} spectra from the standard formula: $E_{c.m.} = E_{\alpha-24}Mg - Q_{27}Al(p,\alpha)^{24}Mg$

Black points: QF reaction yield corrected for phase space effects for THM data

Red line: **simulated** QF reaction yield corrected for space effects:

- All experimental effect accounted for (pixel size, energy resolution beam, ...)

Angular distributions

- Angular distributions for each peak in the E_{cm} spectra [(a)-(e) in order of increasing energy] were deduced
- Each peak is the superposition of many resonances, so only the dominant wave can be deduced
- A-B & C-D show the same trend
- The region around π/2 is covered, which is the most influential for angular integration

Integrated THM cross sections

- Integration over $\Theta_{c.m.}$ was carried out for the two couples of detectors separately, using the fitting curve in the previous slide
- Uncertainties on the shape of the angular distributions beyond the fitting regions were taken into account, through the uncertainties affecting fitting parameter a and b
- Uncertainties are larger for higher energies
- For the two couples, independent analyses were carried out, compatible results → low systematic erros

Extraction of the resonance strengths

- Black dots: sum over the two spectra for A-C and B-D
- Following discussion in APJ 708 (2010) 796 the red line is a fit with a sum of Gaussian functions, with fixed energies and fixed widths (from MC). Heights are proportional to strengths
- The most intense resonances in STARLIB were all included in the fit down to about 200 keV

Tails of higher energy resonances affects the region above 1.5 MeV

A bit of theory (from APJ 708 (2010) 796)

- For narrow resonances: $\delta(x E_{R_i}) = \lim_{\Gamma_i \to 0} \frac{1}{2\pi} \frac{\Gamma_i}{(x E_{R_i})^2 + (\frac{\Gamma_i}{2})^2}$
- The THM cross section can be fitted using the equation:
- Γ_{s.p.} is calculated using the potential model
- σ(θ) is calculated in PW using the same well & w.f.

Tabulated strengths: THM vs. STARLIB

- In general, good agreement between THM and STARLIB
- Validation of the method and new results/better upper limits below about 200 keV

Energy in cm (keV) [from STARLIB]	Jpi	Strength (eV) [from STARLIB]	error (eV)	Strength (eV) [from THM]	error (eV)	
71.5	2+	2.47E-14	up lim	9.28E-15	up lim	
84.3	1-	2.60E-13	up lim	1.90E-14	4.7E-15	
193.5	2+	3.74E-07	up lim	2.82E-07	up lim	
214.7	3-	1.13E-07	up lim	4.92E-08	up lim	
486.74	2+	0.11	0.05	0.122	0.031	
609.49	3-	0.275	0.069	0.282	0.082	
705.08	1-	0.52	0.13	0.30	0.10	
855.85	3-	0.83	0.21	0.71	0.56	
903.54	3-	4.3	0.4	4.3	0.4	normalization value
1140.88	2+	79	27	83	21	
1316.7	2+	137	47	142	43	
1388.8	1-	54	15	70	18	

Since the two states around 200 keV cannot be resolved, a conservative limit is obtained attributing the whole THM strength to both resonances. This is because they have different I so the effect OES is different

Normalization test using a higher energy resonance

 In general, normalizing to 1.4 MeV resonance leads to a little smaller resonance strengths than before, still in agreement with STARLIB values

Energy in cm (keV) [from STARLIB]	Jpi	Strength (eV) [from STARLIB]	error (eV)	Strength (eV) [from THM]	error (eV)	
71.5	2+	2.47E-14	up lim	7.17E-15	up lim	
84.3	1-	2.60E-13	up lim	1.47E-14	4.3E-15	
193.5	2+	3.74E-07	up lim	2.18E-07	up lim	
214.7	3-	1.13E-07	up lim	3.80E-08	up lim	
486.74	2+	0.11	0.05	0.094	0.028	
609.49	3-	0.275	0.069	0.218	0.071	
705.08	1-	0.52	0.13	0.232	0.086	
855.85	3-	0.83	0.21	0.55	0.44	
903.54	3-	4.3	0.4	3.3	1.2	
1140.88	2+	79	27	64	19	
1316.7	2+	137	47	110	37	
1388.8	1-	54	15	54	15	normalization value

Average values

 We take the weighted average of the strengths obtained from the two normalizations procedure to reduce systematics errors

Energy in cm (keV) [from STARLIB]	Jpi	Strength (eV) [from STARLIB]	error (eV)	Strength (eV) [from THM]	error (eV)
71.5	2+	2.47E-14	up lim	8.23E-15	up lim
84.3	1-	2.60E-13	up lim	1.67E-14	3.2E-15
193.5	2+	3.74E-07	up lim	2.50E-07	up lim
214.7	3-	1.13E-07	up lim	4.36E-08	up lim
486.74	2+	0.11	0.05	0.107	0.021
609.49	3-	0.275	0.069	0.245	0.054
705.08	1-	0.52	0.13	0.261	0.065
855.85	3-	0.83	0.21	0.61	0.35
903.54	3-	4.3	0.4	4.20	0.38
1140.88	2+	79	27	73	14
1316.7	2+	137	47	124	28
1388.8	1-	54	15	61	12

The full calculation using STARLIB (by Philip Adsley)

MarcoRate The green line is 100% ____ Ratio of reaction rates • We run the full 27 Al(p, $\alpha)^{24}$ Mg the THM 10¹ recommended rate 10⁰ code (for Ratio STARLIB and Reaction Rate F STARLIB+TH 75% 27 Al(p, α) 24 Mg 0.01 M replacing 84 keV 72 keV 1141 keV 1.2 0.10 0.05 0.20 194 keV 609 keV 1661 keV 215 keV Temperature (GK) 1317 keV 315 keV 904 keV 50% 10⁻⁵ our results in 1.0 Contribution 10⁻⁶ 0.8 the standard 25% 10^{-7} ٥% 0.6 0.1 input) Temperature (GK) 0.4 0.2 Is the upper limit for the resonance 0.0 ⊾ 0.01 0.1 10 at about 200 keV overestimated? Temperature (GK)

Some astrophysical consequences 1

Closure of the MgAl cycle

→ THM data seem to strengthen the fact that no closure of the cycle is to be expected, but uncertainties are large

- More work necessary
- Need of more accurate p,γ Sfactor

Some astrophysical consequences 2

- We inspect the AGB evolution of intermediate mass stars at solar metallicity (Z=0.014) computed with the stellar evolution code ATON. We select the 4.5 M_{sun} (mild HBB) and 6 M_{sun} (strong HBB)
- Negligible differences are found for 6M_{sun}: the temperatures at the base of the envelope are so hot (>80 MK) that the ²⁷Al(p,γ)²⁸Si channel is dominant
- For 4.5M_{sun} we find a 5% increase in the surface 27Al when the new rates for ²⁷Al(p,α)²⁴Mg are adopted, a difference that rises to 25% when the lower limits are used.

Concluding remarks

- Right after the lockdown, we managed to mount, run and complete a full experiment with no covid-19 cases
- The experiment and the analysis were unexpectedly smooth, the analysis quick and standard
- We could explore the whole energy region of astrophysical interest for the alpha 0 channel. For alpha 1 it is possible, but statistics is low
- We could extract the strength of the 84 keV resonance and set more stringent upper limits
- The calculated rate is about 3 times lower at astrophysically relevant temperatures than presently assumed

Thanks to:

- The director for authorizing the experiment
- The technical staff of LNS
- Philip Adsley for running STARLIB
- Flavia Dell'Agli for the astrophysical models

The team:

M. LA COGNATA,¹ S. PALMERINI,^{2,3,4} P. ADSLEY,^{5,6} F. HAMMACHE,⁷ A. DI PIETRO,¹ P. FIGUERA,¹ F. DELL'AGLI,⁴ R. Alba,¹ S. CHERUBINI,^{8,1} G.L. GUARDO,^{1,8} M. GULINO,^{9,1} L. LAMIA,^{8,1} D. LATTUADA,^{9,1} C. MAIOLINO,¹ A. OLIVA,^{8,1} R.G. PIZZONE,¹ P.M. PRAJAPATI,^{1,*} G.G. RAPISARDA,^{8,1} S. ROMANO,^{8,1} D. SANTONOCITO,¹ R. SPARTÁ,^{1,8} M.L. SERGI,^{8,1} A. TUMINO,^{9,1} AND P. VENTURA⁴

> S. Palmerini et al. Eur. Phys. J. Plus (2021) 136: 898 M. La Cognata et al. Phys. Lett. B (2022) 826: 136917

Extraction of the upper limits/1

- Below 200 keV, our data are compatible with a single resonance centered at about 80 keV, with I=1
- For the other resonances we can provide upper limits

Upper La Note: en	imits of nter part	Reso tial	onances width upp	er limit
Note: .	PT= 	for	g-rays [e	nter: "u
Ecm	DEcm	Jr	G1	DG1
71.5	0.5	2	7.4e-14	0.0
84.3	0.4	1	2.6e-12	0.0
193.5	0.7	2	7.5e-4	0.0
214.7	0.4	3	9.7e-5	3.9e-5

Conservative upper limit: 36% fo the 84 keV resonance strength

Upper limit for the I=0 71.5 keV resonance is deduced from angular distributions

Extraction of the upper limits/2

- Below 200 keV, our data are compatible with a single resonance centered at about 80 keV, with I=1
- For the other resonances we can provide upper limits

Upper L Note: e	imits of nter part	Reso tial	onances width uppe	er limit
Note: .	PT= 	for	g-rays [en	nter: "u
Ecm	DEcm	Jr	G1	DG1
71.5	0.5	2	7.4e-14	0.0
84.3	0.4	1	2.6e-12	0.0
193.5	0.7	2	7.5e-4	0.0
214.7	0.4	3	9.7e-5	3.9e-5

For the states around 200 keV statistics is too low so the upper limits is deduced by shifting the peak by 1 energy bin and adding a Gaussian as large as possible

Calculation of the reaction rate: the poor man approach (for the norm.@903 keV)

- By using Mathematica, I built a MC code to calculate the reaction rate taking lognormal distributions for the measured strengths, and Porter-Thomas distributions in the case only upper limits are available
- The MC included only the resonances listed in the previous table
- The given uncertainties are 1 sigma

