The K600 magnetic spectrometer and the CAKE silicon detector array: measurements relevant to type-I X-ray bursts

J.W. Brümmer^{1,†}, P. Adsley^{2,3}, A. Bahini^{1,4}, J.A.C. Bekker^{1,4}, S.D. Binda^{1,4}, L.M. Donaldson¹, S. Jongile¹, T. Khumalo¹, R.E. Molaeng^{1,4}, R. Neveling¹, L. Pellegri^{1,4}

¹ iThemba Laboratory for Accelerator-Based Sciences, Somerset West, South Africa ² Cyclotron Institute, Texas A&M University, College Station, Texas, USA

³ Department of Physics & Astronomy, Texas A&M University, College Station,

Texas, USA

 4 School of Physics, University of the Witwatersrand, Johannesburg, South Africa $^\dagger j w.brummer@ilabs.nrf.ac.za$

The K600 magnetic spectrometer and the CAKE silicon detector array form a powerful tool for coincidence measurements in many nuclear physics measurements including nuclear astrophysics. These instruments have been used, among others, in studies measuring proton decays from α -unbound states in ²²Mg through the ²⁴Mg(p, t)²²Mg reaction to study the ¹⁸Ne(α, p)²¹Na cross section relevant in type-I X-ray bursts (XRBs). The thermonuclear reaction rate of ¹⁸Ne(α, p)²¹Na is one of the important rates that affect the behaviour of the XRB lightcurve. This talk will examine the ²²Mg(p, t)²²Mg experiment that was performed at iThemba LABS, Cape Town and discuss future experiments with the ²⁸Si(p, t)²⁶Si reaction to study proton decays from α -unbound states in ²⁶Si to study the cross section and thermonuclear reaction rate of ²²Mg(α, p)²⁵Al and its influence on type-I XRBs.