

The Oslo Method at iThemba LABS

Wednesday, 29 November 2023 14:50 (15 minutes)

The Oslo Method is a powerful tool that allows for detailed studies of the Nuclear Level Density (NLD) and γ-ray strength function $(\gamma \mathrm{SF})$ at energies below the neutron separation energy. In the last decade, several Oslo Method experiments have been performed at iThemba LABS, most notably with inverse-kinematics. Coupling the Oslo Method with inverse kinematics allows for study of nuclei that otherwise would have been inaccessible due to chemical properties or short half-life.
The first ever inverse-Oslo method experiment was performed at iThemba LABS in 2015 where an ${ }^{86} \mathrm{Kr}$ beam impinged on a deuterated polyethylene target [1]. Following the success of this experiment two more inversekinematics experiments was performed with ${ }^{84} \mathrm{Kr}$ and ${ }^{132} \mathrm{Xe}$ beams, to study the NLD and $\gamma \mathrm{SF}$ of ${ }^{85} \mathrm{Kr}$ and ${ }^{133} \mathrm{Xe}$, respectively.

It has been suggested that for very hot plasmas the nucleus should interact with electrons (Nuclear Plasma Interaction/NPI), as the level spacing within the quasi-continuum would be on a similar scale as the electron energies [2]. The strength of the interaction would be strongly affected by the magnitude of the γ SF at low energy and accurate measurement of the low energy region of the $\gamma \mathrm{SF}$ is critical to give accurate theoretical estimates for the magnitude of this effect. The effect of NPI has been tested on ${ }^{133} \mathrm{Xe}$ at Lawrence Livermore National Laboratory [2], which is the main motivation for measuring the $\gamma \mathrm{SF}$ and NLD of ${ }^{133} \mathrm{Xe}$.
The reason for investigating the NLD and $\gamma \mathrm{SF}$ of ${ }^{85} \mathrm{Kr}$ is due to the significant structural changes that nuclei near magic numbers typically undergo. By examining NLD and $\gamma \mathrm{SF}$ data for $N=49$ and $N=51$ isotopes of Kr , valuable information about these structural changes can be revealed. Additionally, the mass region around $\mathrm{A} \sim 80$ is important for nucleosynthesis, as ${ }^{85} \mathrm{Kr}$ functions as a branching point nucleus for the s-process, and nuclei within this range can have an impact on the weak r-process. Therefore, the existence of a low energy enhancement in this region could have a significant impact on nucleosynthesis models [3].
In this talk I will present the results of inverse-Oslo experiments performed at iThemba LABS, as well as the NLD and $\gamma \mathrm{SF}$ of ${ }^{63} \mathrm{Ni}$, which has been measured with the Oslo Method with normal kinematics at iThemba LABS [4].
[1] V. W. Ingeberg et al., EpJ A 56, 68 (2020)
[2] D. L. Bleuel et al., Plasma and Fusion Research 11, 3401075 (2016)
[3] A. C. Larsen and S. Goriely, Phys. Rev. C 82, 14318 (2010)
[4] V. W. Ingeberg et al., Phys. Rev. C 106, 054315 (2022)

Attendance Type

In-person

Primary author: INGEBERG, Vetle Wegner (Department of Physics, University of Oslo)
Presenter: INGEBERG, Vetle Wegner (Department of Physics, University of Oslo)
Session Classification: Session 3

Track Classification: Nuclear Astrophysics

