A. P. Weaver^{1,2}, <u>A. M. Bruce</u>², T. Eronen³, O. Beliuskina³, C. Delafosse³, Z. Ge³, W. Gins³, R. P de Groote³, M. Hukkanen³, Á. Koszorús³, D. A. Nesterenko³, Zs. Podolyák⁴ and V.Virtanen³.

¹TRIUMF, Canada. ²University of Brighton, UK. ³University of Jyväskylä, Finland. ⁴University of Surrey, UK.

Beta-decaying, high-spin, spin-trap isomers have been observed in 96 Y, 98 Y and 100 Y with half-lives ranging from 9 to 0.9 seconds [Ab08,Ch20,Si21]. However, in 102 Y there are two beta-decaying states which have similar half lives (t $_{1/2}$ = 360(40) ms [Sh83] and 300(10) ms [Hi91]) and a small energy difference, making it difficult to measure their relative energy and to ascertain if the high-spin state is the ground state or the isomeric state. This presentation will report on the use of the Phase Imaging – Ion cyclotron Resonance (PI-ICR) method [El13] at the JYFLTRAP double Penning trap at the IGISOL facility at the University of Jyväskylä, Finland to measure the relative energies of the beta-decaying states in 102 Y and re-measure 100 Y.

The nuclei of interest were produced via nuclear fission of ²³⁸U using a 30 MeV proton beam. In ¹⁰⁰Y a value of 147.8(42) keV has been measured for the excitation energy of the isomeric state, which overlaps with the previously measured value of 145(15) keV [Ha07] and reduces the experimental error by a factor of 4. In ¹⁰²Y the closeness in energy of the 2 states makes the analysis quite complicated and although the two states were not fully separated, the observed mass distribution can be fitted with a bi-modal distribution which indicates an excitation energy of 12.3 (16) keV for the isomeric state. Details of the experiment and of the analysis procedures will be discussed.

References

[Ab08] D.Abriola and A.A.Sonzogni, Nuclear Data Sheets 109 (2008) 2501.

[Ch20] J.Chen and B.Singh, Nuclear Data Sheets 164 (2020) 1.

[El13] S.Eliseev et al., Applied Physics B: Lasers and Optics 114 (2013) 396.

[Ha07] U.Hager et al., Nuclear Physics A793 (2007) 20.

[Hi91] John C. Hill et al., Physical Review C43 (1991) 2591.

[Sh83] K.Shizuma et al., Physical Review C27 (1983) 2869.

[Si21] B.Singh and J.Chen, Nuclear Data Sheets 172 (2021) 1.