Study of the K quantum number of pygmy states in ¹⁵⁴Sm

Refilwe Emil Molaeng

Science and Innovation REPUBLIC OF SOUTH AFRICA

ANPC

November 30, 2023

Introduction

- An enhancement of the γ-ray strength around 5–7 MeV was observed through (n,γ) in various isotopes in the 1950s and 1960s by Bartholomew et al.
- This strength was referred to as the Pygmy Dipole Resonance (PDR) by Brzosko et al. in 1969.
- ▶ PDR An oscillations of excess neutrons against an inert core with $N \simeq Z$ by R. Mohan *et al.* in 1971.

A. Zilges, J. Phys.: Conf. Ser. 590 (2015) 012006

The splitting of the E1 strength into the PDR and the GDR.

Transition densities of the low-lying E1 state for ⁵⁶Ni and ⁶⁸Ni.

イロト イポト イヨト イヨト

Role of nuclei deformation on the PDR

- Nature and behaviour of the PDR with neutron excess defies interpretation.
- Most affected are the predictive power for exotic nuclei.
- Most studies of the PDR are on spherical nuclei; the role that nuclear deformation plays on the PDR is yet to be understood.
- The principle aim of this study is to investigate the impact of ground state deformation on the properties of the PDR in ¹⁵⁴Sm.
 - 1. Measure the cross-sections of the individual states contributing to the PDR .
 - 2. Extract the associated K quantum numbers in ¹⁵⁴Sm.

Angular K quantum numbers for a deformed nucleus.

イロト イポト イヨト イヨト

Role of nuclei deformation on the PDR

 Collective picture;

 A possible double-hump structure in the PDR, resembling that observed in the GDR could be expected.

 Potential interpretation: Deformed proton-neutron saturated core, oscillating against a neutron skin along two different axes.

Experimental signatures of the PDR in ¹⁵⁴Sm

 Observed double-hump structure of the PDR in ¹⁵⁴Sm through (p,p').
 •Could be connected to the splitting of the K quantum number.

Single-hump structure observed through $^{154}\mathrm{Sm}(\alpha,\alpha'\gamma).$ •IS probe \rightarrow Possible K mixing.

Current study expected to give info on the K values in the PDR region.

Photoabsorption cross section comparisons of ${}^{154}{\rm Sm}(\alpha,\alpha'\gamma)$ and ${}^{154}{\rm Sm}({\rm p,p'}).$

Techniques for exciting the PDR

Schematic representation of the main experimental methods used in the study of low-lying dipole strength and its decay modes

(C)

- Quasi-monoenergetic, polarised photon beam utilised at $HI\gamma S$.
- Cascade decay measurements

How to measure the K components at the High Intensity γ -ray Source (HI γ S)

The setup allows for measurements by the asymmetry method of the character of the populated transitions.

 $\bullet \rightarrow$ to distinguish between the contribution of E1 and M1 states.

• The asymmetry (ϵ) of an excited state is estimated by

$$\epsilon = \frac{A_{\parallel} - A_{\perp}}{A_{\parallel} + A_{\perp}} \tag{1}$$

- The high beam resolution mode (<2%) allows for the measurement of the decay branching ratio to the first 2⁺ (82 keV) state;
- To extract the K values for the pygmy states the branching ratio between decay to the g.s. and first 2⁺ state must be measured. According to the Alaga rules the ratio

$$R = \frac{B(1^- \to 2^+)}{B(1^- \to 0^-)}$$
(2)

is 0.5 for K=1 and 2 for K=0 (might not hold at these higher energies).

How to measure the K components at the High Intensity γ -ray Source (HI γ S)

・ロン ・回 と ・ ヨ と ・ ヨ と

Experimental Setup at the High Intensity γ -ray Source (HI γ S).

 $\gamma\text{-}\mathrm{ray}$ detectors around the target position.

- 2.5g of 154 Sm in oxide form, enriched to >90% for the isotope of interest
- ¹⁵⁴Sm(γ,γ') with beam energy ranging from 3.83 to 7.05 MeV.
 - 3 hours of beam time for every beam energy.
 - 5 HPGe detectors, 4 LaBr₃:Ce and 3 CeBr₃ detectors.
 - $1\ \text{HPGe}$ at $0^{\rm o}$ for beam profiling measurements.

イロン 不同 とくほど 不良 とう

Experimental Setup at the High Intensity γ -ray Source (HI γ S).

Target-cylinder with a radius of 1 cm.

Target pipe, target holder inside the pipe and the target.

Beam Energy Profile

25 different beam energies.

 $\mathsf{Beam}\ \mathsf{energy}\ (\mathsf{keV})$

Pre-liminary 154 Sm(γ , γ ') spectrum

- ► LCS → Selectivity of the excitation energy.
- ▶ HPGe \rightarrow Good resolution to separate decays to the g.s and the 2⁺ state.

イロン イヨン イヨン イヨン

Summary and outlook

- Challenge: Previous efforts haven't provided a clear interpretation of PDR concerning neutron excess and deformation effects in nuclei.
- Objective: Understand the Pygmy Dipole Resonance (PDR) in deformed ¹⁵⁴Sm nucleus.
- Methodology: Utilize the (γ,γ') technique to investigate dipole states from 3.5 MeV to the neutron separation threshold (8 MeV).
- **Experimental Setup**: Employ the γ^3 setup at HI γ S facility.
- Identification: Determine the K quantum number of different excited states and the PDR concerning excitation energy.
- **Comparative Analysis**: Compare results with data from other experiments to comprehensively understand PDR in deformed neutron-rich nuclei.

Collaborators

R.E. Molaeng^{1,2}, L.M. Donaldson², L. Pellegri^{1,2}, I.T. Usman¹, P. Adsley³, A.D. Ayangeakaa^{4,5}, J.J. Carroll⁶, C.J. Chiara⁶, S.W. Finch^{5,7}, D. Gribble^{5,4}, A. Gupta⁸, M. Heumüller⁸, J. Isaak⁸, X.K. James^{4,5}, R.V.F. Janssens^{4,5}, S.R. Johnson^{4,5}, J. Kleemann⁸, T. Kowalewski^{4,5}, B. Löher⁹, O. Papst⁸, N. Pietralla⁸, K. Prifti⁸, A. Saracino^{4,5}, D. Savran⁹, J. Santucci³, N. Sensharma^{4,5}, B. Wellons³, V. Werner⁸

- ¹ School of Physics, University of the Witwatersrand, Johannesburg, 2050, South Africa
- ² SSC Laboratory, iThemba LABS, Faure, 7100, South Africa
- ³ Texas A&M University, College Station 77843, Texas, USA
- ⁴ Department of Physics and Astronomy, University of North Carolina, Chapel Hill 27599, North Carolina, USA
- ⁵ Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
- ⁶ U.S. Army Combat Capabilities Development Command Army Research Laboratory, Adelphi, Maryland 20783, USA
- ⁷ Department of Physics, Duke University, Durham, North Carolina 27708, USA
- ⁸ Technische Universität Darmstadt, Department of Physics, Institute for Nuclear Physics, 64289 Darmstadt, Germany
- ⁹ GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany

This work is based on the research supported in part by the National Research Foundation.

