Extraction of level density of 2⁺ states in ²⁰⁸Pb and ¹²⁰Sn nuclei from high energy-resolution (p,p') experiments

Iyabo Usman

School of Physics, University of the Witwatersrand, Johannesburg, South Africa

https://www.wits.ac.za/physics/research-areas/nuclear-and-radiation-physics/

Work Supported by NRF (South Africa) and DAAD (Germany)

Outline

- Motivation
- > Experiments
- Theoretical Models
- Fluctuation Analysis and Autocorrelation functions
- Results
- Conclusion and Outlook

Motivation

Level densities: averages Average level density $\rho(E)$: $\rho(\mathbf{E}) = d\mathbf{N}/d\mathbf{E} = 1/\mathbf{D}(\mathbf{E})$ Cumulative number N(E) Average level spacing **D** Level spacing $S_{i}=E_{i+1}-E_{i}$ **D(E)** determined by fit to individual level spacings S_i Level spacing correlation: Chaotic properties determine fluctuations about the averages and the

errors of the LD parameters.

- High density of unresolved states above S_n
- Is there a direct measurement covering both low-lying and giant resonance regions?
 ANPC2023

Motivation

PHYSICAL REVIEW C 84, 054322 (2011)

Level density of 2^+ states in ⁴⁰Ca from high-energy-resolution (p,p') experiments

I. Usman,^{1,2} Z. Buthelezi,¹ J. Carter,² G. R. J. Cooper,³ R. W. Fearick,⁴ S. V. Förtsch,¹ H. Fujita,^{1,2,*} Y. Kalmykov,⁵ P. von Neumann-Cosel,^{5,†} R. Neveling,¹ I. Poltoratska,⁵ A. Richter,^{5,6} A. Shevchenko,⁵ E. Sideras-Haddad,²

F. D. Smit,1 and J. Wambach5

Backgrounds determined using Quasi-free + DWT

Experiments

Nuclear Physics Beamlines at iThemba LABS

✓ High energy-resolution \longrightarrow 25 – 45 keV @ E_p = 200 MeV ✓ Dispersion matching technique

Energy Spectra: ²⁰⁸Pb, ¹²⁰Sn

A. Shevchenko, et.al., Phys. Rev. C 77, (2008) 024302.
A. Shevchenko et al., Phys. Rev. Lett. 93, (2004) 122501.

Theoretical Models

1) Back-Shifted Fermi Gas (BSFG)

Phenomenological Approach

T. Rauscher, F. K. Thielemann, and K.-L. Kratz, Phys. Rev. C 56, (1997) 1613. T. von Egidy and D. Bucurescu, Phys. Rev. C 80, (2009) 054310.

$$\rho(E_x, J) = \frac{2J+1}{2\sigma^2} \frac{\exp\left(2\sqrt{a(E_x - \delta)} - J\left(J + \frac{1}{2}\right)^2/2\sigma^2\right)}{12\sqrt{2\sigma}a^{\frac{1}{4}}(E_x - \delta)^{\frac{5}{4}}}$$

with

 $\delta = \Delta(Z, N) \qquad \rho(Ex) = \text{Level density at energy } E_x$ $\sigma = \text{Spin-cutoff parameter}$ a = L evel density parameter $\delta = \text{Backshift energy}$ $\Delta = \text{Pairing energy}$

Theoretical Model Parameters

	²⁰⁸ Pb	¹²⁰ Sn
mass number A	208	120
number of protons Z	82	50
number of neutrons N	126	70
spin of states	2	2
parity of states	+	+
back shift in MeV	1.9089	1.9620
microscopic energy correction in MeV	-12.84	0.19
mass of the (Z,N) nucleus in MeV	193729	111688
mass of the (Z+1,N+1) nucleus in MeV;	195598	113553
mass of the (Z-1,N-1) nucleus in MeV	191865	109829
pairing energy in MeV	-3.22602	-3.3248
Proton separation energy in MeV	8.00376	10.6895
Neutron separation energy in MeV	7.36786	9.10802
Alpha separation energy in MeV	-0.51687	4.81059
local level density parameter BSFG in MeV ⁻¹	10.01	13.14
local energy shift BSFG in MeV	1.17	0.85

2) <u>Hartree-Fock-Bogoliubov (HFB) and HF-BCS</u> Microscopic Single-Particle Levels Approach

- P. Demetriou and S. Goriely, Nucl. Phys. A 695, (2001) 95.
- S. Goriely, S. Hilaire, and A. J. Koning, Phys. Rev. C 78, (2008) 064307.
- Calculations using basic nuclear structure properties: Single-particle energies ε^k_i
 Pairing strength Δ^k_i
 Quadrupole deformation parameter β₂
 Deformation energy E_{def}
 For spherical nuclei:

$$\rho_{sph}(E, J, \pi) = \rho_i(E, M = J, \pi) - \rho_i(E, M = J + 1, \pi)$$

 $\succ \quad \text{For deformed nuclei:} \\ \rho_{def}\left(E,J,\pi\right) = \frac{1}{2} \left[\sum_{k=-J,k\neq 0}^{J} \rho_i\left(E-E_{rot}^{J,k},K,\pi\right) \right] + \delta_{(Jeven)}\delta_{(\pi=+)}\rho_i\left(E-E_{rot}^{J,0},0,\pi\right) \\ + \delta_{(Jodd)}\delta_{(\pi=-)}\rho_i\left(E-E_{rot}^{J,0},0,\pi\right) \end{cases}$

Fluctuation Analysis

Measure of cross section fluctuations with respect to a stationary mean value. Mean level width

Assumptions:

$$\Gamma \rangle \leq \langle D \rangle \leq \Delta E$$

 $\alpha = \alpha_w + \alpha_{PT}$

 $\langle D
angle$ Mean level spacing

 ΛE Energy resolution

Procedure:

 α Sum of normalised variances

- Background subtraction from the experimental spectrum
- Smoothing by convolution with a Gaussian function of width larger than $\Delta E \longrightarrow g_{>}(E_r)$

Folding with a Gaussian function with a width smaller than $\Delta E \longrightarrow g(E_x)$ $\succ Create a stationary spectrum \longrightarrow \left\langle d(E_x) \right\rangle = \left\langle \frac{g(E_x)}{g_x(E_x)} \right\rangle = 1$

Autocorrelation Function

- > Mean level spacing $\langle D \rangle = \frac{1}{\langle \rho \rangle}$ proportional to the variance of $\langle d(E_x) \rangle$
- > Intensity fluctuations in $\langle d(E_x) \rangle$ can be autocorrelated at energies *E* and *E* + ε

$$C(\varepsilon) = \frac{\left\langle d(E_x) d(E_x + \varepsilon) \right\rangle}{\left\langle d(E_x) \right\rangle \left\langle d(E_x + \varepsilon) \right\rangle}$$

 $\succ \langle D \rangle$ can be extracted from

$$C(\varepsilon) - 1 = \frac{\alpha \langle D \rangle}{2\Delta E \sqrt{\pi}} f(\varepsilon, \Delta E)$$

 ε = energy increment; $C(\varepsilon)$ = Autocorrelation function

Discrete Wavelet Transform (DWT) of ²⁰⁸Pb(p,p') data

Background subtraction, Fluctuation Analysis, and Autocorrelation function

Top Left: Data plus background

Top Right: Stationary Spectrum averaged around 1 Bottom Right: Autocorrelation function

Experimental and Theoretical Level Density: 208Pb

Experimental and Theoretical Level Density: 120Sn

Summary

- Experimental level density in ²⁰⁸Pb and ¹²⁰Sn using Autocorrelation function analysis provides fair agreements compared to all models.
- The selectivity of the ISGQR and high energyresolution data obtained at iThemba LABS makes it an ideal choice for level density extraction above neutron threshold

> Parity dependence results was found to be important.

Conclusions and Outlook

- Extracted level densities in the giant resonance region of heavy magic nuclei (²⁰⁸Pb and ¹²⁰Sn) are considered very low.
- ISGQR data in heavy nuclei is prone to very low peak to background ratio.
- Uncertainties can be due to the assumed background which might not include background due to quasi-free continuum.
- Calculations on ⁹⁰Zr and ⁵⁸Ni in progress.
- Comparison with M2(2⁻) data from electron spectrometer to be investigated.

Collaborators

I.T. Usman¹, J. Carter¹, E. Sideras-Haddad¹, R. Neveling², F. D. Smit², R. W. Fearick³, H. Fujita⁴, Y. Fujita⁴, P. von Neumann-Cosel⁵, A. Richter⁵ and A. Shevchenko⁵

¹School of Physics, University of the Witwatersrand, Johannesburg, South Africa ²iThemba Laboratory for Accelerator Based Science, Cape Town, South Africa ³University of Cape Town, South Africa ⁴RCNP, Osaka University, Toyonaka, Osaka 560-0043, Japan ⁵Technische Universitaet Darmstadt, D-64289 Darmstadt, Germany