Introduction to Tracking

Marcel Stanitzki

Introduction

- Disclaimer
 - I am a "silicon guy", hence there will be a certain bias towards silicon trackers
- This talk should serve as an introduction
 - Overview on relevant issues
 - Neither encyclopedic nor complete
- More details on Tracking Detector Technologies
 - I. Gregor on Silicon Detectors
 - M. Titov on Gaseous Detectors
- Goal
 - Understand the issues and "what people talk about"
 - Get you interested in tracking detectors

Roadmap

3

Tracking - What is it ?

Tracking: to follow or pursue the track, traces, or footprints of.

Basic idea

- Reconstruct the charged particle's trajectory through the detector
 - Obtain several position measurements
- Minimal interruption of the track
 - Minimize material
- Adding magnetic field
 - Get particle momentum
 - Charge information

Particles through matter

TIPP 25/08/2023

6

Particles through matter

- We're mostly dealing with minimum ionizing particles
 - Track momenta usually between 1-100 GeV
- Particles traversing thin material layers
 - Small deviations caused by mainly Coulomb-Scattering
 - Deviations depend on Material (Z,A and ρ)

$$\theta_0 = 13.6 \frac{\text{MeV}}{\beta c p} \cdot Z \sqrt{x/X_0} [1 + 0.0038 \ln(x/X_0)]$$

$$X_0 = \frac{716.4 \text{ A}}{Z(Z+1) \cdot \ln(287/\sqrt{Z})} \cdot \frac{1}{\rho}$$

Modeling the Energy loss

- For single particles
 - Strong fluctuations on the individual particle level
 - Pure Bethe Approach not useful
- Best described by a Landau-Function
 - 90 % of interactions have less than mean energy loss rate
 - But large tail of large energy loss events

Note:

The Landau-Function itself is an approximation for thin tracking layers

Particles in a magnetic field

• All driven by the Lorentz Force

 $\vec{F} \!=\! q \!\cdot\! \vec{v} \!\times\! \vec{B}$

- Particles trajectories follow a helix
 - Arc/Circle in the xy plane
 - Line in z
- Various parametrizations
 - Each experiment has one...

Example - LCIO Helix Parametrization

5 Parameters

- P_0 is the point of closest approach (p. c. a.)
- Φ_0 :azimuthal angle of the momentum at p.c.a
- Ω : track curvature t
- d₀:signed impact parameter in xy
- $tan\lambda$ is the slope dz/ds of the straight line in the sz plane, with s being the arc length
- z_0 : position of the track at the p. c. a.
- See LC-DET 2006-004

Signal-to-Noise

- Signal/noise ratio: signal size for a certain input signal over the intrinsic noise of the detector
 - parameter for analog signals
 - good understanding of electrical noise charge needed
- Signal induced by source or laser or test beam particles
- optimal S/N for a MiP is larger than 20
- N.B.
 - Noise = sigma of pedestal distribution
 - signal = most probable peak pedestal

Single Point Resolution

- Single Detector element
 - Pitch d
- Track Probability (D(z) is flat
 - Expectation value is 0 (center)
- Variance is:

 $\frac{\mathrm{d}}{\mathrm{2}}$

Ζ

d

2

Momentum Resolution

 Precise measurement of track and momentum of charged particles due to magnetic field.

depending on many factors:

$$\left(\frac{\sigma_{p_T}}{p_T}\right)^2 = \left(\sqrt{\frac{720}{n+4}}\frac{\sigma_y p_T}{0.3BL^2}\right)^2 + \left(\frac{52.3 \times 10^{-3}}{\beta B \sqrt{LL_y \sin \theta}}\right)^2$$

Glueckstern Formula NIM, 24, P381, 1963

Position resolution

Multiple scattering

B = magnetic field

 σ^v = spatial resolution
n = number of measurement points
L = length (~radius)

The larger the magnetic field **B**, the length **L** and the number of measurement points **n**, and the better the spatial resolution, the better is the momentum resolution

For low momentum (β→0), multiple scattering will dominate the momentum resolution. Reduce material!

Tracking resolution

14

- Ultimately Tracking resolution driven by
 - Single Point Resolution
 - Multiple-Scattering
- Hence

-
$$\sigma_{Track} = \sqrt{\sigma_{Hit}^2 + \sigma_{MS}^2}$$

- Notes
 - Multiple Scattering dominates at low momenta (~ < 10-20 GeV)
 - At higher momenta the single-point resolution becomes the limiting factor (~ > 50 GeV)

Two-Track Separation

- How well can one separate two adjacent tracks
- Driven by single point resolution $(d/\sqrt{12})$
- Important in dense environments
 - e.g. Tracking within Jets
- Improving separation...
 - More granularity
 - Smarter Tracking

Roadmap

The Bubble Chamber

Wire chambers

- Bubble Chambers are great...
 - Slow
 - Readout by photographs
- Mid 60's
 - Wire chambers as most basic electronic tracking chambers
- Basic principle
 - HV Wire in gas-filled volume
 - Electrons drift to the closest wires
 - Avalanche effect to amplify charge

State of the Art

Gaseous Trackers \rightarrow Maxim's Talk

Silicon Trackers \rightarrow Ingrid's Talk \bullet

Roadmap

Readout ASICS

- The Readout ASIC is a key ingredient to an excellent tracker
- The ASIC ("Application-Specific Integrated Circuit")
 - Amplifies and digitizes the charge
 - Provides timing information
 - Buffering
 - Transfers data to the outside world
- ASIC are specifically designed for each tracker
 - Industry-level CMOS design
 - Making a good ASIC is an art

ASIC building blocks

Pre-Amp & Shaper

23

- Pre-Amp usual very "simple" and integrating
 - Just amplify a very small signal/
- Output signal not optimal for digitization
 - No well defined peak
 - No "clear edge" for timing
- Need to apply some level of "shaping" to make a nice pulse
 - Many shaping circuits on the market

Thresholding & Digitization

24

- After Shaping \rightarrow ready for digitization
- However Digitization is costly
 - Time and power
 - Configurable Analog threshold before digitization
- Three basic types of Digitizers
 - Comparators
 - ToT (Time over Threshold)
 - ADC (Analog to Digital Converter)
- Figures of merit
 - Resolution in bits
 - Speed
 - Power consumption

Comparators

- A Comparator is simplest way to digitize
- Compare V_{input} to V_{ref}
 - V_{input}>V_{ref} Output=1
 - V_{input} < V_{ref} Output=0
- Disadvantage
 - Simple binary information
 - "Hit" or "No hit"
- Advantages
 - Simple, fast and low power

ToT

- This is a simple Counter
- If V_{input}>V_{ref}
 - Counter starts
- If V_{input} < V_{ref} again¹
 - Stop counter
- Digitized information
 - Number of counts
- Limited by clock speed and signal shape

Basic Assumption Pulse Width ~ Pulse Height

Analog-to-Digital Converters (ADC)

- ADCs are an art form these days
- Many different circuits and ideas
 - Speed of conversion
 - Resolution
 - Robustness
 - ADC design is popular thesis subject
- I'll focus on two basic types
 - Wilkinson ADC
 - FLASH ADC
 - This is by far incomplete

Wilkinson ADC

- This is a very simple ADC
- At t=0
 - Counter starts
 - ADC generates voltage ramp
 - If $V_{ramp} = V_{input}$
 - Counter is stopped
 - N_{counts} is digitized information
- Speed driven by counter clock
 - Slow but low-power

FLASH ADC

29

- Speedwise this is the Ferrari of ADC's
 - Conversion in a single clock cycle
 - Up to 8 bits possible
- Complex with loads of circuitry
 - Power-hungry
 - N bits 2ⁿ-1 Comparators needed
 - Lots of space ("real estate")
- FLASH ADCs are chosen when speed is essential

Writing the Data

- After digitization data is transferred to the buffer memory and combine with the timestamp info
- For a tracker
 - 1 % Hit occupancy
- So for 256 channel Readout ASIC
 - A few hits (2-3)
- Remainder of data could be eliminated
 - Digital Threshold and sparsification

TIPP 25/08/2<u>023</u>

Sparsification

- 2 Examples
- Raw data chip with comparator (16 bytes)
 - 00 01 01 00 02 00 03 00 04 01 05 00 06 00 07 00
- Sparsification-Stage -Select Hits (4 Bytes)
 - 00 01 04 01
- Raw data ADC readout (16 bytes)
 - 00 01 01 09 02 25 03 9F 04 17 05 01 06 00 07 01
- Sparsification (Threshold > 10) (6 bytes)
 - 02 25 03 9F 04 17
- Sparsification reduces bandwidth requirements
 - Smarter chips have even more elaborate sparsifiers
 - Every modern chip has some kind of sparsification circuitry

Analog vs Binary Readout

- An old discussion
- Binary only stores hit/no hit
 - Hit resolution is limited to $d/\sqrt{12}$
 - Robust and simple
- Analog also stores the digitized pulse height
 - More information available
 - Can further improve on hit resolution
 - Better detector monitoring
- Many trackers, many opinions
 - ATLAS is binary
 - CMS is analog
 - ILC detectors plan to do analog

Roadmap

Track reconstruction

Noise Removal

- In Reality no detector is completely noise-free
- Noise Source
 - Random (Noise floor 10⁻⁵, 10⁶ channels ...)
 - Hot channels
 - Pick-up Noise (from somewhere else)
- Tracking is an ~n² problem
 - Beneficial to remove as many noise hits as possible
- Classic approaches
 - Remove all channels with Occupancies > O(10) %
 - Dedicated Noise runs during no-beam
 - After Noise Removal we're ready for the first tracking step

From Hits to Clusters

- A particle may deposit charge in several strips/pixels/pads causing several hits
 - So not every hit corresponds to a particle
 - \rightarrow need to reconstruct the particle hit
- Clustering algorithms are used
 - To merge hits belonging to one particle
- Clustering shows one real advantage of analog readout
 - Here the additional information really adds resolution

Clustering

Merging

- Cluster all hits together until there is a channel without a hit
- Calculate weighted mean for cluster position

Splitting

- Occasionally two tracks are very close
- Hits are merged together
- Cluster splitting to correct for this behavior
- This can occasionally be tricky

Tracking Strategies

- A lot in tracking evolves around choosing the right "strategy"
- Outside-In
 - Occupancy is a lot small outside, track from the outside and pick up hits on the way
- Inside-Out
 - Higher granularity in the inner layers, so start from there
- Vertex-Standalone
 - Use only the highly granular vertex detector to find tracks
- Reality
 - All of the above to achieve an optimal tracking performance

Seeding

- Need to start from somewhere
- Forming Seed tracks
 - Choose e.g. 3 layers
 - Form tracks from all hit triplets
 - Remove tracks that are not even close to the interaction region (z cut)
- These Seed tracks then form the input the next step
- Problem
 - Combinatorial issue, many seed tracks to evaluate
 - Choice of seed layers important

Tracking & Fitting

- Take all SeedTracks
- Pick up all hits along seed trajectory
 - Remove tracks with a below minimum number of hits
 - Make a Helix fit
 - Use goodness-of-fit to select good tracks
- Usually several steps
 - "Easy tracks" first
 - Then low momentum tracks (loopers), tracks that have smaller number of hits
- Kalman Filtering and Fitting
 - Best tool for this, used by most experiments

Kalman Filter

- What is it ?
 - Commonly-used method for estimating states of dynamic systems
 - Combines predictions (based on underlying model and knowledge of prior state) and measurements to provide more accurate state estimate than either individually - Original paper by R. E. Kalman from 1960
- How does it work ?
 - Predictions alone accumulate increasingly large uncertainties due to stochastic processes along trajectory (multiple scattering, etc)
 - Measurements alone are "noisy"
 - Nice feature: Need only the state estimate at prior step to have full information needed for the next step!
 - No need to keep track of full history; it is "encoded" in the state estimate plus its covariance
- "Real world" example: Combine telemetry data on thrust with GPS position to estimate the true position and velocity of a projectile

Kalman-Fitting

42

- The Kalman formalism already provides the framework for a track fit
- Due to progressive nature of process, only final step has "full" track information encoded in its state equation
- Therefore, a further stage going back along the track is needed to give best possible estimate at each surface
- This backwards stage is referred to as the smoothing step

Adding Information - Refitting

- In many cases, one has additional information about the track
- Track origin
 - If the Primary vertex is well know (as in an e⁺e⁻ collider)
 - Re-fit the track using that information
- If track belongs to a secondary vertex
 - Use this constraint as well
- Add timing information more useful for hadron machines

Vertexing

Alignment

45

- Knowledge of precise location of sensitive elements can be important for achieving necessary track reconstruction performance
 - Even very high placement accuracy (10 μm) can lead to displacements with respect to nominal sensor positions which track reconstruction is sensitive to
 - Can degrade resolution on parameters, or even lead to biases
 - Detectors are "breathing" at this scale
- Surveys, optical alignment systems can help to understand these "misalignments"
- Can also use the tracks themselves to understand this

Conclusion

- A lot of things "need to happen" a particle track in the detector to a full reconstruction
- As always there is more than one way to do it
 - Silicon or gaseous trackers
 - Outside-In vs Inside-out...
 - Kalman Filters vs. Least-square-fits ...
- It's the entire package that matters
 - An excellent tracker hardware is useless without adequate reconstruction
 - Even the best software can't turn crappy input hits into a precision track

Some Literature

- H. Spieler Semiconductor Detector Systems
- Horowitz & Hill: The Art of Electronics
- C. Grupen Particle Detectors

