

From (very) Basic Ideas to Rather **Complex Gaseous Detector Systems** Maxim Titov, CEA Saclay, Irfu, France

50 um

L40 μm

TIPP2023

TECHNOLOGY IN INSTRUMENTATION & PARTICLE PHYSICS CONFERENCE

4 - 8 SEPTEMBER 2023

Topics

email:

tipp2023@tlabs.ac.za

Accelerator-based particle physics Non-accelerator particle physics and particle astrophysics Experiments with synchrotron radiation and neutrons Nuclear physics Cosmolog

nstrumentation and monitoring of particle and photon beams hoton science, biology, medicine, and engineeri

The conference aims to provide a stimulating atmosphere for science and engineering for future experiments and social applications.

International Advisory Committee

international /	arisory com		
Elisabetta Barberio Ties Behnke Sara Bolognesi Shikma Bressler Florencia Canelli Cinzia Da Via Marca I Demarteau Maria Teresa Dova Latifa Elouadrhiri Antonio Ferrer Francesco Forti	Manfred Krammer Gobinda Majumder Ana Amelia Machado Petra Merkel Joachim Mnich Nadia Pastrone Fabrice Retiere Yuri Tikhonov Maksym Titov Grigorii Trubnikov Niels van Bakel		
Ingrid Gregor Borys Grynyov Kazunori Hanagaki Karl Jakobs Antoine Kouchner	Zeblon Vilakazi Jianchun Wang Yifang Wang Marc Winter		Cape
Local Organizin	g Committee		
Shimaa AbuZeid Imane Azzouzi Raja Cherkaoui El Moursli Serigne Bira Gueye Peter Jones Naima El Khayati Betty Kibirige	Oscar Kureba Bruce Mellado (Chair) Peane Maleka Amr Radi Yahya Tayalati Michelle Bark Sahal Yacoob	No. Contraction	
science & innova	ition	Themba	UPA

website: https://indico.tlabs.ac.za/event/112

TIPP2023 Instrumentation School in Particle, Nuclear and Medical Physics Instrumentation School, Cape Town, South Africa, Aug. 24 - Sep. 1, 2023

To make a collider experiment, one needs:

and a cafeteria

Clear and easy understandable drawings and a tunnel for the accelerator and magnets and stuff

Easy access to the experiment

Physicists to operate detector/analyze data

and a Nobel prize

We will just concentrate on Particle Detectors – "Gaseous Detectors"

Gas-Based Detectors: A Brief History

Family of Gaseous Detectors with a Glorious Tradition

1908: FIRST WIRE COUNTER USED BY RUTHERFORD IN THE STUDY OF NATURAL RADIOACTIVITY

1968: MULTIWIRE PROPORTIONAL CHAMBER

E. Rutherford and H. Geiger , Proc. Royal Soc. A81 (1908) 141

Nobel Prize in Chemistry in 1908

Nobel Prize in Physics 1992

1928: GEIGER COUNTER SINGLE ELECTRON SENSITIVITY

H. Geiger and W. Müller, Phys. Zeits. 29 (1928) 839

Walther Bothe Nobel Prize in Physics 1954 for the "coincidence method"

G. Charpak, Proc. Int. Symp. Nuclear Electronics (Versailles 10-13 Sept 1968)

1968: MWPC – Revolutionising the Way Particle Physics is Done

Before MWPC: Detecting particles was a mainly a manual, tedious and labour intensive job – unsuited for rare particle decays

1968: George Charpak developed the MultiWire Proportional Chamber, (MWPC), which revolutionized particle detection & HEP, *and marked transition from Manual to Electronics era*

"Image" & "Logic (electronics)" tradition combined into the "Electronics Image" detectors during the 1970ies

Multi-Wire Proportional Chambers – Particle Physics Spin-Off Biospace: Company Founded In 1989 by Georges Charpak

http://www.biospacelab.com:

Our digital autoradiography system leverages the gas detection technology invented by our founder Georges Charpak: Nobel Prize in Physics in 1992.

~ 2000: LOW-DOSE 3D IMAGING

COMMERCIAL AUTORADIOGRAPHY SYSTEMS WITH GASEOUS DETECTORS

1983/1984: Discovery of W and Z Bosons at UA1/UA2

UA1 used the largest wire / drift chamber of its day (5.8 m long, 2.3 m in diameter)

Discovery of W and Z bosons C. Rubbia & S. Van der Meer,

1984:

It can now be seen in the CERN Microcosm Exhibition

 $Z \rightarrow ee$ (white tracks) at UA1/CERN

Time Projection Chamber (TPC) in Particle and Ion Physics

PEP4 (SLAC)

- Invented by David Nygren (Berkeley) in 1974
- Proposed as a central tracking device for the PEP-4 detector
 @ SLAC 1976
- More (and even larger) were built, based on MPWC readout
- New generation of TPCs use MPGD-based readout: e.g. ALICE Upgrade, T2K, ILC, CepC

An ultimate drift chamber design is TPC concept -3D precision tracking with low material budget & enables particle identification through differential energy loss dE/dx measurement or cluster counting dN_{cl}/dx techniques.

TOPAZ (KEK)

ALEPH (CERN)

STAR (LBL)

DELPHI (CERN)

Modern Time Projection Chamber in ALICE Experiment @ LHC

00000000

4477))))))) (((

ATATA

ELECTION OF

Manna

2021: Replace MWPC-based readout with 4-GEM staggered holes in TPC

Gaseous Detectors: From Wire/Drift Chamber \rightarrow Time Projection Chamber (TPC) \rightarrow Micro-Pattern Gas Detectors

Primary choice for large-area coverage with low material-budget (+ dE/dx measurement)

1990's: Industrial advances in photolithography has favoured the invention of novel microstructured gas amplification devices (MSGC, GEM, Micromegas, ...)

HL-LHC Upgrades: Tracking (ALICE TPC/MPGD); Muon Systems: RPC, CSC, MDT, TGC, GEM, Micromegas;

Future Hadron Colliders: FCC-hh Muon System (MPGD - OK, rates are comparable with HL-LHC) Future Lepton Colliders: Tracking (FCC-ee / CepC - Drift Chambers; ILC / CePC - TPC with MPGD readout) Calorimetry (ILC, CepC – RPC or MPGD), Muon Systems (OK)

Future Election-Ion Collider: Tracking (GEM, µWELL; TPC/MPGD), RICH (THGEM), TRD (GEM)

time: 0.1 ns Increasing Multiplicities and Challenges In Collider Experiments (ALICE)

Tracking Detectors: History and Trends

Cloud Chambers, Nuclear Emulsions + Geiger-Müller tubes

→ dominated until the early 1950s: Cloud Chambers now very popular in public exhibitions related to particle physics

Bubble Chambers had their peak time between 1960 and 1985

- → last big bubble chamber was BEBC at CERN
- Since 1970s: Wire Chambers (MWPCs and drift chambers) started to dominate; recently being replaced by Micro-Pattern Gas Detectors (MPGD)

Since late 1980s: Solid state detectors are in common use

- → started as small sized vertex detectors (at LEP and SLC)
 → now ~200 m² Si-surface in CMS tracker
- Most recent trend: silicon strips & hybrid detectors, 3D-sensors, CMOS Monolithic Active Pixel Sensors (MAPS) → See Frank Hartmann lectures

State-of-the-Art in Tracking and Vertex Detectors

Today's 3 major technologies of Tracking Detectors:

Silicon (strips, pixels, 3D, CMOS, monolithic): → electron – hole pairs in solid state material

Fiber Trackers: \rightarrow scintillation light detected with photon detectors (sensitive to single electrons)

LHCb Tracker Upgrade (Sci-fibers with SiPM readout):

Gaseous (MWPC, TPC, RPC, MPGDs): → ionization in gas

inst

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

Received: June 12, 2020 Accepted: June 28, 2020 Published: October 22, 2020

INTERNATIONAL CONFERENCE ON INSTRUMENTATION FOR COLLIDING BEAM PHYSICS

Novosibirsk, Russia 24–28 February, 2020

M. Titov, JINST15 C10023 (2020)

Next frontiers in particle physics detectors: INSTR2020 summary and a look into the future

M. Titov

Commissariat à l'Énergie Atomique et Énergies Alternatives (CEA) Saclay, DRF/IRFU/DPHP, 91191 Gif sur Yvette Cedex, France

E-mail: maxim.titov@cea.fr

Gaseous Detectors: Working Principle

- a charged particle passing through the gas ionizes a few gas molecules;
- ✓ the electric field in the gas volume transports the ionisation electrons and provokes multiplication;
- ✓ the movement of electrons and ions leads to induced currents in electrodes;
- ✓ the signals are processed and recorded.

Example:

- 10 GeV muon crossing
- Gas mixture: Ar/CO2 (80:20) %
- Electron are shown every 100 collisions, but have been tracked rigorously.
- lons are not shown.

At the 100 μm – 1 mm scale:

Gas Detectors: Why Use Gas as a Medium for Ionization ?

- Effectively quite light in terms of gm/cm², requirement for reducing multiple scattering in particle physics
- Few other technologies can easily realize detectors with as large a sensitive area as gas-filled devices
- ✓ Gas-filled detectors are relatively cheap in terms of \$ per unit area/volume
- There are optimized gas mixtures for charged particles detection (high energy and nuclear physics), X-rays (synchrotron physics, astronomy) and neutrons (neutron scattering, national security)
- Electron transport characteristics are favorable and well characterized
- Gas gain, M (electron multiplication factor), can be achieved, over many orders of magnitude (large dynamic range)
- Ionization collection or fluorescence emission can form the signal

Gaseous Detectors: Signal Generation

✓ Ionization statistics in gas

Charge transport in gas

- a) Diffusion
- b) Electron and ion mobility
- c) Drift velocity
- Loss of Electrons / Attachment

Charge multiplication / Gas Amplification

Gas	Density,	E_x	E_I	W_I	$dE/dx _{\min}$	N_P	N_T
	${ m mgcm^{-3}}$	eV	eV	eV	$\rm keV cm^{-1}$	cm^{-1}	$\rm cm^{-1}$
H_2	0.084	10.8	13.6	37	0.34	5.2	9.2
He	0.179	19.8	24.6	41.3	0.32	3.5	8
Ne	0.839	16.7	21.6	37	1.45	13	40
Ar	1.66	11.6	15.7	26	2.53	25	97
Xe	5.495	8.4	12.1	22	6.87	41	312
CH_4	0.667	8.8	12.6	30	1.61	28	54
C_2H_6	1.26	8.2	11.5	26	2.91	48	112
iC_4H_{10}	2.49	6.5	10.6	26	5.67	90	220
CO_2	1.84	7.0	13.8	34	3.35	35	100
CF_4	3.78	10.0	16.0	35 - 52	6.38	52-63	120

Efficient Gaseous Detector development (energy deposit, electric fields, drift velocity & diffusion, attachment and amplification) is today possible with existing precise and reliable simulation tools

Gaseous Detectors: Ionization Statistics (I)

TOTAL IONIZATION:

- Primary electron-ion pairs
 - → Coulomb interactions of charged particles with molecules
 - → typically ~ 30 primary ionization clusters /cm in gas at 1 bar
- Secondary ionization: clusters and delta-electrons

 on average
 electrons/cm in gas at 1 bar

The actual number of primary electron/ion pairs (n_p) is Poisson distributed:

$$P(n_p, \langle n_p \rangle) = \frac{\langle n_p \rangle^{n_p} e^{-\langle n_p \rangle}}{n_p!}$$

$$\langle n_p \rangle = L/\lambda$$

 $\lambda = 1/(n_e \sigma_I)$

 $\sigma_{\rm I}$: Ionization x-Section

Number of primary electron/ion pairs in frequently used gases:

Detection efficiency of a perfect detector is limited to:

× 1		/T \	1	and has a constituent	- losuron llos 1
71	for thin	(L)	hayers ε	can de significanti	y lower than 1

- <i>n</i>	GAS (STP)	thickness	E (%)
$-e^{-p}$	Helium	1 mm	45
$T \langle \rangle$		2 mm	70
$= L/\lambda$	Argon	1 mm	91.8
	0	2 mm	99.3

Ionization Statistics: Table for Most Common Gases

Table 35.1: Properties of noble and molecular gases at normal temperature and pressure (NTP: 20° C, one atm). E_X , E_I : first excitation, ionization energy; W_I : average energy for creation of ion pair; $dE/dx|_{\min}$, N_P , N_T : differential energy loss, primary and total number of electron-ion pairs per cm, for unit charge minimum ionizing particles. Values often differ, depending on the source, and those in the table should be taken only as approximate.

Gas	Density,	E_x	E_I	W_I	$dE/dx _{\min}$	N_P	N_T
	${ m mgcm^{-3}}$	eV	eV	eV	$\rm keV cm^{-1}$	cm^{-1}	cm^{-1}
H_2	0.084	10.8	13.6	37	0.34	5.2	9.2
He	0.179	19.8	24.6	41.3	0.32	3.5	8
Ne	0.839	16.7	21.6	37	1.45	13	40
Ar	1.66	11.6	15.7	26	2.53	25	97
Xe	5.495	8.4	12.1	22	6.87	41	312
CH_4	0.667	8.8	12.6	30	1.61	28	54
C_2H_6	1.26	8.2	11.5	26	2.91	48	112
iC_4H_{10}	2.49	6.5	10.6	26	5.67	90	220
$\rm CO_2$	1.84	7.0	13.8	34	3.35	35	100
CF_{4}	3.78	10.0	16.0	35 - 52	6.38	52 - 63	120

cm

F. Sauli, M. Titov, Review of Particle Physics, Particle Data Group (2022)

Ar/CO₂ (70/30):

N_T ~ 100 e-ion pairs during ionization process (typical number for 1 cm of gas) is not easy to detect → typical noise of modern pixel ASICs is ~ 100e- (ENC) Need to increase number of e-ion pairs → … ⊗ … how ??? → GAS AMPLIFICATION

Transport of Electrons in Gases: Drift Velocity

CHARGE TRANSPORT DETERMINED BY ELECTRON-MOLECULE CROSS SECTION:

Magboltz: microscopic e⁻ transport

- A large number of cross sections for 60 molecules...
 - Numerous organic gases, additives, $e.g. CO_2$:
 - elastic scattering,
 - 44 inelastic cross sections (5 vibrations and 30 rotations + super-elastic and 9 polyads),
 - attachment,
 - 6 excited states and
 - 3 ionisations.
 - noble gases (He, Ne, Ar, Kr, Xe):
 - elastic scattering,
 - 44 excited states and
 - 7 ionisations.

LXcat (pronounced *elecscat*) is an open-access website for collecting, displaying, and downloading ELECtron SCATtering cross sections and swarm parameters (mobility, diffusion coefficient, reaction rates, etc.) required for modeling low temperature plasmas. [...]"

Lxcat: http://www.lxcat.laplace.univ-tlse.fr/]

Magboltz:

S. Biagi, Nucl. Instr. and Meth. A421 (1999) 234 http://magboltz.web.cern.ch/magboltz/

Transport of Electrons in Gases: Drift Velocity

Large drift velocities are achieved by adding polyatomic gases (usually hydrocarbons, CO2, CF4) having large inelastic component at moderate energies of a few $eV \rightarrow$ electron "cooling" into the energy range of the Ramsauer-Townsend minimum (at ~0.5 eV) of the elastic cross-section.

Large range of drift velocities in gases: 1 10 cm/µs; typical categories:

- ✓ "slow" gases, e.g. Ar/CO2 mixtures 1-2 cm/µs, almost linear dependence on E-field
- ✓ "fast" gases, e.g. Ar/CF4 mixtures ~10-15 cm/µs
- "saturated" gases, e.g. Ar/CH4; e.g. Ar/CH4 (90/10) – drift velocity less sensitive to E-field variations and nearly constant (useful for drift chamber operation)

Even small addition of CO2 to Ar makes gas dramatically faster

Additives like CO2 & hydrocarbons are called "quenchers" or "admixtures"

Selection of Gas Mixture: Quenching of Photons

Slight problem in gas avalance

- → Argon atoms can be ionized but also can be brought into excited states
- \rightarrow Exited Argon atoms can only de-exite by emission of high-UV photons

Transport of Electrons in Gases: Diffusion

An initially point like cloud of electrons will 'diffuse' because of multiple collisions and assume a Gaussian shape. The diffusion depends on the average energy of the electrons. The variance σ^2 of the distribution grows linearly with time. In case of an applied electric field it grows linearly with the distance.

$$n(x) = \left(\frac{1}{\sqrt{4\pi Dt}}\right)^3 e^{\frac{-(x-v_D t)^2}{4Dt}}$$

$$v_{D} = \frac{\Delta s}{\Delta t}$$
 $\sigma_{x} = \sqrt{2Dt} = \sqrt{2D\frac{s}{v_{D}}}$

Solution of the diffusion equation (I=drift distance)

$$D = \frac{2}{3} \frac{v}{eE} \epsilon \qquad \qquad \sigma_x = \sqrt{\frac{4}{3} \frac{l}{eE} \epsilon}$$

'Cold' gases are close to the thermodynamic limit i.e. gases where the average microscopic energy ϵ =1/2mu2 is close to the thermal energy 3/2kT.

CH₄ has very large fractional energy loss \rightarrow low $\epsilon \rightarrow$ low diffusion.

Argon has small fractional energy loss/collision \rightarrow large $\varepsilon \rightarrow$ large diffusion.

Transport of Electrons in Gases: Diffusion

Electric field alters the diffusion so that it is necessary to introduce two diffusion coefficients: longitudinal diffusion (σ_L) and transverse diffusion (σ_T)

- CO₂ is much cooler gas than CH₄ at low electric fields → allows to optimize separately diffusion properties in the drift and multiplication regions (but, CH4 is much better quencher than CO2)
- CF4 has the largest drift velocity
 & lowest electron diffusion among known gases due to the sizeable
 Ramsauer-Townsend dip in the elastic cross-section which coincides
 with a very large vibrational modes
 (but, CF4 has a small quenching cross-section of excited Ar states
 and emits light from the far UV to the visible light)

Gaseous Detectors: Software and Simulation Tools

Garfield, together with HEED, Degrad, Magboltz, SRIM, ANSYS, COMSOL, and neBEM software packages represent the core simulation tools for microscopic modelling of gaseous detector response.

Monte Carlo approach – a way out ?

- Analytic models are precious for the insight they afford.
- But the complexity of real gases and detectors make realistic models unwieldy:
 - inelastic collisions (vibrations, rotations, polyads);
 - excitations and Penning transfers;
 - ionisation;
 - attachment;
 - intricate, position-dependent E and B fields.
- Predictions for experiments are more practical using a Monte Carlo approach, here based on Magboltz.

- HEED energy loss, a photoabsorption and ionization model
- DEGRAD electron transport, cluster size distribution
- Magboltz electron transport properties: drift, diffusion, multiplication, attachment
- ANSYS, COMSOL, neBEM electric field maps in 2D / 3D
 Garfield – fiedIs, drift properties, signals (interfaced to above)

Some recent highlights:

- Garfield++ et al. (new development and maintenance of codes, documentation, examples)
- Garfield++ and delayed weighting fields in the calculation of the induced signal (resistive electrodes)
- Greenhouse gases
- Improving accuracy of the modelling and the detector physics understanding: Penning transfer, Non equilibrium effect in gaseous detectors, lons and cluster ions

Garfield ++ Package: Software Simulation and Tools

Garfield++ Installation Examples Documentation Garfield++ Heinrich Schindler, Rob Veenhof About Garfield++ is a toolkit for the detailed simulation of particle detectors based on ionisation measurement in gases and semiconductors. The main a with the Garfield program. The main differences are the more up-to-date treatment of electron transport, the possibility to simulate silicon sense More... Support of Garfield++ package (maintenance and new ng ion tracks using tables computed with SRIM or the TRIM interface. Getting started developments) - a unique software package

for microscopic modeling of small-scale structures Installation

- Examples
- Documentation (User Guide, Doxygen, FAQ)

Support

- If you have any questions, please send a mail to garfield-support@cern.ch (or contact Heinrich Schindler or Rob Veenhof directly).
- To receive (infrequent) announcements about updates of the code, please subscribe to the mailing list garfield-users@cern.ch on E-Gr
- Issues can be reported on JIRA or GitLab.

Related calculations

Modelling of avalanches and streamers with COMSOL.

https://gitlab.cern.ch/garfield/garfieldpp

Examples

Tutorials

First steps

- · Simulating a drift tube: gas tables, analytic fields, Runge-Kutta-Fehlberg integration of drift lines, signals
- · Simulating a GEM: finite element model, microscopic tracking of electrons
- · Simulating a silicon sensor: user-parameterized fields, strip/pixel weighting fields, Monte Carlo integration of drift lines, signals
- · Simulating a Resistive Plate Chamber

Primary ionization

· Simulating charged-particle tracks using Heed.

Transport properties

- · Generating gas tables and dealing with gas files.
- Penning transfer.
 Cross-sections used by Magboltz.

Electric fields

- Importing finite-element field maps calculated using
 - Elmer and Gmsh.
 - ANSYS, for two-dimensional and three-dimensional problems,
 - COMSOL
 - CST.
- Importing TCAD field maps.

Computation of electric fields using the nearly exact Boundary Element Method (neBEM).

Signals

Weighting fields and induced currents

Applications

Micropattern gas detectors

· Movies of avalanches in a single GEM s of avalanches in a triple GEM Sign in a triple GEM ing up of a GEM on detection with a Thick GEM energy pion detection with a Micromegas acing with Geant4 ambers lation of the ALICE TPC IS

troluminescence

Gas properties

Paschen curves

Single Wire Proportional Counter: Avalanche Development

Thin anode wire (20 – 50 um) coaxial with cathode

Avalanche development in the high electric field around a thin wire (multiplication region ~< 50 um):

- > Strong increase of E-field close to the wire
 → electron gains more and more energy
- > Above some threshold (>10 kV/cm)
 - → electron energy high enough to ionize other gas molecules
 → newly created electrons also start ionizing
- Avalanche effect: exponential increase of electrons (and ions)
- Measurable signal on wire
 - → organic substances responsible for "quenching" (stopping) the discharge

Different stages in the gas amplification process next to the anode wire.

Ionization Cross Section: Townsend Coefficient

Multiplication of ionization is described by the first Townsend coefficient - $\alpha(E)$

$$dn = n \alpha dx$$
 $\alpha = \frac{1}{\lambda} \lambda$ – mean free path

$$n = n_0 e^{\alpha(E)x}$$
 or $n = n_0 e^{\alpha(r)x}$

- α(E) is determined by the excitation and ionization cross sections of the electrons in the gas.
- ✓ It depends also on various and complex energy transfer mechanisms between gas molecules.
- ✓ There is no fundamental expression for $\alpha(E)$ → it has to be measured for every mixture.

Amplification factor or Gain

Operation Modes of Gas Detector: Gain-Voltage Characteristics

/ Ionization mode (II):

→ full charge collection, but no multiplication – gain = 1

Proportional mode (IIIA):

→ Multiplication of ionization starts; detected signal proportional to original ionization → possible energy measurement (dE/dx)
 → proportional region (gain ~ 10³ – 10⁴)

- → semi-proportional region (gain ~ 10⁴ 10⁵), space charge effects
- → secondary avalanches need quenching

Limited proportional mode (saturated, streamer) (IIIB):

- → saturation (gain > 10⁶), independent of number of primary electrons
- → streamer (gain > 10⁷), avalanche along the particle track

Geiger mode (IV):

- → Limited Geiger region: avalanche propogated by UV photons;
- → Geiger region (gain > 10⁹), avalanche along the entire wire

Wire Proportional Counter: Signal Development

Incremental charge induced by Q moving through dV:

$$dQ = \frac{Q}{V_0} dV = \frac{Q}{V_0} \frac{dV}{dr} dr$$

Assuming that the total charge of the avalanche Q is produced at a (small) distance I from the anode, the electron and ion contributions to the induced charge are:

$$q^{-} = \frac{Q}{V_{0}} \int_{a}^{a+\lambda} \frac{dV}{dr} dr = -\frac{QC}{2\pi\varepsilon_{0}} \ln \frac{a+\lambda}{a} \quad \text{and} \quad q^{+} = \frac{Q}{V_{0}} \int_{a+\lambda}^{b} \frac{dV}{dr} dr = -\frac{QC}{2\pi\varepsilon_{0}} \ln \frac{b}{a+\lambda}$$
The total induced signal is $q = q^{-} + q^{+} = -\frac{QC}{2\pi\varepsilon_{0}} \ln \frac{b}{a} = -Q$ on the anode (+Q) on the cathode)
The ratio of electron and ion contributions: $\frac{q^{-}}{q^{+}} = \frac{\ln(a+\lambda) - \ln a}{\ln b - \ln(a+\lambda)}$

Th

$$\frac{q^-}{q^+} = \frac{\ln(a+\lambda) - \ln a}{\ln b - \ln(a+\lambda)}$$

The electron-induced signal is negligible For a counter with a=10µm, b=10 m: q⁻/q⁺ ~1% Neglecting electrons, and assuming all ions leave from the wire surface:

$$q(t) = q^{+}(t) = -\int_{0}^{t} dq = -\frac{QC}{2\pi\varepsilon_{0}} \ln\frac{r(t)}{a} \quad \frac{dr}{dt} = \mu^{+}E = \frac{\mu^{+}CV_{0}}{2\pi\varepsilon_{0}}\frac{1}{r}$$
$$q(t) = -\frac{QC}{2\pi\varepsilon_{0}} \ln\left(1 + \frac{\mu^{+}CV_{0}}{2\pi\varepsilon_{0}}t\right) = -\frac{QC}{2\pi\varepsilon_{0}} \ln\left(1 + \frac{t}{r}\right) \quad i(t) = -\frac{QC}{2\pi\varepsilon_{0}}\frac{1}{r}$$

$$q(t) = -\frac{QC}{2\pi\varepsilon_0} \ln\left(1 + \frac{\mu^+ CV_0}{2\pi\varepsilon_0 a^2}t\right) = -\frac{QC}{2\pi\varepsilon_0} \ln\left(1 + \frac{t}{t_0}\right) \quad i(t) = -\frac{QC}{2\pi\varepsilon_0} \frac{1}{t_0} + \frac{CC}{2\pi\varepsilon_0} \frac{1}{t_0} = -\frac{QC}{2\pi\varepsilon_0} \frac{1}{t_0} + \frac{CC}{2\pi\varepsilon_0} \frac{1}{t_0} = -\frac{CC}{2\pi\varepsilon_0} \frac{1}{t_0} + \frac{CC}{2\pi\varepsilon_0} \frac{1}{t_0} = -\frac{CC}{2\pi\varepsilon_0} \frac{1}{t_0} + \frac{CC}{2\pi\varepsilon_0} \frac{1}{t_0} + \frac{CC}{2\varepsilon_0} \frac{1}{t_0} + \frac{CC}{2\varepsilon_0} \frac{1}{t_0} + \frac{CC}{2\varepsilon_0} \frac{1}{t_$$

 $T^+ = \frac{\pi \varepsilon_0 (b^2 - a^2)}{u^+ C U}$

Total ions drift time:

Useful Write-Ups on Gaseous Detectors

Wire & Drift Chamber Basics

More on signal theorems, readout electronics etc. can be found in:

PARTICLE ACCELERATION AND DETECTION

W. Blum W. Riegler L. Rolandi

Particle Detection with Drift Chambers

Second Edition

CERN 77-09 3 May 1977 ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

> PRINCIPLES OF OPERATION OF MULTIWIRE PROPORTIONAL AND DRIFT CHAMBERS

> > F. Sauli

Lectures given in the Academic Training Programme of CERN 1975-1976

> G E N E V A 1977

Multi-Wire Proportional Chamber (MWPC)

Simple idea to multiply SWPC cell → First electronic device allowing high statistics experiments !!

High-rate MWPC with digital readout: Spatial resolution is limited to $s_x \sim s/sqrt(12) \sim 300 \ \mu m$ TWO-DIMENSIONAL MWPC READOUT CATHODE **INDUCED CHARGE (Charpak and Sauli, 1973)**

Spatial resolution determined by: Signal / Noise Ratio Typical (i.e. 'very good') values: S ~ 20000 e: noise ~ 1000e Space resolution < 100 μm

MWPC: First Presentation and First Large Experiment

Secretary

Rapporteur
ReporterM. CHARPAK
CERN - GENEVE (Suisse)Secrétaire
scientifiqueM. FEUVRAIS
Faculté des Sciences - Lyon
(France)

First Large Experiiment:

1972-1983: SPLIT FIELD MAGNET DETECTOR: ~ 40 LARGE AREA MWPCs @ CERN ISR

Drift Chambers

FIRST DRIFT CHAMBER OPERATION (H. WALENTA ~ 1971); HIGH ACCURACY DRIFT CHAMBERS (Charpak-Breskin-Sauli ~ 1973-75)

THE ELECTRONS DRIFT TIME PROVIDES THE DISTANCE OF THE TRACK FROM THE ANODE:

Choose drift gases with little dependence $v_D(E) \rightarrow$ linear space - time relation r(t)

Measure drift time t_D [need to know t₀; fast scintillator, beam timing]

Determine location of original ionization:

 $x = x_0 \pm v_D \cdot t_D$

 $y = y_0 \pm v_D \cdot t_D$

If drift velocity changes along path: $x = \int_0^{t_D} v_D \, dt$

In any case: Need well-defined drift field ...

The spatial resolution is not limited to the cell size :

Typical single point resolutions of drift chambers: 50...150 µm depends on length of the drift path

- primary ionization statistics how many ion pairs, ionization fluctuations dominates close to the wire
- diffusion of electrons in gas: dominates for large drift length
- electronics: noise, shaping characteristics constant contribution (drift length independent)

Wire & Drift Chambers: Wide-Spread Tool in HEP for > 40 Years

Original Gaseous Detectors (mostly wires/straws and RPC) in LHC Experiments

> ALICE: TPC (tracker), TRD (transition rad.), TOF (MRPC), HMPID (RICH-pad chamber), Muon tracking (pad chamber), Muon trigger (RPC)

ATLAS: TRD (straw tubes), MDT (muon drift tubes), Muon trigger (RPC, thin gap chambers)

CMS: Muon detector (drift tubes, CSC), RPC (muon trigger)

LHCb: Tracker (straw tubes), Muon detector (MWPC, GEM)
ALICE Time Projection Chamber (TPC)

Precision in z: 250µm

Largest TPC:

•

٠

•

- Length 5m
- Diameter 5m
- Volume 88m³
- Detector area 32m²
- Channels ~570 000
- High Voltage: – Cathode -100kV
- Material X₀
 - Cylinder from composite materials from airplane industry (X₀= ~3%)

End plates 250µm

Wire chamber: 40µm

Track point recorded in 3-D

(2-D channels in x-y) x (1-D channel in $z = v_{drift} x t_{drift}$)

Particle identification by dE/dx

long ionization track, segmented in

100-200 measurements

	STAR	ALICE	ILC
Inner radius (cm)	50	85	32
Outer radius (cm)	200	250	170
Length (cm)	2 * 210	2 * 250	2 * 250
Charge collection	wire	wire	MPGD
Pad size (mm)	2.8 * 11.5	4 * 7.5	2*6
	6.2 * 19.5	6*10(15)	
Total # pads	140000	560000	1200000
Magnetic field [T]	0.5	0.5	4
Gas Mixture	Ar/CH4	Ne/CO2	Ar/CH4/CO2
	(90:10)	(90:10)	(93:5:2)
Drift Field [V/cm]	135	400	230
Total drift time (μs)	38	88	50
Diffusion $\sigma_T(\mu m/\sqrt{cm})$	230	220	70
)iffusion $\sigma_L(\mu m/\sqrt{cm})$	360	220	300
Resolution in $r\phi(\mu m)$	500-2000	300-2000	70-150
Resolution in r z (μ m)	1000-3000	600-2000	500-800
dE/dx resolution [%]	7	7	< 5
[racking efficiency[%]	80	95	98

Muon Systems: Resistive Plate Chambers (RPC)

- two resistive plates (~10⁹ Ω cm) with a small gas gap (2 mm) and large high voltage (12 kV) on outside electrodes
- strong E-field: operation in "streamer mode"
 - \rightarrow gas avalanche starting in gas gap (no wires involved)
 - \rightarrow developing of avalanche or "streamers" (blob with lots of charge)
 - → signal on external read-out strips via influence (segmented for position resolution)
 - → streamer/discharge is "self-quenching": stops when near-by resistive electrodes are locally discharged (E-field breaks down)

Experiment	Electrodes material & resistivity	Gas mixture	Operation mode; charge/track	Particle rates ; Accumulated charge
L3	Oiled bakelite 2*10 ¹¹ Ωcm	Ar/iC ₄ H ₁₀ /C ₂ H ₂ F ₄ (57:37:6)	Streamer	Consistent with cosmic rays
Belle	Float glass 10 ¹² - 10 ¹³ Ωcm	Ar/iC ₄ H ₁₀ /C ₂ H ₂ F ₄ (30:8:62)	Streamer	~10-20 Hz/cm ² ;
BaBar	Oiled bakelite	Ar/iC ₄ H ₁₀ /C ₂ H ₂ F ₄	Streamer	~10-20 Hz/cm ² ;
	10 ¹¹ - 10 ¹² Ωcm	(60.6:4.7:34.7)	1000pC/track	<10 C/cm ⁻² (in 2010)
ATLAS	Oiled bakelite	C ₂ H ₂ F ₄ /'iC ₄ H ₁₀ /	Avalanche	<0.1 kHz/cm ² ;
	2*10 ¹⁰ Ωcm	SF ₆ (96.7:3:0.3)	30 pC/track	<0.3 C/cm ²
CMS	Oiled bakelite:	C ₂ H ₂ F ₄ /′iC ₄ H ₁₀ /	Avalanche	<0.1 kHz/cm ² ;
barrel	10 ¹⁰ Ωcm	SF ₆ (96:3.5:0.5)	30 pC/track	<0.3 C/cm ²
ALICE	Oiled bakelite 3*10 ⁹ Ωcm	Ar/iC ₄ H ₁₀ /C ₂ H ₂ F ₄ / SF ₆ (49:40:7:1)	Streamer	<0.1 kHz/cm ² ; <0.2 C/cm ²
LHC-b	Oiled bakelite	C ₂ H ₂ F ₄ /'iC ₄ H ₁₀ /	Avalanche	0.25-0.75kHz/cm
	9*10 ⁹ Ωcm	SF ₆ (95:4:1)	30 pC/track	0.35-1.1 C/cm ²

Advantages:

- simple device, good to cover large areas,
- Jused as trigger devices in LHC experiments, BX trigger (25 ns)

Disadvantages:

Choice of resistive material + surface quality crucial, affects "dark" trigger rate

ALICE Multi-Gap RPC: Timing Resolution

Relevant scale in HEP: t ~ L(m)/c ~ o(ns)

 $T_1 - T_2 = \frac{L}{c} (\frac{1}{\beta_1} - \frac{1}{\beta_2}) = \frac{L}{c} (\sqrt{1 + m_1^2/p^2} - \sqrt{1 + m_2^2/p^2}) \cong (m_1^2 - m_2^2) L/2cp^2$

- Traditional technique:
 - Scintillator + PMT ~ o (100 psec)
- Breakthrough with a spark discharge in gas
 - − Pestov counter → ALICE MRPC ~ 60psec

ALICE-TOF has 10 gaps (two stacks of 5 gas gaps); each gap is 250 micron wide

ALICE MDT: Resolution Limits of High-Rate Wire Chambers

L3 Muon Spectrometer (LEP): ~ 40000 chan. ; σ (chamber) < 200 μ m

ATLAS Muon Drift Tubes (LHC):

- ~ 1200 chambers, σ (chamber) ~ 50 μ m
 - 370000 tubes, 740000 end-plugs
 - 12000 CCD for optical alignment

Intrinsic limitation of wire chambers: (resolution degradation at high rates):

1 chamber \rightarrow 2 layers of 3 drift tubes Spatial resolution /chamber (2 layers of 3 drift tubes)

Micro-Pattern Gaseous Detectors: Bridging the Gap for Tracking between Wire Chambers and Silicon-based Devices

Pixel System:

Problem:

Advantages of gas detectors:

- low radiation length
- large areas at low price
- flexible geometry
- spatial, energy resolution ...

 rate capability limited by space charge defined by the time of evacuation of positive ions

Solution:

 reduction of the size of the detecting cell (limitation of the length of the ion path) using chemical etching and photo-lithographique techniques developed for microelectronics and keeping at same time similar field shape.

Micro-Strip Gas Chamber (MSGC): An Early MPGD

Multi-Wire Proportional Chamber (MWPC)

Typical distance between wires limited to ~1 mm due to mechanical and electrostatic forces A. Oed, NIMA263 (1988) 351

Micro-Strip Gas Chamber (MSGC)

Excellent spatial resolution

MSGC Discharge Problems

Excellent spatial resolution, but poor resistance to discharges

Discharge is very fast (~ns) Difficult to predict or prevent

and the first in the second

MICRODISCHARGES

Owing to very small distance between anode and cathode the transition from proportional mode to streamer can be followed by spark, discharge, if the avalanche size exceeds RAETHER'S LIMIT $Q \sim 10^7 - 10^8$ electrons

OW. Faidley - Weatherstock Inc

L-06

FULL BREAKDOWN

Micro-Pattern Gaseous Detector Technologies (MPGD)

- Gas Electron Multiplier (GEM)
- Thick-GEM (LEM), Hole-Type & RETGEM
- MPDG with CMOS pixel ASICs ("GridPix")

GEM

- Micro-Pixel Chamber (μ –PIC)
- μ–Resistive WELL (μ-RWELL)
- Resistive-Plate WELL (RPWELL)

Rate Capability: MWPC vs GEM:

Gas Electron Multiplier (GEM)

Thin metal-coated polymer foil chemically pierced by a high density of holes

A difference of potentials of ~ 500V is applied between the two GEM electrodes.

 \rightarrow the primary electrons released by the ionizing particle, drift towards the holes where the high electric field triggers the electron multiplication process.

Electrons are collected on patterned readout board.

- A fast signal can be detected on the lower GEM electrode for triggering or energy discrimination.
- All readout electrodes are at ground potential.
- Positive ions partially collected on GEM electrodes

Avalanche Simulation in GEM & Triple-GEM Structures

Small angle

Animation of the avalanche process (Garfield++): monitor in ns-time electron/ ion drifting and multiplication in GEM

Full decoupling of amplification stage (GEM) and readout stage (PCB, anode)

Amplification and readout structures can be optimized independently !

exaboard, pac

http://cern.ch/garfieldpp/examples/gemgain

Cartesian

Compass, LHCb

Totem

Micro Mesh Gaseous Structure (MICROMEGAS)

Micromesh Gaseous Chamber: micromesh supported by 50-100 mm insulating pillars

Small gap: fast collection of ions

50 -100µm

50-100µm

Y. Giomataris, NIMA376 (1996) 29

Other MPGDs Concepts: THGEM, µRWELL, RPWELL

THGEM Manufactured by standard PCB techniques of precise drilling in G-10 (and other materials) and Cu etching

STANDARD GEM

0.1 mm rim to prevent discharges

L. Periale, NIMA478 (2002) 377 LEM!: P. Jeanneret, PhD thesis, 2001

µRWELL and RPWELL

High-rate µRWELL prototypes made by new techniques

https://indico.cem.ch/event/889369/contributions/4020066/attachments/ 2115302/3560690/PID51_collabration_meeting_YouLv.pptx

µRWELL with 2D-Strip Readout — For RD51 Tracker

https://ndico.cem.ch/event/1040996/contributions/4404219/attachments/ 2266859/3849374/2021-06-18_PD51-Collaboration%20Meeting-ZhouYi-Final.pdf Development of RWELL detectors for large area & high rate applications

https://indico.cern.ch/event/889389/contributions/4020068/attachments/ 2115585/3559626/RD51CollaborationMeeting-sgf.pdf

Simulation Tools and Modelling of MPGDs

MPGDs and the mean free path

► Recall:

- Mean free path of electrons in Ar: 2.5 µm,
- Compare with:
 - Micromegas mesh pitch: 63.5 µm
 - GEM polyimide thickness: 50 µm
 - Micromegas wire thickness: 18 µm
 - GEM conductor thickness: 5 µm
- Hence:
 - mean free path approaches small structural elements;
 - such devices should be treated at a molecular level.
- ▶ In addition, MPGDs usually have structures for which no nearly-exact (e.g. 3d structures) fields are known.

Modelling and simulation are crucial for detailed understanding of detector physics and for developing and exploiting novel MPGD technologies

- Resistive detectors: modelling of signal induction, understand protection schemes and rate capabilities
- Ion physics: minimise ion backflow, understand ion-induced damages and feedback processes, ion species/clustering and mobility
- Modelling of scintillation processes for optical readout: light production, guenching, timing of light production processes

Ion backflow & Discharge formation density in GEMs

S. Franchino et al., IEEE (2015)

https://indico.cem.ch/event/889369/contributions/ 4039491/attachments/2115151/3558785 APellecchia_Elmer_RD51_Oct2020.pdf

ATLAS NSW Micromegas mesh transparency

F. Kuger et al., https://doi.org/10.1016/j.nima. 2015.11.011

A fast simulation method for THGEM charging-up study

https://indico.cern.ch/event/989298/contributions/4225007/attachments 2192182/3705373/Guofeng-202102-RD51.pdf

"Octopuce" (8 Timepix ASICs):

ULTIMATE INTEGRATION OF GASEOUS and SIICON DETECTORS –

PIXEL READOUT of MICRO-PATTERN GASEOUS DETECTORS

Pixel Readout of MPGDs: "GridPix" Concept

"InGrid" Concept: By means of advanced wafer processing-technology INTEGRATE MICROMEGAS amplification grid directly on top of CMOS ("Timepix") ASIC

3D Gaseous Pixel Detector -> 2D (pixel dimensions) x 1D (drift time)

Towards Large-Scale Pixel "GridPix" TPC

Testbeams with GridPixes: 160 GridPixes (Timepix) & 32 GridPixes (Timepix3)

Module 2019

Physics properties of pixel TPC:

- Improved dE/dx by cluster counting
- Improved meas.of low angle tracks
- Excellent double track seperation
- Lower occupancy @ high rates
- Fully digital read out (TOT)

Quad board (Timepix3) as a building block

→ 8-quad detector (32 GridpPixs) with a field cage at test-beam @DESY in June 2021:

P. Kluit @ IAS HEP Hong Kong (2022)

- ion back flow can be further reduced by applying a double grid.
- Protection layer resistivity to be reduced
- New Timepix4 developments

3 modules for LP TPC @ DESY: 160 (1 x 96 & 2 x 32) GridPixs 320 cm² active area, 10,5 M. channels, new SRS Readout system

2017

(2007 - 14)

2018

MPGD Technologies @ CERN Experiments

- The integration of MPGDs in large experiments was not rapid, despite of the first large-scale application in COMPASS at SPS in the 2000's
- Scaling up MPGD detectors, while preserving the typical properties of small prototypes, allowed their use in the LHC upgrades
 → Many emerged from the
 - R&D studies within the CERN-RD51 Collaboration

Experiment / Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements / Remarks
COMPASS TRACKING > 2002	Fixed Target Experiment (Tracking)	3-GEM Micromegas w/ GEM preampl.	Total area: 2.6 m^2 Single unit detect: $0.31x0.31 \text{ m}^2$ Total area: ~ 2 m ² Single unit detect: $0.4x0.4 \text{ m}^2$	Max.rate: ~100kHz/mm ² Spatial res.: ~70-100μm (strip), ~120μm (pixel) Time res.: ~ 8 ns Rad. Hard.: 2500 mC/cm ²	Required beam tracking (pixelized central / beam area)
TOTEM TRACKING: > 2009	Hadron Collider / Forward Physics (5.3≤ η ≤ 6.5)	3-GEM (semicircular shape)	Total area: ~ 4 m² Single unit detect: up to 0.03m²	Max.rate:20 kHz/cm ² Spatial res.: ~120µm Time res.: ~ 12 ns Rad. Hard.: ~ mC/cm ²	Operation in pp, pA and AA collisions.
LHCb MUON DETECTOR > 2010	Hadron Collider / B-physics (triggering)	3-GEM	Total area: ~ 0.6 m ² Single unit detect: 20-24 cm ²	Max.rate:500 kHz/cm ² Spatial res.: ~ cm Time res.: ~ 3 ns Rad. Hard.: ~ C/cm ²	Redundant triggering
COMPASS RICH UPGRADE > 2016	Fixed Target Experiment (RICH - detection of single VUV photons)	Hybrid (THGEM + Csl and MM)	Total area: ~ 1.4 m ² Single unit detect: ~ 0.6 x 0.6 m ²	Max.rate:100 Hz/cm ² Spatial res.: <~ 2.5 mm Time res.: ~ 10 ns	Production of large area THGEM of sufficient quality
ATLAS MUON UPGRADE CERN LS2	Hadron Collider (Tracking/Triggering)	Resistive Micromegas	Total area: 1200 m^2 Single unit detect: $(2.2x1.4m^2) \sim 2-3 \text{ m}^2$	Max. rate:15 kHz/cm ² Spatial res.: <100μm Time res.: ~ 10 ns Rad. Hard.: ~ 0.5C/cm ²	Redundant tracking and triggering; Challenging constr. in mechanical precision
CMS MUON UPGRADE CERN LS2	Hadron Collider (Tracking/Triggering)	3-GEM	Total area: ~ 143 m ² Single unit detect: 0.3-0.4m ²	Max. rate:10 kHz/cm ² Spatial res.: ~100µm Time res.: ~ 5-7 ns Rad. Hard.: ~ 0.5 C/cm ²	Redundant tracking and triggering
ALICE TPC UPGRADE CERN LS2	Heavy-Ion Physics (Tracking + dE/dx)	4-GEM / TPC	Total area: ~ 32 m² Single unit detect: up to 0.3m²	Max.rate:100 kHz/cm ² Spatial res.: ~300µm Time res.: ~ 100 ns dE/dx: 11 % Rad. Hard.: 50 mC/cm ²	- 50 kHz Pb-Pb rate; - Continues TPC readout - Low IBF and good energy resolution

CERN Detector Seminars in 2022: LS2 Upgrades

Major MPGDs developments for ATLAS, CMS, ALICE upgrades, towards <u>establishing</u> <u>technology goals</u> and technical requirements, and <u>addressing engineering and integration</u> <u>challenges</u> ... and first results from Run 3 !!!

"The New Small Wheel project of ATLAS" by Theodoros Vafeiadis (17 Jun 2022) https://indico.cern.ch/event/1168778/

"Continuous data taking with the upgraded ALICE GEM-TPC" by Robert Helmut Munzer (24 Jun 2022), https://indico.cern.ch/event/1172978/

"The GEM detectors within the CMS Experiment" Michele Bianco (08 Jul 2022) https://indico.cern.ch/event/1175363/

All three major LHC upgrades, incorporating MPGDs, started their R&D in close contact with RD51, using dedicated setups at GDD-RD51 Laboratory

Dissemination of MPGD Applications in HEP & Other Fields

SPRINGER NATURE Reference

Ivor Fleck Maxim Titov Claus Grupen Irène Buvat *Editors*

Handbook of Particle Detection and Imaging

Second Edition

D Springer

Gaseous Detectors

Maxim Titov

Contents

Introduction.	
Basic Principles: Ionization, Transport Phenomena and Avalanche Multiplication.	
The Multi-Wire Proportional, Drift, and Time Projection Chambers.	
Micro-Pattern Gaseous Detectors.	1
Micro-Pattern Gaseous Detector Applications.	2
Overview of the CERN-RD51 Collaboration.	3
Future R&D Program for Advanced MPGD Concepts.	3
Summary and Outlook	3
Cross-References	3
Bibliography	3

Abstract

Over the course of the last 50 years, the advances and breakthrough in instrumetation, leading to the development of new, cutting-edge technologies, drove the progress in experimental particle physics. A true innovation in detector concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements – the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel Prize in Physics in 1992. This invention revolutionized particle detection, which moved from optical-readout devices (cloud chamber, emulsion or bubble chambers) to the electronics era. Since then, radiation detection and imaging with gaseous detectors, capable of economically covering large detection volume with low mass budget, have been playing an important tole in many fields of science. Over the past three decades, advances in photo-lihography, microelectronics, and printed-circuit bacter(PCB) techniques

Tansale	Application Domain	NPGD Technology	Sola delector size / Single module size	Operation Ouracleristics/ Performance	Special Requirements/ Remarks
ATLAS Man System Cygrade Start, 2019 (der 15 yr)	High Energy Physics (Exclored Engineering)	Monope	Tind and 20114/ Segleunit Arect (251.8e/)-33e/	Maximie (1948) en l' Spatial en college Tane en college Rad, Raedi - EXCLUS	-Redundantitacking and signing Oxdenging constraint mechanical processors
All.46 Mare Tager Eppale State 202	Nel Ineg Thyio Cookeytropresi	PIK	Index - 34	Maximum 2000 forcer Spatial succe 100 pm	
CMB Muon System Upgrade Statt > 2020	High Energy Physics (Excilling/Enggering)	CEN	Sedeweitdesez 13-Lim	Marcate Hiller Spalates:-105m Hatese:-57m Hat Hat:-15Cm ²	-Industant survivage and reggering
(M) Upgale Sut > 205	High-energ Physics (Calorimetty)	Maximupa, GIM	Single-unit-dence. 45m ²	Max.nate 101001accm Spatial anc - mm	Not main option; could be used with HECKE (ME part)
AUXI Tav Projectice Chartler Start > 3(2)	Herry-Int.Physics (Darking=dLife)	CDN NF TPC	Segle und deux segle und deux segne 1.5m ²	Maccele STRUCTON Special resc: 201yrs Bate resc: 201yrs diolec 201y Sector Bad, Reed, NorChonf	-Nills Porthans: -Contrain TK madrat -Law W and good using modulus
1011M Ret 205-aux	High Energy Fernand Physics (5.3454ra/16.5)	CEM periconale shape)	TenLenc-Len ² Segle unit denct up wit Eller ²	Macate202000 Spitalasc-Clan Taxaec-Clas Ral.Bat: -eCori	Operation in pp. pA and AA collisions
UIC) Mass System Ratt 2001-new	Hgh.Tonrg / Honor physics (num triggering)	CEN	Totalansi - Talari Segle unit-desct 23-26 cm/	Macade Stitulizian' Apatialanci-um Eanerani-Jos Rat Hanti - Conf	-Relatert regering
FCC Collide Start, > 2025	High Energy Physics (Enalling/Engering) Calument/Munt	CENTREM Microsope, a-PC.26Col	Tendama (E100 m ²) (for MPGDs around (100 m ²)	Macute Stricture Spatial sec: (10)pm Tana sec: 1 m	Maintenanachus inr discalari

Cylindrical MPGDs as Inner Trackers for Particle / Nuclear Physics

ligerinent Emercik	Applanies Desais	MNCO Technology	Teld Another dos / Vingle module sate	Operation Characteristics/ Performance	Speid Experienti Emaile
Rat: 2014-2017	Particle/Popular K-danar physics (Dacking)	Colonia COM	Total asso: 3.5ml 4-sylmbood layers 1.(Ampth) = 785mm B. (sultars) = 176, 155, 186, 205mm	Spalialan (ryhl) - 20an Spali an leb - 110an	-Mathulpe 25.00 -Openionin 857
BESH Upgtale # Beijing Ran 2016-2022	Pande/Pipsol e+ olider (Tracking)	Cylenical CDM	3-pinisial layers R - 20-m	Maximater UT-Effection Separate Association (Separate Association) Separate Association (Separate Association)	-Manual s 1.1% of X, for all lapon -Operation in 17
GLASC #JLA Stat: > 207	Nuclear Physics' Nuclear structure (tracking)	Farmer (terronal)-k Cylindiscal (Barmel) Macromogan	Total anic Torvard - Asiar' Barol - 37 ar' Zopledical lapon R - 20 cm	Max.nete - 30 Mile Spelidence + 201ger Tancence-2016	- Lov material bulget: 04530 - Remote electorico
RACISA & CERN Rat. 2014 - nov	Nuclear Physics (Exclore and vertexing of processaling from the p-antip aeroblation	Offederal Maximupe3D	Doledial laper L-idun R-85.10mm	Max Higger role 1215 Spatial res 220 pm Time res 11 rs Rad. Hard 1 Cum ²	-Large magnetic field that runies from 3 to 42 in the active area
MINOS Rat 2014-2016	Nicker structure	TIC sé qininci Meconopa	1 qlednii lipe L-Mon, R+18m	Spatial and of name PAVIDA Drigger soles of the -CADEs	-Low material helpet
CMD-3Upgrale #IRM7 Sum >-2007	Particle physics (p-chamber, tracking)	Gledical GDN	Total anne: - 3m² 2 cplindrical lapors	Spatial ros.: - 101µm	
	1			P.o	0

MPGD Technologies for the International Linear Collider

Esperiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics/ Performance	Special Requirements' Remarks
LC Tore Projection Queder for R2D Start > 200	High Energy Physics (making)	Maximpa CIN yahi bCal (red)	Totalanıx - 20m ² Single unit denet - 6000m ² (padit - 1000m ² (padit)	Macade cilds Spalates: cilian Tanens: - Din dide: 55: (kel) Kal, Had, ne	S - TPC Momentum moduline: dply + P10 ² UG/V Preser publics
RC Holennic (DHCAL) Colomotry for EDSD Starty 200	High Energy Physics (calorimetry)	CEN, THCEN HYVELL, Maximpa	Testans-400m ² September 35-1m ²	Maccair Hillpicof Spatial wei: - 3cm Tame wei: - 300m Red Hards au	Jellnerg melater, 34% Powerpalsing, sel-

MPGD Tracking for Heavy Ion / Nuclear Physics

Esperiment/ Tenescale	Application Domain	MPGD Technology	lotal detector size / Single module size	Operation Characteristics/ Performance	Special Requirements' Remarks
SDA Reveal GDA Texters IDBC Ray 2012 grower	Heavy Lot Physics (racking)	CEM	Tedanc-3n ² Segleuni devez -64x64n ²	Spatial res. sir 100 pm	Low material budget: +7% KP per macking layer
Nacional BMON # NEA (INR Statt > 207	Heen loss Physics (recking)	CEM	Tetal anno - 12 m² Single anti-denot - 83 m²	Max.nde - 301 MHz Spatial res 2015th	Magnetic field 0.57 orthogenal involucitie field
Seperitis e 1328 Rev. 2015-2022	Heavy lan Physics (tracking/diagnostics at the lo-Hy Super Fragment Separated	CD6	Sedanc-Sec of Segleant denot SppcE Nation ¹ SppcE Nation ¹	Max.min-1077836p8 Spatial esc + 1 mm	High Americ serge Particle detection from pro-Transian
PANDA HIAR Sur > 2021	Nadarphysis p-ani-pitrading	Mccompat GDG	Seqlanx - Nori Seqlevent denot -15m ²	Max, sole = 1484/16/cm ² Spalled are: = 193pm	Continuous vare operation 319° attenuction(s)
CIM #TAIR Set>301	Nacher Physics (Mass:System)	CEM	Tindawa Ito' Segle unt devat Ethd Stol'-E lan'	Spelalanc: «Lean Max.net: 0.1000/actor/ Eineranc- 10to Rad hard, 10 ¹⁰ n.org.120 ¹ /year	Sel signal decreta
Elemente Golider (DC) Suet > 2025	Halon Physics (tooling, RCH)	IPC vCEM malinet Large answCEM	Index-30	Spalid ves.:- 200 ver (H) Laminosity (angl: 201	Lee naterial budge
	6	denters		Spalad sec: - 30-100 an Max.mle - 301a/ar	

MPGD Tracking Concepts for Hadron / Nuclear Physics

Esperiment" Timescale	Application Desain	MPCD Technology	Total detector size / Single module size	Operation Characteristics/ Performance	Special Requirements' Remarks
COMPAGE CON Ret 202-tow	Halter Physics (Tocking)	CEM Maximuga wi CEM prompt	Tendians 24m ² Single and devot 820x820 m ² Tendians - 2m ² Single and devot 80x82m ²	Macatel9782 (-000lener) Spatalon: 70-00pm (ong)-(Dijan(pol) Tanene: Filo Kal Hadi, 200 eCimi	Repaind Intern tracking (platford central (hear and)
ADD of RNP Rep 200-new	Particle Physics (Exclarg)	CEN	Sealance-01m2	Max.nate:1107(zmm) Spatial.nex;-70pm	
Sile in Hull A # (LAB Start > 207	Nuclear Physics (Exclarg) machine lines Sectors/struct.	CON	Tetal anna 14 m² Single anti detect. Unit Der	Macinte Officient Spatial net: - Dim Tane net - Dim Rad Hardt - 15-140 pp.	
pital in Hall II (5.48 Sect 2007	Nader Physics (Tackeg) pecision meas of person cadar	CON	Total anna 13m ³ Single anté denos 12milione2	MacoleSkilder Späidne: -Dan Tanene: -Das Kal Hadi, Hidyy	
Solid in Hull An JLAN Statt -> 2020	Nacion Physics (Dacking)	CEM	Total and Alter Single and Anno. 12454-02	Maximization Spalations - Digen Tancens - Dige Rad Hank - 15 Tallys	
FiC and FiC-stylok(Suit -3(5)	Kalon Physics (Dacking)	IFC of GDL print girl	Snalasse 12km² 150n(dameter) sl.5m(dath length)	Marcale 37 Kitotor Spatial and 151 Lines	Categori operation - 1872
ACTARIN	Nuclear physics Nuclear structure	TPC w/ Mccompa	Idencies 2925-cm2and	Counting take - 30° kinacles but higher 2' some beam	Work with surines gas (He minute,
Statt -2020 for 12 y	new new processes	inde bel-rookel	1273002	Barrier are partic	K.000.00)

MPGD Technologies for Photon Detection

Experiment/ Timescale	Application Domain	MPCD Technology	Total detector size / Single module size	Operation Characteristics/ Performance	Special Requirements/ Remarks
COMPANE BOX UPCRACE Stato 2016	Hadron Physics (BICH - detection of single VLV photons)	Henni (THCEN-Col and TAD)	Tondama - 14m² Single unit denot - DAs Exim?	Macune William ² Spelates: + 23mm Timems: - Ras	Production of large area THEEM of sufficient quality
PMENDX1800 Ratt 2009-2010	Nuclear Physics (RICH - eth separation)	GDN-C4 detection	Teslanc-12m ² Segleunt desct- 03x13m ²	Maxime low Spatial mic - 3 mm (H) Single d. effic - 10 %	Single el. ell. dependo from hadron sejection factor
SPHEND Ret 2021-2022	Hary los Physics (racking)	TIC wOLM madout	Total and - 3 m ²	Multiplicity (NAAI) - 400 Spatial esc - 300 un (16)	Rats with Heaty laws and comparison to pp operation
Herror-las Gelider (DC) Statt.>2025	Halon Physics (recking, ROI)	TPC wGEM malout + Onemion	Tetal anno - 3 m ²	Spatial nos: - 110 um (n) Lambooity (r.g): 12 ¹⁰	Low material budget
		BCI viti CDI vititati	Total anns - 10 mi	Spatial anci: New York	High single-skersom efficiency

https://indico.cern.ch/event/581417/contributions/2558346/attachments/1465881/2266161/2017_05_Philadelphia MPGD2017-ConferenceSummary 25052017 MS.pdf

MPGD Technologies @ Future R&D Trends

 <u>RESISTIVE MATERIALS</u> and related detector architectures for single-stage designs (μPIC, μ-RWELL, RPWELL, resistive MM)

 \rightarrow improves detector stability; single-stage is advantage for assembly, mass production & cost.

Diamond-like carbon (DLC) resistive layers
 → Solutions to improve high-rate capability (≥ MHz)

 Picosecond Timing Detector (RD51 PICOSEC Collaboration) – MM device with radiator and radiation-hard PC OPTICAL READOUT: hybrid approaches combining gaseous with non-gaseous in a single device (e.g. CYGNUS- TPC project):

New manufacturing techniques & structures:

- Solid-state photon and neutron converters, <u>INNOVATIVE NANOTECHNOLOGY</u> <u>COMPONENTS (graphene layers);</u>
- Material studies (low out-gassing, radiation hardness, radio-purity, converter robustness and eco-friendly gases.
- Emerging technologies related to novel PCs, MicroElectroMechanical Systems (MEMS), sputtering, 3-D printing of amplifying structures and cooling circuits

Towards Large Area in Fast Timing GASEOUS DETECTORS

Multi-Gap Resistive Plate Chambers (MRPC):

Optical Readout for Micro-Pattern Gaseous Detectors

Courtesy CERN GDD group

Concept

GEM readout

Scintillation light emitted during amplification processes in MPGDs can be read out with CCD or CMOS cameras.

Glass Micromegas

Emission spectrum of Ar / CF4 gas mixture with UV and visible scintillation

Examples and applications

Track reconstruction

Energy-resolved imaging

Beam monitoring

Rapid X-ray imaging (fluoroscopy) with sub-ms exposure per frame

R&D and current projects

Low-pressure optical TPC to resolve events with wide dynamic range (low energy X-rays in presence of alpha particle or nuclear recoils)

Use of high-speed cameras for 3D track reconstruction resolving drift time differences

Graphene-based Functional Structures and Nanostructures for novel MPGD Concepts

Graphene layers for: ion-backflow suppression, protection of photocathodes, solid conversion layers

PhD project of Giorgio Orlandini (FAU Erlangen-Nürnberg) in EP-DT-DD Gaseous Detector Development lab

The unique properties of two-dimensional materials such as graphene as well as carbon-based nanostructures offer new perspectives for novel gaseous radiation detectors. This may include performance improvements for detectors for HEP experiments as well as new application fields combining wideband sensitivity of advanced materials with high gain factors and granularity offered by Micro Pattern Gaseous Detectors.

Suppressing ion back flow can significantly improve high-rate capabilities and reduced electric field distortions in Time Projection Chambers.

Atomically thin coating layers could protect sensitive photocathodes such as CsI against environmental factors and ion bombardment, which is important for preserving specifications of precise timing detector in harsh ion-back flow conditions. Additionally, modifications of the work functions of converter layers can be used to increase QE.

desire at hereig

Application 3: Graphene and nanostructures for photoconversion and as solid converters

Graphene quantum dots (GQD), carbon nanotubes and graphene have been shown to exhibit broadband sensitivity and could be used as versatile conversion layers. Utilising solid conversion layers enables high detection efficiencies and can be used for precise timing with gaseous radiation detectors.

First work on GEM & graphene layers: NIMA824 (2016) 571

Knowledge is limited. Whereas the Imaginationembraces the entire world...Albert Einstein

Bridge the gap between science and society ...

The Role of Big High Energy Physics Laboratories: – innovate, discover, publish, share

... and bring the world closer together

BACK-UP SLIDES

Georges Charpak with Friends

CERN-RD51 Collaboration & MPGD Technology Advances

RD51 CERN-based <u>"TECHNOLOGY - DRIVEN R&D COLLABORATION"</u> was established to advance MPGD concepts and associated electronics readout systems

RD51 renewed for 3rd 2009 2014 2019 term 2019-2023 2000 1988 1996 1997 2002 MSGC GEM **UPIC** THGEM Adoption of MPGD technologies: Micromegas ATLAS NSW (Micromegas) 2018: CMS forward tracking update (GEM) May 2018 CERN-LHCC-2008-011 (LHCC-P-001) 2008: COMPASS RICH upgrade (hybrid 2018 R&D PROPOSAL RD51 2008-001 MPGD) R & D Proposal RD51 EXTENSION BEYOND 2018 ALICE TPC upgrade (GEM) 28 July 2008 8 EDITORS Development of Micro-Pattern Gas Detectors Technologies KLOE2 & BESIII (GEM) S. Dalla Torre (INFN Trieste), E. Oliveri (CERN), L. Ropelewski (CERN), M. Titov (CEA Saclay) LBNO-DEMO (THGEM) T2K/ND280 TPC (Micromegas) Editors: Matteo Alfonsi (CERN), Alain Bellerive (Carleton University), Amos Breskin (Weizmann Institute), Erik Van der Bij (CERN), Michael Campbell (CERN), Mar Capeans (CERN), Paul Colas (CEA n-detection at ESS (GEM) Saclay), Silvia Dalla Torre (INFN Trieste), Klaus Desch (Bonn University), Ioannis Giomataris (CEA Saclay), Harry van der Graaf (NIKHEF), Lucie Linssen (CERN), Rui de Oliveira (CERN), Vladimir Muon radiography (Micromegas) Peskov (St Etienne), Werner Riegler (CERN), Leszek Ropelewski (CERN), Fabio Sauli (TERA Foundation), Frank Simon (MPI Munchen), Hans Taureg (CERN), Maxim Titov (CEA Saclay), Andy White (University of Texas), Rob Veenhof (CERN)

- https://arxiv.org/pdf/1806.09955.pdf
- Renewed by the CERN Research Board for the 3rd term 2019 2023
- Beyond 2023, RD51 will serve as a nuclei of the new DRD1 ("all gas detectors") collaboration, anchored at CERN, as part of the ECFA Detector R&D Roadmap implementation

CERN Courier October 2015

– CERN Courier (5 pages) Volume, October 2015

etector R&D

RD51 and the rise of micro-pattern gas detectors

Since its foundation, the RD51 collaboration has provided important stimulus for the development of MPGDs.

Improvements in detector technology often come from capitalizing on industrial progress. Over the past two decades, advances in photolithography, microelectronics and printed circuits have opened the way for the production of micro-structured gas-amplification devices. By 2008, interest in the development and use of the novel micro-pattern gaseous detector (MPGD) technologies led to the

establishment at CERN of the RD51 collaboration of ated for a five-year term, RD51 was later pr years beyond 2013. While many of the MP introduced before RD51 was founded (figu inques becoming available or affordable, new still being introduced, and existing ones are st

In the late 1980s, the development of the n ber (MSGC) created great interest because

capability, which was orders of magnitude chambers, and its position resolution of a few tens of micrometres at particle fluxes exceeding about 1 MHz/mm². Developed for projects at high-luminosity colliders, MSGCs promised to fill a gap between the high-performance but expensive solid-state detectors, and cheap but rate-limited traditional wire chambers. However, detailed studies of their long-term behaviour at high rates and in hadron beams revealed two possible weaknesses of the MSGC technology: the formation of deposits on the electrodes, affecting gain and performance ("ageing effects"), and spark-induced damage to electrodes in the presence of highly ionizing particles.

These initial ideas have since led to more robust MPGD structures, in general using modern photolithographic processes on thin insulating supports. In particular, ease of manufacturing, operational stability and superior performances for charged-particle tracking, muon detection and triggering have given rise to two main designs: the gas electron-multiplier (GEM) and the micromesh gaseous structure (Micromegas). By using a pitch size of a few hundred micrometres, both devices exhibit intrinsic high-rate capability (>1 MHz/mm²), excellent spatial and multi-track resolution (around 30 µm and 500 µm, respectively), and time resolution for single photoelectrons in the sub-nanosecond range.

Coupling the microelectronics industry and advanced PCB technology has been important for the development of gas detectors with increasingly smaller pitch size. An elegant example is the use of a CMOS pixel ASIC, assembled directly below the GEM or Micromegas amplification structure. Modern "wafer post-processing technology" allows for the integration of a Micromegas grid directly on top of a Medipix or Timepix chip, thus forming

Fig.1. The seven working groups of RD51, with illustrations of just a few examples of the different kinds of work involved. Top left: the 20-year pre-history of RD51. (Image credits: RD51 Collaboration.)

integrated read-out of a gaseous detector (InGrid). Using this approach MPGD-based detectors can reach the level of integraactness and resolving power typical of solid-state pixel r applications requiring imaging detectors with largege and moderate spatial resolution (e.g. ring-imaging (RICH) counters), coarser macro-patterned structures tresting economic solution with relatively low mass struction – thanks to the intrinsic robustness of the les. Such detectors are the thick GEM (THGEM), (RETGEM) and the resistive-plate WELL (RPWELL).

RD51 and its working groups

The main objective of RD51 is to advance the technological development and application of MPGDs. While a number of activities have emerged related to the LHC upgrade, most importantly, RD51 serves as an access point to MPGD "know-how" for the worldwide community – a platform for sharing information, results and experience – and optimizes the cost of R&D through the sharing of resources and the creation of common projects and infrastructure. All partners are already pursuing either basic- or applicationoriented R&D involving MPGD concepts. Figure 1 shows the organization of seven Working Groups (WG) that cover all of the relevant aspects of MPGD-related R&D.

WG1 Technological Aspects and Development of New Detector Structures. The objectives of WG1 are to improve the performance of existing detector structures, optimize fabrication methods, and develop new multiplier geometries and techniques. One of the most prominent activities is the development of large-area GEM, Micromegas and THGEM detectors. Only one decade ago, the largest MPGDs were around 40×40 cm², limited by existing tools and materials. A big step towards the industrial manufacturing of MPGDs with a size around a square metre came with new fabrication methods - the single-mask GEM, "bulk" Micromegas, and the novel Micromegas construction scheme with a "floating mesh". While in "bulk" Micromegas, the metallic mesh is integrated into the PCB read-out, in the "floating-mesh" scheme it is integrated in the panel containing drift electrodes and placed on pillars when the chamber is closed. The single-mask GEM technique overcomes the cumbersome practice of alignment of two masks between top and bottom films, which limits the achievable lateral size to 50 cm. This technology, together with the novel "self-stretching technique" for assembling GEMs without glue and spacers, simplifies the fabrication process to such an extent that, especially for large-volume production, the cost per unit area drops by orders of magnitude. >>

2022: MPGDs for High Luminosity LHC Upgrades

The <u>successful implementation of MPGDs for relevant upgrades of CERN</u> experiments indicates the degree of maturity of given detector technologies for constructing large-size detectors, the level of dissemination within the HEP community and their reliability

ATLAS NSW MicroMegas

https://ep-news.web.cern.ch/content/atlasnew-small-wheel-upgrade-advances-0

https://ep-news.web.cern.ch/upgraded-alice-tpc

CMS **GEM** muon endcaps

https://ep-news.web.cern.ch/content/demonstratingcapabilities-new-gem

Gaseous Detectors: Ionization Statistics (II)

About 0:6% of released electrons in Ar have > 1keV energy \rightarrow practical range is 70 um, contributing to coordinate meas. error

Total Ionization/Cluster Size Distribution: Probabilities (%) to create N_{el} electrons (electrons are not evenly spaced, not even exponentially):

less multi-electron clusters at Helium (better!)

Ionization Statistics: Importance of PAI Model

- Every ionization process is a quantum mechanical transition initiated by the Coulomb field of the particle and the field created by neighbouring polarizable atoms; the average energy losses are described by the Bethe-Bloch formula with Sternheimer's density effect corrections;
- The fluctuations caused by Rutherford scattering on quasi-free electrons follow a Landau distribution and the influence of atomic shells is described by the photoabsorption ionization (PAI) model, which allows simulation of each energy transfer, with relaxation cascades and simulation of delta-electrons;

Energy loss fluctuations 2 GeV protons on an (only !) 5 cm

- Importance of PAI model (all terms in formula are important):
 All electron orbitals (shells) participate:
 - \rightarrow outer shells: frequent interactions, few electrons;
 - \rightarrow inner shells: few interactions, many electrons.

Transport of Electrons in Gases: Drift Velocity

Electron transport theory = BALANCE BETWEEN ENERGY ACQUIRED FROM THE FIELD AND COLLISION LOSSES

Electrons are completely 'randomized' in each collision. The actual drift velocity v along the electric field is quite different from the average velocity u of the electrons i.e. \rightarrow about 100 times smaller.

The velocities v and u are determined by the atomic cross section $\sigma(\epsilon)$ and the fractional energy loss $\Delta(\epsilon)$ per collision (N is the gas density i.e. number of gas atoms/m³, m is the electron mass.):

Because $\sigma(\epsilon)$ und $\Delta(\epsilon)$ show a strong dependence on the electron energy in the typical electric fields, the electron drift velocity v shows a strong and complex variation with the applied electric field.

Electron Drift in Presence of Electric and Magnetic Fields

Equation of motion of free charge carriers in presence of E and B fields:

 $m\frac{d\vec{v}}{dt} = e\vec{E} + e(\vec{v} \times \vec{B}) + \vec{Q}(t) \quad \text{where } \vec{Q}(t) \quad \text{stochastic force resulting from collisions}$ Time averaged solutions with assumptions: $\vec{v}_D = \langle \vec{v} \rangle = const. \quad \langle \vec{Q}(t) \rangle = \frac{m}{\tau} \vec{v}_D \quad \text{friction force}$ $\left\langle \frac{d\vec{v}}{dt} \right\rangle = 0 = e\vec{E} + e(\vec{v}_D \times \vec{B}) - \frac{m}{\tau} \vec{v}_D \quad \tau \quad \text{mean time between collisions}$

$$\vec{v}_D = \frac{\mu \left| \vec{E} \right|}{1 + \omega^2 \tau^2} \left[\hat{E} + \omega \tau (\hat{E} \times \hat{B}) + \omega^2 \tau^2 (\hat{E} \cdot \hat{B}) \hat{B} \right]$$

More precise calculation is available in Magboltz, which computes drift velocity by tracing electrons at the microscopic level through numerous collisions with gas molecules

$$\vec{E} \parallel \vec{B} \quad \sigma_L = \sigma_0 \quad \sigma_T = \frac{\sigma_0}{\sqrt{1 + \omega^2 \tau^2}}$$

$$\vec{E} \quad \vec{E} \quad$$

E.g.: ωτ ~ 20 for Ar/CF4/iC4H10 (95:3:2)

 $\mu = \frac{e\tau}{m}$ mobility $\omega = \frac{eB}{m}$ cyclotron frequency

This reduction is exploited to substantially improve spatial resolution in the Drift and TPC Chambers

Electron Capture Losses for Electronegative Gases (Attachment)

- ✓ Some quencher gases can attach electrons
- ✓ Energy-momentum conservation: 3-body or dissociation
- The attachment cross section is energy-dependent, therefore strongly depends on the gas composition and electric field

Examples:

- ▶ O_2 : mostly 3-body O_2^- and at higher ϵ 2-body dissociative;
- > H₂O: [H₂O]_n has positive electron affinity, H₂O probably not;
- \triangleright CF₄: mostly dissociative F⁻ + CF₃, F + CF₃⁻ (below 10 eV);
- ► SF_6 : $SF_6^{-*} < 0.1 \text{ eV}$, $\sigma = 10^{-18} \text{ cm}^2$, then $F^- + SF_n^-$ (n=3, 4, 5)
- CS₂: negative ion TPC;
- \triangleright CO₂: O⁻, [CO₂]⁻_n but no CO₂⁻ (4 eV and 8.2 eV).

► CO₂ has a tiny attachment cross section at low energy. $\frac{2}{5}$ The 4 eV peak is linked to Cross a short-lived ${}^{2}\Pi_{n}$ shape 10-17 resonance which decays 10⁻¹⁸ $e^{-}CO_{2} \rightarrow CO + O^{-};$ [A. Moradmand et al. (2013) 10⁻¹⁹ 10.1103/PhysRevA.88.032703] The 8.2 eV peak is thought to be a Feshbach 10-1 resonance.

Attachmant coefficient of oxygen:

Electrons surviving after 20 cm drift (E = 200 V/cm):

Transport of lons in Gases: Drift and Diffusion

Signals in Wire Chambers, Micromegas are generated by ion movement

 $v_{\scriptscriptstyle D}^{\scriptscriptstyle ion} = \mu^{\scriptscriptstyle ion} E$

Drift velocity of ions

is almost linear function of E

Nobility:
$$\mu^{ion} = \frac{e\tau}{m}$$
 is

constant for given gas at fixed P and T, direct consequence of the fact that average energy of ion is unchanged up to very high E fields.

Diffusion of ions

IONS DIFFUSION (Einstein's law):

$$\frac{D}{\mu} = \frac{KT}{e} \qquad \sigma_x = \sqrt{2Dt} \qquad \sigma_x = \sqrt{\frac{2KT}{e}} \frac{x}{E}$$

Linear diffusion is independent of the nature of ions and gas \rightarrow thermal limit (same for all gases)

It has been historically assumed that, due to a very effective charge transfer mechanism, only ions with the lowest ionization potential survive after a short path in the mixture → NOT TRUE !!!

Transport of lons in Gases: Drift and Diffusion

Recent experimental data suggests that the signal ions, in e.g. CO2-quenched mixtures of Ar and Ne are CO+2 • (CO2)*n* cluster ions, and not CO+2 or noble gas ions

Since the cluster ions are slower than the initial ions, the signals induced by ion motion in Micromegas or TPC might be altered (also lead to larger space-charge effect in gas vomule)

Electric Fields: (nearly) Exact Boundary Element Method

neBEM Field Solver (that solves the Poisson equation to obtain electric field throughout the device volume) is an integrated part of device simulation. One such Green function based solver (nearly exact Boundary Element Method), is integrated to GARFIELD since 2009

Merits of neBEM:

- Analytic integration of influence of charge distributed over small rectangular / triangular boundary elements (new formulation). Very precise potential and electric field values are obtained for any 2D / 3D geometry.
- Competitively accurate w.r.t any other commercial FEM / BEM package.
- Primitive geometry modeling.
- Parallelized using OpenMP.
- Field maps and reduced order modeling crudely implemented.
- Preliminary implementation of space charge and charging up simulations.

RD51 Note-2009-001

RD51-NOTE-2009-001

NIMA, vol. 566, issue 2, p489

neBEM: a Field Solver

Supratik Mukhopadhyay, Nayana Majumdar, Sudeb Bhattacharya

INO Section, Saha Institute of Nuclear Physics 1/AF, Sector 1, Bidhannagar, Kolkata 700064, WB, India supratik.mukhopadhyay@saha.ac.in, nayana.majumdar@saha.ac.in, sudeb.bhattacharya@saha.ac.in

http://nebem.web.cern.ch/nebem (Supratik Mukhopadhay, Nayana Majumdar)

Maintained and updated by SINP (independent release till 05 Mar 2019, version 1.9.04; Since 2019, released along with Garfield++)

Future projects for neBEM:

- Orders of magnitude improvement in speed is possible:
 - > FMM / GMRES or similar algorithms.
 - Better parallelization (OpenMP, GPU)
 - Smaller data storage and faster flow.
- Improvements in geometry modeler, surface mesh generation, adaptive mesh.
- Space charge and charging up simulation to be improved significantly. Charge transport through dielectrics is another important area to be explored.
- Graphical user interface.

Signal Formation in Detectors with Resistive Elements

RD51 supports ongoing efforts on interfacing between different modeling tools – to address properly involved processes at the microscopic level - extending present simulation framework to other gaseous & Si-detectors

EP R&D SEMINAR, Signal formation in detectors with resistive elements by **Djunes Janssens**:

https://indico.cern.ch/event/1167590/contributi ons/4903447/attachments/2460899/4219187/ EPSeminar_DjunesJanssens.pdf

Garfield++ and COMSOL to model the signal formation in detectors with resistive elements by applying an extended form of the Ramo-Shockley theorem

Solid State (Silicon, Diamond,..)

Ionization Cross Section: Penning Effects

- ✓ Additional ionizing energy transfer mechanisms due to the excited noble gas atoms, called collisional Penning energy transfers, occur when the excitation energy of a noble gas is higher than the ionization potential of an admixture gas.
- The energy transfer rate, probability that an excited atom ionizes a quenching agent, is a priori not known for a mixture but can be extracted from the fits of the experimental gas gain data using the Magboltz simulations
- ✓ For example, the impact of the Penning effect on gas gain is roughly a factor 10 in Ar-CO2 mixtures and exceeding a factor of 100 in Ar-C2H2 mixtures

The Penning transfer rate r_p is measured by finding the fraction of the excitations to be added to α so that the measured gain is reproduced:

$$G = \exp \int \alpha \left(1 + r_{\rm P} \frac{v_{\rm exc}}{v_{\rm ion}} \right)$$

 $r_{\rm p}$ depends on gas choice, quencher fraction and density.

- Collisional energy transfer mostly scales linearly with the gas pressure and the fraction of quenching gas in the mixture, while ionization by photons emitted from excitations is independent of the medium.
- In addition, collisional Penning transfers of some higher excited states can occur before they decay at atmopheric pressure and are not restricted to metastable states of the excited noble gas.

Ar/CO2 transfer rates:

Multi-Wire Proportional Chamber (MWPC): Wire Displacements

Resolution of MWPCs limited by wire spacing better resolution \rightarrow shorter wire spacing \rightarrow more (and more) wires...

Small wire displacements reduce field quality

Table 35.1: Maximum tension T_M and stable unsupported length L_M for tungsten wires with spacing *s*, operated at $V_0 = 5$ kV. No safety factor is included.

Wire diameter (μ m)	T_M (newton)	s (mm)	L_M (cm)
10	0.16	1	25
20	0.65	2	85

- Need high mechanical precision both for geometry and wire tension ... (electrostatic and gravitation, wire sag ...)
- Several simplifying assumptions are made in analytical calculations: electrostatic force acting on the wire does not change during wire movements, or varies linearly with the displacement, the wire shape is parabolic; only one wire moves at a time.

The advantage of numerical integrations using Garfield++ program is to simulate the collective movement of all wires, which are difficult analytically, and to consider all forces acting on a wire: forces between anode wire and other electrodes (wires, cathode) & gravitational force

1968: Multi – Wire Proportional Chamber (MWPC)

NUCLEAR INSTRUMENTS AND METHODS 62 (1968) 262-268; © NORTH-HOLLAND PUBLISHING CO.

THE USE OF MULTIWIRE PROPORTIONAL COUNTERS TO SELECT AND LOCALIZE CHARGED PARTICLES

G. CHARPAK, R. BOUCLIER, T. BRESSANI, J. FAVIER and Č. ZUPANČIČ

CERN, Geneva, Switzerland

Received 27 February 1968

Properties of chambers made of planes of independent wires placed between two plane electrodes have been investigated. A direct voltage is applied to the wires. It has been checked that each wire works as an independent proportional counter down to separations of 0.1 cm between wires.

Counting rates of 105/wire are easily reached; time resolutions

1. Introduction

Proportional counters with electrodes consisting of

many parallel wires connected in parallel used for some years, for special application investigated the properties of chambers man plane of independent wires placed between two plane

electrodes. Our observations show that such chambers offer properties that can make them more advantageous than wire chambers or scintillation hodoscopes for many applications.

2. Construction

Wires of stainless steel, 4×10^{-3} cm in diameter, are stretched between two planes of stainless-steel mesh, made from wires of 5×10^{-3} cm diameter, 5×10^{-2} cm apart. The distance between the mesh and the wires is 0.75 cm. We studied the properties of chambers with wire separation a = 0.1, 0.2, 0.3 and 1.0 cm. A strip of metal placed at 0.1 cm from the wires, at the same potential (fig. 1), plays the same role as the guard rings

Fig. 1. Some details of the construction of the multiwire chambers.

A copper shield protects the wires at their output from the chamber and contains the solid state amplifiers.

of the order of 100 nsee have been obtained in some gases; it is

possible to measure the position of the tracks between the wires

using the time delay of the pulses; energy resolution comparable

to the one obtained with the best cylindrical chambers is ob-

in cylindrical proportional chambers. It protects the wires against breakdown along the dielectrics. It is

served; the chambers operate in strong magnetic fields.

Fig. 2. Equipotentials in a chamber. Wires of 4×10^{-6} cm diameter, 0.3 cm separation, and 1.5 cm total thickness. 20 V applied between the wires and the external mesh. Results from an analogic method.

ENERGY RESOLUTION ON 5.9 KeV:

DEPENDENCE OF COLLECTION TIME FROM TRACK'S DISTANCE:

DRIFT CHAMBERS

The Evolution of Drift Chambers and Future e+e- Colliders

		he	151				piese	an
SDEAD	MARK2	Drift Chamber	Second Street	MARK2	Drift Chamber	VEPP2000	CMD-3	I
SFEAR	MARK3	Drift Chamber		PEP-4	TPC	VEPP4	KEDR	I
DODIS	PLUTO	MWPC	PEP	MAC	Drift Chamber	BEPC2	BES3	
DOING	ARGUS	Drift Chamber		HRS	Drift Chamber	S KEKB	Dollo2	
CESR	CLEO1,2,3	Drift Chamber		DELCO	MWPC	S.KERB	Dellez	
	CMD-2	Drift Chamber	BEPC	BES1.2	Drift Chamber			
VEPP2/4M	KEDR	Drift Chamber			TRO		futu	e
SPEAR DORIS CESR VEPP2/4M PETRA TRISTAN	NSD	Drift Chamber		ALEFR				
	CELLO		LEP	DELPHI	TPC	ILC	ILD	
	CELLO			L3	Si + TEC		SiD	
	JADE	Drift Chamber		OPAL	Drift Chamber	CLIC	CLIC	
PETRA	PLUTO	MWPC		MARK2	Drift Chamber		CLD	
	MARK-J	TEC + Drift Ch.	SLC	ei D	Drift Chambor	FCC-ee		L I
	TASSO	MWPC + Drift Ch.		3LU		0500	Baseline	TP
	ΔΜΥ	Drift Chamber	DAPHNE	KLOE	Drift Chamber	CEPC	IDEA	l
TRISTAN	VENUS	Drift Chamber	PEP2	BaBar	Drift Chamber	SCTF	BINP	ſ
	TOPAZ	TPC	KEKB	Belle	Drift Chamber	STCF	HIEPA	_

Lesson #1 - from "open" to "closed" cell

closed esson #3 – small cells and He gas

	the	e tra	•	He radiation length 50× longer than Ar
-	 squ 	uar	•	slower drift velocity implies smaller Lorenz angle for a given B-field
4	sm	all	•	He has a smaller cross section for low energy photons than Ar
	1		•	small size cells limit the electron diffusion contribution to spatial res
	bui	τ	•	small size cells provide high granularity (improving occupancy) and
-	• poi	rtior		for a larger number of hits per track, improving spatial resolution
	en	velc		but
	• sm	all	•	portions of active volume not sampled between the cylindrical enve
	use	e of		axial wires and the hyperboloid envelope of stereo wires
	cor	ntrik		accumulation of trapped electrons and ions in a region of very low
1	• sor	me		longitudinal gain variation at boundaries between axial and stereo
				spatial resolution dominated by ionization statistics for short drift dia

adding more quencher to compensate, mitigates the advantage of He

Lesson #4 – full stereo configuration

 no gar electro consta

Lesson #5 – summary larger . the configuration offering the best performance in terms of maxim momentum resolution is one with small, single sense wire closed

rift Chamber rift Chamber rift Chamber rift Chamber

TPC

ift Chambe

rift Chambe rift Chamber rift Chamber

- two step cells, arranged in contiguous layers of opposite sign stereo angles, obtained with constant stereo angle transverse projection ... but
- the gas mixture is based on helium with a small amount of guencher open t (90% He / 10% iC_4H_{10} , KLOE gas) which, besides low multiple from th scattering contribution, allows for the exploitation of the cluster consta timing technique, for improved spatial resolution, and of the cluster z (radi counting technique, for excellent particle identification consta
 - suggested wire material is Ag coated Al, but lighter materials are under scrutiny (like metal coated carbon monofilaments)

An ultra-light drift chamber (IDEA concept) targetted for FCC-ee and CePC (100 km) was inspired by DAFNE KLOE Wire Chamber and by more recent version of it for MEG2 experiment

olution

allow

lope of

eld

avers

tances

Original Gaseous Detectors in LHC Experiments

	Vertex	Inner Tracker	PID/ photo- detecto r	EM CALO	HAD CALO	MUON Track	MUON Trigger
ATLAS	-	TRD (straws)	-	-	-	MDT (drift tubes), CSC	RPC, TGC (thin gap chambers)
CMS TOTEM	-	- GEM	-	-	-	Drift tubes, CSC	RPC, CSC
LHCb	-	Straw Tubes	-	-	-	MWPC	MWPC, GEM
ALICE	-	TPC (MWPC)	TOF (MRPC), HPMID (RICH- pad chamber), TRD (MWPC)	-	-	Muon pad chambers	RPC

Gaseous Tracking @ LHC Experiments

Straw tubes (single-wire proportional counters) with xenon-based gas mixture
 ATLAS TRT 4 mm in diameter, equipped with a 30 µm diameter gold-plated W-Re wire

Stable operation at very high rates up to 12 MHz/cm²
 Achieved spatial (time) resolution: 135 um (7 ns) at high intensity 2* 10⁸ s⁻¹

CMS/TOTEM GEM

Muon Detectors: CMS Cathode Strip Chambers (CSC)

Muon detectors are tracking detectors (e.g. wire-based tubes):

- \rightarrow they form the outer shell of the (LHC) detectors
- \rightarrow they are not only sensitive to muons (but to all charged particles)!

 \rightarrow just by "definition": if a particle has reached the muon detector (it's considered to be a muon); all other particles should have been absorbed in the calorimeters

Challenge for muon detectors:

- large surface to cover (outer shell); keep mechanical positioning stable over time
- also good knowledge of (inhomogeneous) magnetic field

CMS CSC: precise measurement of the second coordinate by interpolation of the signal induced on pads.

Closely spaced wires makes CSC fast detector.

CMS CSC

Micro-Strip Gas Chamber (MSGC): Discharge Problems

For efficient detection of minimum ionizing tracks a gain ~ 5000 is needed: \rightarrow No discharges with X-rays and electrons;

→ Discharge probability is large ~ many per min (heavy ionizing particles)

Induced discharges are intrinsic property of all single stage MPGDs in hadronic beams (MSGC turned out to be prone to irreversible damages)

Micro-Strip Gas Chamber (MSGC): Discharge Problems

Major processes leading at high rates to MSGC operating instabilities:

 ✓ Substrate charging-up and time-dependent modification of the E field
 → slightly conductive support

✓ Deposition of polymers (aging)
 → validation of gases, materials, gas systems

- Discharges under exposure to highly ionizing particles
 - → multistage amplification, resistive anodes

FIELD EMISSION FROM CATHODE EDGE

CHARGE PRE-AMPLIFICATION FOR IONIZATION RELEASED IN HIGH FIELD CLOSE TO CATHODE

Valid for all micro-pattern detectors - Law of Nature!!!

MSGC In Experiments

Telescope of 32 MSGCs tested at PSI inNov99 (CMS Milestone)

Helix readout Chips GEM-MSGC GEM-MSGC GEM-MSGC Carbon fibre frame Carbon fibre frame

DIRAC 4 planes MSGC-GEM Planes 10x10 cm²

HERA-B Inner Tracker MSGC-GEM detectors

 $R_{min} \sim 6 \text{ cm}$ $\Rightarrow 10^6 \text{ particles/cm}^2 \text{ s}$ 300 um pitch $184 \text{ chambers: max } 25x25 \text{ cm}^2$ $\sim 10 \text{ m}^2$; 140.000 channels

The D20 diffractometer MSGC is working since Sept 2000 1D localisation 48 MSGC plates (8 cm x 15 cm) Substrate: Schott S8900 Angular coverage : 160° x 5,8° Position resolution : 2.57 mm (0,1°) 5 cm gap; 1.2 bar CF4 + 2.8 bars 3He

Aging Phenomena in Wire Chambers

black magic. Avalanche formation close to wire can be considered as a micro plasma discharge ...and plasma chemistry not well understood in general:

Whereas most ionization processes require electron energies > 10 eV, the breaking of chemical bonds and formation of free radicals requires ~ 3-4 eV

- dissociation of detector gas and pollutants \checkmark
- formation of highly active radicals \checkmark (many expected to have large dipole moments)
- polymerization of organic quenchers \checkmark
- insulating deposits on anodes and cathodes

Anode: increase of wire diameter reduced and variable E-field variable gain and energy resolution

Cathode: ions on top of insulating layer (Malter cannot recombine built-up of Effect) strong E-field across insulating electron field emission and microdischarges

NUCLEAR INSTRUMENTS AND METHODS 99 (1972) 279-284; © NORTH-HOLLAND PUBLISHING CO.

TIME DEGENERACY OF MULTIWIRE PROPORTIONAL CHAMBERS

G. CHARPAK, H. G. FISHER, C. R. GRUHN, A. MINTEN, F. SAULI and G. PLCH

CERN, Geneva, Switzerland

and G. FLÜGGE

II. Institut für Experimentalphysik, Hamburg, Germany

Received 28 May 1971

The deterioration with time of multiwire proportional chambers using isobutane as one component of the gas mixture is studied. It is shown that by addition of methylal among others, a long

Ð

Ð

ÐĐĐĐ

Φ

cathod

lifetime can be obtained without changing the properties of the gas mixture. Irradiation tests of 5×10^{10} /cm² have not shown any alteration in the chamber performance.

Aging Phenomena in Wire Chambers: 1st Workshop (1986)

First systematic attempts to summarize aging results and to provide remedies minimizing wire chamber aging

Proceedings of the Workshop on Radiation Damage to Wire Chambers 1986:

Lawrence Berkeley Laboratory, Berkeley, California

January 16-17, 1986

April 1986

Lawrence Berkeley Laboratory University of California Berkeley, California 94720 Nuclear Instruments and Methods in Physics Research A252 (1986) 547-563 North-Holland, Amsterdam

REVIEW OF WIRE CHAMBER AGING *

J. VA'VRA

Stanford Linear Accelerator Center, Stanford University, Stanford, California 04305, USA

This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of tuning of variables, the importance of purity of the wire chamber environment as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986.

436

Nuclear Instruments and Methods in Physics Research A300 (1991) 436-479 North-Holland

547

Wire chamber aging *

John A. Kadyk Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

Received 27 June 1990

An overview of wire chamber aging is presented. A history of wire aging studies and the manifestations of wire aging are reviewed. Fundamental chemical principles relating to wire chamber operation are presented, and the dependences of wire aging on certain wire chamber operating parameters are discussed. Aging results from experimental detectors and laboratory experiments are summarized. Techniques for analysis of wire deposits and compositions of such deposits are discussed. Some effects of wire material and gas additives on wire aging are interpreted in chemical terms. A chemical model of wire aging is developed, and similarities of wire chamber plasmas to low-pressure rf-discharge plasmas are suggested. Procedures recommended for reducing wire aging effects are summarized.

Harmful are: halogen or halocarbons, silicon compounds, oil, fats ... CO₂ helps with water, and alcohol admixtures

Aging Phenomena in Gaseous Detectors: 2nd Workshop (2001)

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 49, NO. 4, AUGUST 2002

Summary and Outlook of the International Workshop on Aging Phenomena in Gaseous Detectors (DESY, Hamburg, October 2001)

M. Titov, M. Hohlmann, C. Padilla, and N. Tesch

arXiv:physics/0403055 v1 9 March 2004

RADIATION DAMAGE AND LONG-TERM AGING IN GAS DETECTORS¹

MAXIM TITOV Institute of Physics, Albert-Ludwigs University of Freiburg, Hermann-Herder Str. 3, Freiburg, D79104, Germany and

Institute of Theoretical and Experimental Physics (ITEP), B. Cheremushkinskaya, 25, Moscow, 117259, Russia

- ✓ The HERA-B Experiment was the first high-rate experiment, which addressed <u>SYSTEMATICALLY</u> aging phenomena in gas detectors, followed later by ALL LHC experiments
- Many ORIGINAL PROBLEMS in HIGH RATE GAS DETECTORS were due to CASUAL SELECTION of chamber designs, gas mixtures, materials and gas system components, which worked at "low rates", but failed in high-rate environments

	Westerland and
International	workshop on
AGING PHENOMENA IN	GASEOUS DETECTORS
DESY, Hamburg	October 2-5, 2001
	and the second s
Topics will include:	
- Coping with classical aging problems	
- New aging effects	
- Models and new insights from plasma chemistry	
- Materials: Lessons for detectors and gas systems	
- Experiences with large detector systems	
- Recommendations for future detectors	
Descline for registration: August 1, 2001	
Beedline for submission of shatterts: June 29, 2001	
and the second s	
the second se	
Proceedings to be published in Nuclear Instruments and Methods A	and the second se
International Advisory Committee Local	Organizing Committee Registration, Contact & Info
M. Danilov (HEP Moscow) V. Peskov (Lund) M. Hohi B. Dehoshair (MEP II Moscow) E. Sauli (CEPM) C. Pati	mann (chair, DESY) Register and submit abstracts online at the (DESY) http://www.docu.do/agingwig/schop
D Froidevaux (CERN) I Shipsey (Purdue) N Test	h (DESY) Contact: aging workshop@desy.de
J. Kadyk (LBL) J. Va'vra (SLAC) M. Titov	(TEP Moscow) Tel.: +49 40 8998-4600
P. Krizan (Ljubljana) A. Wagner (DESY) I. Kerkt	off, R. Matthes (secretaries) FAX: +49 40 8998-4900

Table 1. Aging results with wire detector prototypes for the use at high energy physics facilities.							
Experiment,	GasMixture	Gain	Cathode	Charge	Gasgain(G);Current		
Detector,		reduction/	aging	C/cm	density(I); Rate (R); Irradiated		
Reference		etching			area (S)		
HERA-B	Ar/CF4/CO2	No/Au	No	0.0	G~3*10 ⁴ ; I~0.4-0.9µA/cm;		
OTR [34]	(65:30:5)	damage			100MeV g. beam; S-50cm ²		
HERA-B	Ar/CF4/CO2	No	No/F-film	0.7	G~10 ⁴ -10 ⁵ ; I ~ 0.3µA/cm;		
MU ON [35]	(65:30:5)		on Al cath.		R<10 ⁵ Hz/cm ² ; S~1200cm ²		
HERA-B	Ar/CF4	No	No	0.07	G~10 ^s ; I ~ 0.15µA/cm;		
MUON[35]	(70:30)				R~10 ⁴ Hz/cm ² ; S~150cm ²		
ATLAS	Xe/CF4/CO2	No	No	20	G~ 3*10 ⁴ ; I ~ 0.7 μA/cm;		
TRT [15,48]	(70:20:10)				S-24 cm ²		
Straw	Xe/CF4/CO2	No/Au	No	9	G~3*10 ⁴ ; I ~ 1.7µA/cm;		
R&D[45]	(70:20:				<u>m²</u>		
Straw	Ar/CF4/	Alie	ach	00	nhara		
R&D[45]	(60:10:	/ V I	есп	dl	iders 🛀		
CMS	Ar/CF4/				4.		
MU ON [14]	(40:10:50)	Cracks	оп си сагл.		K~2*10 Hz/cm*; S~1cm2		
CMS	Ar/CF4/CO2	Ne	Si-F film	0.4	G~10°; I < 0.05 µA/cm;		
MU ON [46]	(40:10:50)		on Cu cath.		R-2*10 ⁴ Hz/cm ² ;S-21000cm ²		
LHC-B	Ar/CF4/CO2	No	Etching of	0.25	G~10°; I < 0.03 µA/cm;		
MU ON [52]	(40:10:50)		FR4 bars		R-3*10'Hz/cm2; S-1500cm2		
COMPASS	$Ar/CF_4/CO_2$	No/ Si-	No	1.1	G~4*10*; I ~ 4 µA/cm;		
Straws [53]	(74:20:6)	traces			R2*10° Hz/cm'; S3 cm'		
HERMES	Ar/CF4/CO2	No	Al etching/	9	G~5*10°; I ~ 1 µA/cm;		
FD [47]	(90:5:5)		Cldeposits		R~10' Hz/cm'; S~7 cm'		
AILAS	Xe/CO ₂ /O ₂	No	No	п	G~ 3*10'; I ~ 1-3 µA/cm;		
IRIIO	(70:27:3)				S~1 cm		
AILAS	Xe/CO ₂ /O ₂	No/Si	No	0.3	G~3*10"; I ~ 0.1 µA/cm;		
	(70:27:3)	deposits			S-1 cm*		
AILAS	Ar/C 02	No	No	0.7	I~ 0.1μA/cm;		
MDT [55]	(90:10)				R-4*10 Hz/cm*; S-7500cm*		
ATLAS	Ar/CO2	No	No	>1.5	G-2*10'; I ~ 0.05-0.2µA/cm;		
MD1[56]	(93:7)	T (60			R-8*10*-10"Hz/cm*; S-90cm*		
AILAS	Ar/CO2	Yes/Si-	No	0.2	G-9*10"; I ~ 0.02µA/cm;		
MD1[5/]	(93:7)	aeposits No(6)	N.	0.76	R~5*10 Hz/cm*;S~15000cm*		
CMS	Ar/C 02	165/51-	INO	0.70	$G \sim 6^{+10}$; $1 \sim 2 \mu A/cm$;		
MUUN[14]	(30:70)	achoarte			R~2*10' Hz/cm'; S~1 cm'		

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Table 2. Summary of aging experience with Micro-Pattern Gas Detectors .								
reduction n C/km ²ⁿ dens.tr., b (2%) Intradiation rule (a (2%) source (a (2%) MS GC ArzBME No 200 10 3 mm ² , (2%) 64 keV MS GC (2%) No 200 10 3 mm ² , (2%) 64 keV MS GC (2%) ArzBME No 40 63 0.3°0.5mm ² , (2%) 54 keV MS GC ArzDM E No 40 63 0.3°0.5mm ² , (2%) 54 keV MS GC ArzDM E No 60 63 0.3°0.5mm ² , (2%) 54 keV MS GC ArzDM E No 70 63 0.3°0.5mm ² , (2%) 54 keV IG (20) MS No 5 2 -113 mm ² , (2%) 54 keV ISG C+ GEM ArZON Yes 0.5 1 -100 Hz/mm ² , (2%) 54 keV ISG C+ GEM MPDGDDS 7 236 mm ² , (2%) 54 keV 64 keV ISG C+ GEM Ar/CO, No 12 4 200 mm ² , (5%) 54 k	Detector type	Micture	Gain	Charge	Current	Irradiate d'are a:	Irrad.		
ACOC PACADA ACADA MS GC [64] Q0:10 No 200 10 3 mm, ' 6.4 keV MS GC [64] Q0:10 No 200 10 3 mm, ' 6.4 keV MS GC [64] AraDME No 60 63 0.3 '0.5 mm, ' 5.4 keV MS GC [64] AraDME No 60 63 0.3 '0.5 mm, ' 5.4 keV MS GC LERM AraDME No 70 63 0.3 '0.5 mm, ' 5.4 keV MS GC LERM AraDME No 70 63 0.3 '0.5 mm, ' 5.4 keV MS GC LERM AraDME No 70 63 0.3 '0.5 mm, ' 5.4 keV MS GC LERM AraDME No 70 63 0.3 '0.5 mm, ' 5.4 keV ISI GC CERM AraDME No 5 2 2.10' Hahm, ' Xrays ISI GC CE GEM AraDME Yes 0.5 1 -90 mm, ' SkeV I31 BARAMA Xrays SkeV			reduction	m C/mm ¹	density,	Irradiationrate	source		
MS GC ArcDME No 200 10 3 mm ² , 10 ¹ (E.1 mm ² , X. zaysy MS GC (160) Arc0MME No 40 63 0.3 ² 0.5 mm ² , 10 ¹ (E.1 mm ² , X. zaysy MS GC (160) Arc0MME No 40 63 0.3 ² 0.5 mm ² , 10 ¹ (E.1 mm ² , X. zaysy MS GC (160) Arc0MME No 40 63 0.3 ² 0.5 mm ² , 10 ¹ (E.1 mm ² , X. zaysy MS GC (160) Arc0MME No 70 63 0.3 ² 0.5 mm ² , 10 ² 10 ² H. Zmm ² , X. zaysy MS GC (160) MS GC (260) 9 0.3 ² 0.5 mm ² , 10 ² 10 ² H. Zmm ² , X. zaysy X. zaysy MS GC (161) MC (161) No 5 2 -110 mm ² , 10 ² 10 ² H. Zmm ² , X. zaysy MS GC (161) MC (161) No 5 2 -10 ² H. Zmm ² , X. zaysy MS GC (161) MC (161) No 5 1 -10 ¹⁰ H. Zmm ² , X. zaysy MS GC (161) MC (10) No 12 4 200 mm ² , X. zaysy Dollade (161) MC (20) No 12 4 200 mm ² , X. zaysy			∆G¥G		nAmmi				
[65]104] (90:10) 10" Bitzimi," X rays; MSGC [66] ArtDME No 60 63"0.5mm," S rays; MSGC [66] ArtDME No 60 63"0.5mm," S rays; MSGC [66] (90.50) dg.edi 9 9.3"0.5mm," S rays; MSGC [66] (90.50) dg.edi 9 9.3"0.5mm," S rays; MSGC [61] (90.50) dg.edi 9 9.3"0.5mm," S rays; MSGC [62] ArtDME No 70 63 0.3"0.5mm," S rays; MSGC [62] ArtDME No 6 2"10"Bitzim," S rays; MSG [64] 60.50 1 -9.00 mm," S lav; Y rays; MSG [64] 60.50 1 -9.00 mm," X rays; S lav; ISI 60.50 1 -9.00 mm," X lav; Y lav; No 2"10"Bitzim," X rays; ISI 67.00 No 12 4 200 mm,", S lav; Y lav; <td>MSGC</td> <td>Ar/DME</td> <td>No</td> <td>200</td> <td>10</td> <td>3 mm¹;</td> <td>6.4 keV</td>	MSGC	Ar/DME	No	200	10	3 mm ¹ ;	6.4 keV		
MS GC [6] Ar/D ME No 40 63 0.370 smn.", so sheav 5.4 keV MS GC (c) Ar/D ME An ole 50 9 0.370 smn.", so sheav 5.4 keV MS GC (c) Ar/D ME An ole 50 9 0.370 smn.", so sheav 5.4 keV MS GC (c) GO 300 smn.", so sheav 5.4 keV 2.107 Hc/mm.", Xrays 5.4 keV MS GC (c) Q0 10 N No 70 63 0.370 smn.", so sheav 5.4 keV [6] Q0 10 N No 5 2 -1.13 ran.", so sheav 5.4 keV [6] Q0 10 N No 5 2 -1.13 ran.", so sheav 5.4 keV [6] Q0 10 N Yes 0.5 1 -900 ran.", so sheav 5.4 keV [6] Q0 10 N Yes 0.5 1 -900 ran.", so sheav 5.4 keV [6] Q0 10 N 12 4 200 ma^2, so sheav 5.4 keV 1.5 ran.", so sheav 5.4 keV [6] Co'10 No 12 4 <t< td=""><td>[65,104]</td><td>(90:10)</td><td></td><td></td><td></td><td>10° Hz/mm¹</td><td>X-rays;</td></t<>	[65,104]	(90:10)				10° Hz/mm ¹	X-rays;		
(20:50) 8:10 ⁻⁷ Hohm ¹ X.rays MSCC AraBuk An.ole 9 0.3'0.5 mm ¹ 5.AkeV IGC (20:50) degest 9 0.3'0.5 mm ¹ 5.AkeV ISCC+CEM AraDMK No 0 6.3'0.5 mm ¹ 5.AkeV ISCC+CEM AraDMK No 5 2'10 ⁻¹ Hohm ¹ 5.AkeV ISCC+CEM AraDMK No 5 2 2'10 ⁻¹ Hohm ¹ 5.AkeV ISCC+CEM AraDMK No 5 2 2'10 ⁻¹ Hohm ¹ 5.AkeV ISCC+CEM AraDMK Yes 0.5 1 2'10 ⁻¹ Hohm ¹ 5.AkeV ISC Ge50 1 10 ⁻¹ Hohm ¹ X.rays 3.0keV ISC AraDMK No 12 3.8devm ¹ 8.3keV ISC AraDMK No 12 3.0keV 3.0keV ISC AraDMK No 12 3.0keV 3.0keV ISC AraDMK No 12 4<	MS GC [66]	Ar/DME	No	- 40	63	0.3*0.8mm ¹	5.4 keV		
MS GC Ar.DIME Anole 50 9 0.370.5mm, 's 5.4 keV IG0 (60.50) 40.061 40.061 2110" H.Com, 's X.ray, 's MS GC+ GEM Ar.DIME No 70 63 0.370.5mm, 's 5.4 keV IG0 Q0.10 - - 2110" H.Com, 's X.ray, 's 5.4 keV ISG G+ GEM Ar.DIME No 5 2 -1.13 ran,' s 8.4 keV ISG G+ GEM Ar.DIME Yes 0.5 1 -900 ran,' s 8.4 keV ISG G+ GEM Ar.DIME Yes 0.5 1 -900 ran,' s 8.4 keV ISG G+ GEM Ar.DIME Yes 0.5 1 -900 ran,' s 8.4 keV ISG G+ GEM Ar.DIME Yes 0.5 1 10.0 ran,' s Xevy IG01 CO.STAT Ar.News Yes 0.5 7.0 Far.News' Xevy IDME GEM Ar.CO, No 12 4 200 ma', s 5.4 keV 6.4 C'/// s		(50:50)				8*10 ⁵ Hz/mm ¹	X-rays		
160 060 ± 00 dag coil 210° He/max ¹ Xarays MS GC4 + GEM Arr00 ME No 0 63 030 (8 max ¹) 5 A keV MS GC4 + GEM Arr00 ME No 0 63 030 (8 max ¹) 5 A keV B GC4 + GEM Arr00 ME No 5 2 -113 max ¹ 5 A keV B GC4 + GEM Arr00 ME No 5 2 -113 max ¹ 5 A zev / MS GC4 + GEM Arr00 ME Yes 0.5 1 -110 He/max ¹ 5 A zev / MS GC4 + GEM Arr00 ME Yes 0.5 1 10° He/max ¹ 5 A zev / MS GC4 + GEM Arr00 ME Yes 0.5 1 10° He/max ¹ 5 A keV [6] Arr00 (20) No 12 4 200 max ¹ 5 A keV [6] Arr00 (20) No 11 10 15 max ¹ 5 A keV [7] Arr00 (20) No 11 10 10° max ¹ 5 NeV <td< td=""><td>MSGC</td><td>Ar/DME</td><td>Anole</td><td>50</td><td>9</td><td>0.3*0.8mm¹;</td><td>5.4 keV</td></td<>	MSGC	Ar/DME	Anole	50	9	0.3*0.8mm ¹ ;	5.4 keV		
MS GC+ GEM AraDME No 70 63 0.3°0.5 mm², sol.sma², sol.sma	[66]	(50:50)	deposit			2*10* Hz/mm ¹	X-rays		
160 09:10 2'10' Hohm' Xrays 187 GC+GEM Arr0MK No 5 2'10' Hohm' Xrays 187 GC+GEM Arr0MK Yes 0.5 2'10' Hohm' Xrays 187 GC+GEM Arr0MK Yes 0.5 1'10' Hohm' Xrays 187 GC+GEM Arr0MK Yes 0.5 1'10' Hohm' Xrays 187 GC+GEM MPGGDS 1'10' Hohm' Xrays Yes Yes Yes 100 MPGGDS MPGGDS 1'10' Hohm' Xrays Yes Yes <td< td=""><td>MS GC+ GEM</td><td>Ar/DME</td><td>No</td><td>70</td><td>63</td><td>0.3*0.8mm¹</td><td>5.4 keV</td></td<>	MS GC+ GEM	Ar/DME	No	70	63	0.3*0.8mm ¹	5.4 keV		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	[66]	(90:10)				2*10° Hz/mm ¹	Х-гауз		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MS GC+GEM	Ar/DME	No	5	2	~ 113 mm ¹ ;	8keV		
MS GC+ GEM Arc1D ME Yes 0.5 1 ->000 nm², BleV [31] (20.50) (20.50) 1 (20.50) 100 H2/max, Xrays [31] MS GC+ GEM (20.50) (20.50) 2 350 nm², BleV [31] MS GC+ GEM (20.50) 2 350 nm², BleV [36] MS GC+ GEM (20.50) 2 100 H2/max, Xrays [36] (20.50) sr/(70), No 12 4 200 nm², GleV [36] (20.50) sr/(70), No 12 4 200 nm², GleV [36] (20.50) sr/(70), No 12 4 200 nm², GleV [37] (20.20) (20.50) 1 10 1260 nm², 5 NeV [37] (21.20) (20.20) (20.60) 1 10 10 10 10 [37] (22.60) (20.70) (20.70) 5 NeV 5 NeV 5 NeV	[51]	(50:50)				2*10*Hz/mm ¹	X-rays		
[3] (3) (3) (1) <td>MS GC+GEM</td> <td>Ar/DME</td> <td>Yes</td> <td>0.5</td> <td>1</td> <td>~ 900 mm¹;</td> <td>8keV</td>	MS GC+GEM	Ar/DME	Yes	0.5	1	~ 900 mm ¹ ;	8keV		
MS 664: 6E8M [2] 2 3350 mm² 2 3580 mm² 2 3867 100 100 100 2 210 Tkichma² Xrayi 6 210 Tkichma² Xrayi 7 710 Tkichma² Xrayi 7	[51]	(50:50)				10° Hz/mm'	X-rays		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MS GC+ GEM				2	350 mm ¹	8keV		
Deable CEM MPGDS 6 2 mm.; 7 % C Rkohman 5 kkeV 13 15 mm.; 13 15 mm.; 15 mk. 5 kkeV 13 15 mm.; 13 15 mm.; 15 mk. 5 kkeV 13 15 mm.; 16 15 mm.; 17 5 kkeV 14 16 16 mm.; 17 5 kkeV 15 17 6 mk. 5 mk.; 17 5 kkeV 17 18 6 mk.; 17 10 5 mk.; 17 5 kkeV 17 18 6 mk.; 17 10 10 10 10 mm.; 10 5 kkeV 17 18 6 mk.; 17 5 kkeV 5	[51]					2*10*Hz/mm ¹	X-rays		
Icrit Circle Thir Circle Thir Circle Thir Circle Thir Circle Starsy	Bouble GEM	ПЛС	261		6	2 mm	5.4 keV		
Triple GEM 13 15 run, ' 2 AbeeV [6] ár/(70) No 12 4 200 run, ' 2 AbeeV [6] ár/(70) No 12 4 200 run, ' 0 beeV [7] frage GEM 6/(70) No 12 4 200 run, ' 0 beeV [7] frage GEM 6/(70) No 11 10 1200 run, ' 60 beeV [7] (0'20) 60'/0 50'/0 210'/0 10'/0'/0'/0'/0'/0'/0'/0'/0'/0'/0'/0'/0'/0	[67]		GL	13		7*10° Hz/mm*	X-rays		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Triple GEM			_	13	15 mm';	5.4 keV		
	[68]					6*10° Hz/mm	X-rays		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Double GEM	AT/CO1	No	12	4	200 mm. '	6 keV		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	[@]	(70:30)				5"IC Hz/mm	X-rays		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Triple GKM	AT/CU1	No	H	10	1260 mm ";	89 keV		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.01	(70:30)				Z-10 HZ/mm.	7.135		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TIMDE GEM	AT/UL/UU	< 5 %	230	270	I mm";	59 kev		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T-1 CTU	(00:20:20)	< 5.06		1.00	5-10 Hz/mm	A-138/5		
Direct Letter Letter Line Vessor 20 <th< td=""><td>inde eeu</td><td>45.6.10</td><td>\$ 5 90</td><td>•</td><td>100</td><td>A TIC In terms</td><td>5 9 KeV</td></th<>	inde eeu	45.6.10	\$ 5 90	•	100	A TIC In terms	5 9 KeV		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Trink CTU	(45.40.15)	New	20	20	2001240	26149		
Trajle GERM AVCET 7(2 K, model) -10 % 0 110 160 1 rwn*, 59 Jact [72] (652.67) -10 % 0 11 160 1 rwn*, 59 Jact Triple GERM+ (TC.160) No 0.1 3 160 rmn*, Hg UV CS1[88] (C.160) No 0.1 3 160 rmn*, Hg UV Mixronnegas Not C.H. Yes' 10 50 16 rmn*, 331z 53 MeV Mixronnegas Ar. (T. No 2 10	1721	45:40:15	550.6	20	20	200-240 100	25 KG		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Trink (TW	(40.40.15)	- 10.06	110	160	Inarali	6.0 1637		
Diple dBM+ CL (20) (24, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12	11102 0451	65-29-TD	~ 10 90	10	100	6 the Waterral	Yraw		
Light of the set of t	Triple CTPM+	(7, (10))	No	0.1	2	100 mm	Ha 157		
Microstegas W/C.H. Ves/ 10 50 16 mm², 33Hz 63 HeV [74] Q1.3) 35 % gatZ ratk 63 HeV m² Microstegas Ar/CT. No 2 10 m² 31k eV m² [75] Q5.5) No 2 10 m² 31k eV m² [76] Q5.6) No 1.6 25 20 mm², 33Hz 63 HeV Xravi [76] Q4.6) No 1.6 25 20 mm², 33Hz 54 NeV Xravi	CAT ISE1	a.(100)	110	0.1		10 ⁷ Writero ¹	Laran		
Interfage (D) = 0	Micronome	No/CH-	Veel	10	50	16 mm ¹ 32Wr	5 3 M AT		
Micronegus Atr/(T. No 2 10 Junta BeV TS1 0.95.5) 0 10	1741	01.01	35 %			markrate			
Inat/Signo Column Xray: Xray: Xray: Xray: </td <td>Microsome</td> <td>47(67</td> <td>No</td> <td>2</td> <td>10</td> <td>Turner</td> <td>91w37</td>	Microsome	47(67	No	2	10	Turner	91w37		
Lizerateges CL/C Ll ₁₀ No 1.6 25 30 mm ² , 10 ² hL/mm ³ 80 m ² , 80 mm ² , 10 ² hL/mm ³ 80 m ² , 80 mm ² , 10 ² hL/mm ³ 80 m ² , 80 m ² , 10 ² hL/mm ³ 80 m ² , 80 m ² , 210 ² hL/mm ³ 80 m ² , 80 m ² , 210 ² hL/mm ³ 80 m ² , 80 m ² , 210 ² hL/mm ³ 80 m ² , 80 m ² , 210 ² hL/mm ³ 80 m ² , 80 m ² , 210 ² hL/mm ³ 80 m ² , 80 m ² , 210 ² hL/mm ³ 80 m ² , 80 m ² , 210 ² hL/mm ³ 80 m ² , 80 m ² , 210 ² hL/mm ³ 80 m ² , 80 m ² , 210 ² hL/mm ³ 80 m ² , 210 ² hL/m ³ , 210 ² hL/m	1251	(05:5)		1	-*		Yarave		
Instrume Core (46) Prov Low Low Provide (16) Matron segs Arr (CH) No 18 20 20 mm ² 25 mm ² 26 m ²	Micromeret	CE/CH-	No	16	25	20 mm ^{1.}	SheV		
Microinegus Ar/C.H. No 18 20 20 mm², 63 keV [To] 0.40	[76]	046				-10 ⁴ Hz/mm ¹	X-Tays		
TG P P T T 2*10° He/mm² Xrays Microscope Arr/On No 23 17 3mm² Xrays Microscope O'30 2 17 3mm² Xrays Microscope O'30 10% of t 0.01 0.65 100*107 ma*, 24 667 Mis Get+CBM Arr/DM B 0% of t 0.01 0.65 100*107 ma*, 24 667 JGEM (79) Arr/DM B 0% of t 0.01 0.65 100*107 ma*, 24 667 JGEM (79) Arr/DM B 2.3 310*310 mm*, 7 Compase 37 Compase 37	Mirromeza	AT/CH.	No	18	20	20 mm ¹ :	8keV		
Micromegus+ Arr/Co. No 23 17 3 mm² 5 AlkeV GEM/771 O(340) 5 40% 5 40% 5 41% <td< td=""><td>[76]</td><td>046</td><td></td><td>1 -</td><td></td><td>2*10° Hz/mm1</td><td>X-rays</td></td<>	[76]	046		1 -		2*10° Hz/mm1	X-rays		
GEORIT71 (****) X:ray: MS GCF-GEX Arr3DME 10% eff. 0.05 100*100 mm. ¹ . 2.4 GeV DBRAC [64] (************************************	Micromege++	AT/CO.	No	23	17	3 7000	5.4 keV		
MS GC+ GEM ArrDME 10% eff. 0.01 0.05 100*100 mm ⁻¹ . 24 GeV DIRAC [64] (d0:40) drop 3*10*110*120*110*110*110*110*110*110*110*	GE00771	CT0:30		-	1 -		X-rays		
DIRAC [64] (60:40) drop 3*10*Hzdran' protons 3 GRM [78] Ar/CO, No 2.3 310*310 mma'; Compass	MS GC+ GEM	AT/DME	10% eff.	0.01	0.05	100*100 mm ¹ :	24 GeV		
3 GEM [78] Ar/CO, No 2.3 - 310*310 mm Compass	DIRAC [64]	(60:40)	drop			3*10°Hzánm ¹	protons		
	3 GEM [78]	Ar/CO,	No	2.3		310*310 mm ¹ ;	Compass		
COMPASS (70:30) 2*10°Hzann ¹ Beam	CO MPASS	(70:30)				2*10°Hzánm ⁱ	Beam		

Aging Phenomena in Gaseous Detectors

Implicit aging rate is proportional only to the total accumulated charge assumption:

R = - (1/G)(dG/dQ) (% per C/cm) (Kadyk'1985)

Aging phenomena depends on many highly correlated parameters:

Microscopic parameters:

✓ Cross-sections

✓ Electron or photon energies

✓ Electron, ion, radical densities
 ✓ …

There are simply too many variables in the problem →

would be too naive to expect that one can express the aging rate using a single variable (C/cm) Macroscopic parameters:

- ✓ Gas mixture (nature of gas, trace contaminants)
- ✓ Gas flow & Pressure
- Geometry/material of electrodes & configuration of electric field

~1980

CLASSICAL AGING:

Construction materials

- Radiation intensity
- ✓ Gas gain, ionization density
- Size of irradiation area

'NEW _ AGING' EFFECTS: ~2000

Aging Phenomena in Gaseous Detectors

- ✓ Early aging studies of MSGCs indicated that they are much more susceptible to aging than wire chambers, potentially due to the filigree nature of MSGC structures and catalytic effects on the MSGC substrate
- More robust detectors (GEM, Micromegas) are better suited for the high-rate environments than MSGC and Wire-type detectors

Building Radiation-Hard Gas Detector (2001): Rules of Thumb

- ✓ Build a "full-size prototype" (the smallest independent element of your detector)
- Expose full detector area of to the real radiation profile (particle type, gas gain, ionization density)
- Choose your gas mixtures (hydrocarbons are not trustable) and materials very carefully
- ✓ Vary all parameters systematically (gas gain, irradiation intensity, gas flow, ...) and verify your assumptions → make aging studies on several identical prototypes
- Do not extrapolate aging results for any given parameter by more than an order of magnitude

✓ If you observed unexpected result - understand the reason – and reproduce results ...

International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors

6–10 Nov 2023 CERN Europe/Zurich timezone

Local Organizing

Committee and

Official news and

Committee

bulletins

International Program

Overview

3rd Conference on Detector Stability and Aging Phenomena in Gaseous Detectors (Nover6=10, 2023, CERN)

Gaseous detectors for particle physics are entering a phase where operation at current experiments and future facilities will require the capacity to work at unprecedent particle rate, higher rate capability, integrated charge and improved time resolution. In addition, new materials are in many cases needed to achieve these new requirements. Finally, the need to replace environmentally unfriendly gases has set an additional challenge to the community.

Contact roberto.guida@cern.ch The third International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors aims in offering an occasion for sharing new results, new ideas, new facility requirements, ...

The conference will be held at CERN in the main Auditorium from November 6th to 10th, 2023.

The conference will continue the initiative started in 1986 with the first workshop held at LBL (Berkley) and in 2001 at DESY (Hamburg).

Conference topics will include:

- Detector stability and performance
- Aging phenomena
- Radiation hardness
- Material outgassing
 Novel materials
- Electrodes
- https://indico.cern.ch/event/1237829
- Photocathodes
 Plasma chemistry
- Environmentally friendly gases
- Gas and material analysis, characterisation, instruments
- Discharge damage and mitigation
- Test facilities
- Front End Electronics for detector stability and aging mitigation

The conference will have invited reviews and selected contributions, as well as a poster session.

The conference proceeding will be published in peer-reviewed journal.

COMPASS RICH Upgrade: Hybrid THGEM + MM with Csl PC

<u>COMPASS RICH I:</u> 8 MWPC with CsI since 2000

MWPC's + Csl

MWPC+CSI: successful but with performance limitations for central chambers

Production THGEM @ ELTOS Company:

8 Years of Dedicated R&D: THGEM+ Csl New Hybrid THGEM + MM PDs:

Assembly of Hybrid THGEM +MM:

C. Lippmann

MPGD-Based Gaseous Photomultipliers

GEM or THGEM Gaseous Photomultipliers (Csl -PC) to detect single photoelectrons

Multi-GEM (THGEM) Gaseous Photomultipliers:

 ✓ Largely reduced photon feedback (can operate in pure noble gas & CF₄)
 ✓ Fast signals [ns] → good timing
 ✓ Excellent localization response
 ✓ Able to operate at cryogenic T

Reflective Photocathode (PC)

E.Nappi, NIMA471 (2001) 18; T. Meinschad et al, NIM A535 (2004) 324; D.Mormann et al., NIMA504 (2003) 93

Large-Area MM / GEM Detectors for ATLAS / CMS Upgrade

Resistive MM for ATLAS NSW Muon Upgrade:

Standard Bulk MM suffers from limited efficiency at high rates due to discharges induced dead time Solution: Resistive Micromegas technology.

- Add a layer of resistive strips above the readout strips
- Spark neutralization/suppression (sparks still occur, but become inoffensive)

Still, main issue encountered: HV unstability

==> found to be correlated to low resistance of resistive strip anode ==> applied solutions + passivation in order to deactivate the region where R<0.8 M Ω

Production, sector integration (~1200m² resistive MM):

GEMs for CMS Muon System Upgrade:

- Single-mask GEM technology (instead of double-mask)
 - → Reduces cost /allows production of large-area GEM

➤ Assembly optimization: self-stretching technique: → assembly time reduction to 1 day

September 2020: 144 GEM chambers installed

TPC with MPGD Readout for ALICE Upgrade and ILC

ALICE TPC → replace MWPC with 4-GEM staggered holes (to limit space-charge effects)

TPC reinstallation in the ALICE cavern (August 2020)

- Upgrade for continuous TPC readout @ 50 kHz Pb-Pb collisions
- Phys. requirements: IBF < 1%, Energy res. σ(E)E < 12%

ILC – TPC with MPGD-based Readout

Target requirement of a spatial resolution of 100 um in transverse plane and dE/dx resolution < 5% have been reached with all technologies (GEM, MM and GridPix)

If dE/dx combined with ToF using SiECAL, P < 10GeV region for pion-K separation covered

ILC: gating scheme, based on large-aperture GEM

- \rightarrow Machine-induced background and ions from gas amplific.
- → Exploit ILC bunch structure (gate opens 50 us before the first bunch and closes 50 us after the last bunch)

Advanced Concepts Picosecond (a few 10's) Timing Detectors

Several types of technologies are considered for "Picosecond-Timing Frontier":

- Ionization detectors (silicon detectors or gas-based devices)
- Light-based devices (scintillating crystals coupled to SiPMs, Cherenkov absorbers coupled to photodetectors with amplification, or vacuum devices)

Examples of timing detectors at a level of~ 30 ps for MIPs and ~ 100 ps for single photons

The CYGNO TPC: Optical Readout for Directional Study of Rare Events

CYGNO is working in the framework of CYGNUS: international Collaboration for realization of Multi-side Recoil Directional Observatory for WIMPs & v's

GEM Optical readout: Promising performance in a few keV region

Scintillating GEM for Dose Imaging in Radiotherapy

NEWS-G: Search for Dark Matter with Spherical Proportional Counters

NEWS-G Collaboration: 5 countries, 10 institutes, ~40 collaborators Three underground laboratories:

- SNOLAB
- Laboratoire Souterrain de Modane
- **Boulby Underground Laboratory**

Increasing Target Mass and Reducing Background:

- ACHINOS, electroformation, ...
- Several detectors scheduled for the coming years
- Eventually sensitivity could reach neutrino floor \checkmark

Nuclear Quenching Factor measurements:

First observations by COHERENT in NaI (2017) and Ar (2020)

- Unique complementarity with DM searches as sensitivity reaches the neutrino floor NEWS-G3: A low-threshold low-background sea-level facility
- Environmental and cosmogenic background studies towards reactor CEvNS studies
- Shielding: Layers of pure copper, polyethylene, and lead, with active muon veto
- ▶ Commissioning in 2021

NEWS-G