


ATLAS Internal Note
ATL-D-ES-0004
Version 1.8
18 May 2011



VMEbus Application Program Interface






		Authors : R. Spiwoks, M. Joos, C. Parkman, J. Petersen
· comments and queries to Markus Joos, CERN
+41 22 767 2364
Markus.Joos@cern.ch


Abstract
This note defines an application program interface (API) for the use of VMEbus in the Read-Out Driver (ROD) system. The API will be used in the ROD Crate DAQ in order to communicate with the ROD(s) and other equipment in the ROD crate which is also to be controlled. The API contains functions related to the use of the VMEbus master mapping, the VMEbus errors, the VMEbus slave mapping, the VMEbus block transfers and the VMEbus interrupts.




Table of Contents
1 Introduction	3
1.1 Description of the API	3
1.2 Design Issues	3
1.3 Implementation Issues	4
1.4 Organization of this Document	5
2 Application Program Interface	7
2.1 Overview	7
2.2 Type Definitions	9
2.3 Functions for Return Codes	10
2.4 General Functions	13
2.5 VMEbus CR/CSR Access	15
2.6 VMEbus Master Mapping and Single Cycles	17
2.7 VMEbus Error Handler	26
2.8 VMEbus Slave Mapping	29
2.9 VMEbus Block Transfers	34
2.10 VMEbus Interrupts	45
3 Programming Examples	57
3.1 Example 1: Functions for Return Codes	57
3.2 Example 2: CR/CSR Space	58
3.3 Example 3: Master Mapping - Safe Access	59
3.4 Example 4: Master Mapping - Fast Access	61
3.5 Example 5: Master Mapping - Bus Error Handler	63
3.6 Example 6: Slave Mapping	65
3.7 Example 7: Block Transfer - Detailed Functions	66
3.8 Example 8: Block Transfer - Integrated Function	68
3.9 Example 9: Interrupts - Synchronous Method	70
3.10 Example 10: Interrupts - Asynchronous Method	72
3.11 Example 11: Interrupts - Generate Interrupts	74
4 VMEbus Utility Programs	75
4.1 VMEbus Configuration Utility	75
4.2 VMEbus Test and Debug Utility	75
4.3 VMEbus Scanning Facility	75
5 Ideas for a C++ Binding	76
5.1 Types	77
5.2 VMEbus library/driver	78
5.3 VMEbus Master Mapping	80
5.4 VMEbus Slave Mapping	81
5.5 VMEbus Block Transfer	82
5.6 VMEbus Interrupts	83
· Introduction
· Description of the API
This note defines an application program interface (API) for the use of VMEbus in the Read-Out Driver (ROD) system. The API will be used in the ROD Crate DAQ (see EDMS note ATL-DQ-EN-0020) in order to communicate with the ROD(s) and other equipment in the ROD crate which is also to be controlled.
The API contains functions related to the following uses of the VMEbus:
· master mappings and single cycles;
· bus error handling;
· slave mappings;
· block transfers;
· interrupts.
The API further contains type definitions, functions to handle the return codes and general functions for the use of the VMEbus.
The API assumes the presence of an operating system and of high-level language compilers on the ROD Crate Processor.
· Design Issues
A few notes on the design guidelines of the API:
· Simplicity and uniformity
· The API was designed to be as simple as possible and only be as complicated as necessary.
· The API provides general-purpose services to the application program.
· The API hides all differences of different hardware platforms. The functions of the API are the same on all different platforms. The return codes can, however, be different.
· Names
· The API uses readable and meaningful names for all of its functions, as well as the common prefix “VME_”.
· Identifiers
· The API uses identifiers of type “int” for the following complex entities: master mapping, slave mapping, block transfers and interrupts.
· There is one function for each type of entity which creates the corresponding entity and returns the identifier.
· The identifier is to be used in subsequent function calls for this type of entity.
· Return codes
· All functions of the API return an unambiguous return code.
· The return code is equal to 0 if the function has terminated without error. The return code is different from 0 in case the function terminated with an error.
· The return code is of a type compatible with “unsigned int”. It can be a complex data type, if the VMEbus API is implemented with libraries which use a complex type for the return code.
· The return code can be translated into a flat “int” type (à la UNIX errno.h) for comparison with meaningful symbols.
· A textual representation of the return code can be printed to “stdout” or to a string by the application program.
· Known limitations
· No Read-Modify-Write functions are defined in the API. Those can be added later if needed.
· Each VMEbus interrupt vector can only be used by one process.
· No functions are defined in the API to notify the application program of VMEbus power failures, e.g. signalled by ACFAIL. Those can be added later if needed.
· Implementation Issues
The following issues are related to the implementation of the API:
· Layered implementation
The implementation of the API can use low-level libraries and/or system-level drivers if necessary. The number of different libraries or drivers and the dependencies on other external libraries shall, however, be minimised.
· Utility programs
The implementation of the API can be accompanied by a utility program which is used to configure the VMEbus statically and by a utility program which allows to test and debug the VMEbus, see Section VMEbus Utility Programs.
· System-level services
The implementation of the API shall encapsulate all resource management related to the VMEbus bridge, the DMA engine(s), the VMEbus error handling and the VMEbus interrupt handling. The application program shall not deal with those issues explicitly. All resources shall either be allocated statically using the VMEbus configuration utility or dynamically using the various functions of the API.
· Bus error handling
The implementation of the API shall encapsulate, in particular, the VMEbus error handling. At the level of single-word read and write access, the user shall have the choice to check the bus error status or to ignore it. In the latter case, a signal can be sent to the application program to handle the bus error. Separate functions shall be provided for those cases. At the level of VMEbus CR/CSR access and block transfers the bus error handling shall always be included (see Sections VMEbus CR/CSR Access and VMEbus Block Transfers).
· Blocking functions
The API’s blocking functions, e.g. waiting for the end of a VMEbus block transfer or for a VMEbus interrupt shall be implemented in an efficient way. The response time between the external VMEbus event and the return of the function in the application program shall be minimised.
· Interrupts
Since it is not known if the VMEbus interrupters in a system are of type Release-On-Acknowledge (ROAK) or Release-On-Register-Access (RORA), the implementation of the API shall associate VMEbus interrupt levels exclusively to either of the two types. When a VMEbus interrupt from a level associated to ROAK interrupters is received the implementation does not alter the state of the level. When a VMEbus interrupt from a level associated to RORA interrupters is received, the implementation disables that level. The level must be re-enabled by the application program using a function of the API. It is supposed that the association of levels to interrupter types can statically be modified using the VMEbus configuration utility, see Section VMEbus Configuration Utility. The same utility will also be used to statically activate the interrupt levels.
· Multi-processing and multi-threading
The implementation of the API shall allow for several application programs and multiple threads within the same application program to use all functions of the API concurrently. This might require the implementation of one or more drivers for all or parts of the API. 
· Logging
The implementation of the API shall log serious errors with a central logging facility, e.g. a global file or kernel messages. The implementation of the API shall also log events of the VMEbus of general interest with the logging facility.
· Language binding
C was chosen for the language binding of the API as presented in Sections Application Program Interface and Programming Examples. Some ideas on a possible C++ language binding or wrapping are presented in Section Ideas for a C++ Binding.
· Data types
For passing data in and out of a VMEbus master mapping using single cycles, separate functions are proposed for the following types, included from types.h (BSD), see Section VMEbus Master Mapping and Single Cycles:
· “unsigned int” or “u_int” (32 bit),
· “unsigned short” or “u_short” (16 bit) and
· “unsigned char” or “u_char” (8 bit).
The user knows the types of values and defines them in the application program. The compiler shall be used to enforce type safety for the function calls. For the C++ binding or wrapping, polymorphic class methods can be used.
· Organization of this Document
Section Application Program Interface contains the definition of the API. For each function the section gives a detailed description of all input and output parameters, a description of the functionality and the return codes. The section contains sub-section for the type definitions used by the API, functions concerning the return codes, general functions and functions for the CR/CSR access, master mapping, bus error handling, slave mapping, block transfers and interrupts.
Section Programming Examples contains programming examples which show how the API is to be used. The examples cover all important cases for return codes, CR/CSR access, master mapping, bus error handling, slave mapping, block transfers and interrupts.
Section VMEbus Utility Programs contains a description of the utility programs which accompany the API implementation. Some implementations will require a VMEbus configuration utility. For all implementations there shall be a test and debugging, as well as a scanning utility.
Section Ideas for a C++ Binding gives some ideas on a possible C++ language binding or wrapping of the API. The public members of the classes are shown.
· [bookmark: RTF330037003500320033003a00]Application Program Interface
· Overview
The following list is an overview of all type and function definitions in the VMEbus API:
Type Definitions
· u_int, u_short, u_char
· VME_ErrorCode_t
· VME_BusErrorInfo_t
· VME_MasterMap_t
· VME_SlaveMap_t
· VME_BlockTransferItem_t
· VME_BlockTransferList_t
· VME_InterruptItem_t
· VME_InterruptList_t
· VME_InterruptInfo_t
Functions for Return Codes
· VME_ErrorPrint
· VME_ErrorString
· VME_ErrorNumber
General Functions
· VME_Open
· VME_Close
CR/CSR Access
· VME_ReadCRCSR
· VME_WriteCRCSR
Bus Error Handling
· VME_BusErrorRegisterSignal
· VME_BusErrorInfoGet
Master Mapping and Single Cycles
· VME_MasterMap
· VME_MasterMapVirtualAddress
· VME_MasterMapVirtualLongAddress
· VME_ReadSafeUInt, VME_ReadSafeUShort, VME_ReadSafeUChar
· VME_WriteSafeUInt, VME_WriteSafeUShort, VME_WriteSafeUChar
· VME_ReadFastUInt, VME_ReadFastUShort, VME_ReadFastUChar
· VME_WriteFastUInt, VME_WriteFastUShort, VME_WriteFastUChar
· VME_MasterUnmap
· VME_MasterMapDump
Slave Mapping
· VME_SlaveMap
· VME_SlaveMapVmebusAddress
· VME_SlaveUnmap
· VME_SlaveMapDump
Block Transfer
· VME_BlockTransferInit
· VME_BlockTransferStart
· VME_BlockTransferWait
· VME_BlockTransferEnd
· VME_BlockTransfer
· VME_BlockTransferStatus
· VME_BlockTransferRemaining
· VME_BlockTransferDump
Interrupts
· VME_InterruptLink
· VME_InterruptWait
· VME_InterruptRegisterSignal
· VME_InterruptInfoGet
· VME_InteruptReenable
· VME_InterruptUnlink
· VME_InterruptGenerate
· VME_InterruptDump
Miscellaneous functions
· VME_SendSysreset

The following remarks apply to all functions defined in the API:
· If not stated otherwise, all functions of this API are non-blocking, i.e. they return immediately indicating an error code if necessary. Wherever functions are blocking, i.e. waiting on external events, e.g. end of block transfer or VMEbus interrupt, this is stated explicitly.
· The return values of all function of this API can be used for comparison, after the error code has been converted to an error number. The return value VME_SUCCESS ( 0) can always be used for comparison.
· The implementation of the API is in the following called the “VMEbus library/driver”.
· Type Definitions
The following types are defined in “vme_rcc.h” for general use throughout the API:
Data Transfer Types
typedef unsigned int		u_int; 	(included from types.h; 32 bit)

typedef unsigned short		u_short; 	(included from types.h; 16 bit)

typedef unsigned char		u_char; 	(included from types.h; 8 bit)
Return Code Type
typedef unsigned int		VME_ErrorCode_t;
Other Types
VME_MasterMap_t	see Section VMEbus Master Mapping and Single Cycles

VME_BusErrorInfo_t	see Section VMEbus Error Handler

VME_SlaveMap_t	see Section VMEbus Slave Mapping

VME_BlockTransferItem_t	see Section VMEbus Block Transfers
VME_BlockTransferList_t	see Section VMEbus Block Transfers

VME_InterruptItem_t	see Section VMEbus Interrupts
VME_InterruptList_t	see Section VMEbus Interrupts
VME_InterruptInfo_t	see Section VMEbus Interrupts
· Functions for Return Codes
VME_ErrorPrint()
Synopsis
#include “vme_rcc.h”
u_int VME_ErrorPrint(VME_ErrorCode_t error_code);
Parameters
	VME_ErrorCode_t error_code
	in
	error code to be printed


Description
The VME_ErrorPrint() function prints a textual representation of error_code to “stdout”.
Return Values
	VME_SUCCESS
	The error code was successfully printed.

	VME_NOTKNOWN
	The error code is not known.


Programming Example
For a programming example see Section Example 1: Functions for Return Codes. 
Notes
none
VME_ErrorString()
Synopsis
#include “vme_rcc.h”
u_int VME_ErrorString(VME_ErrorCode_t error_code, char* error_string);
Parameters
	VME_ErrorCode_t error_code
	in
	error code to be converted to a character string

	char* error_string
	out
	character string containing the textual representation of the error code


Description
The VME_ErrorString() function returns a textual representation of error_code in the character string error_string. error_string must contain space for at least VME_MAXSTRING (defined in “vme_rcc.h”) characters.
Return Values
	VME_SUCCESS
	The error code was successfully converted to a textual representation.

	VME_NOTKNOWN
	The error code is not known.


Programming Example
For a programming example see Section Example 1: Functions for Return Codes. 
Notes
none
VME_ErrorNumber()
Synopsis
#include “vme_rcc.h”
u_int VME_ErrorNumber(VME_ErrorCode_t error_code, int* error_number);
Parameters
	VME_ErrorCode_t error_code
	in
	error code to be converted to an error number

	int* error_number
	out
	error number corresponding to the error code


Description
The VME_ErrorNumber() function converts the possibly complex error_code into a flat error number error_number. The flat error number can then be used for comparison with the return codes defined in this API. The return code VME_SUCCESS ( 0) can always be used for comparison.
Return Values
	VME_SUCCESS
	The error code was successfully converted to an error number.

	VME_NOTKNOWN
	The error code is not known.


Programming Example
For a programming example see Section Example 1: Functions for Return Codes. 
Notes
none
· General Functions
VME_Open()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_Open(void);
Parameters
none
Description
The VME_Open() function opens the VMEbus library/driver and allocates the resources required to use the VMEbus. This function must be called prior to any other function of the VMEbus API.
Return Values
	VME_SUCCESS
	The VMEbus library/driver was successfully opened.

	others
	specific to the implementation


Programming Example
· For a programming example see Section Example 1: Functions for Return Codes 
Notes
none
VME_Close()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_Close(void);
Parameters
none
Description
The VME_Close() releases all resources which were allocated in a VME_Open() function call and closes the VMEbus library/driver. This function is the last function of the API to be called by the application program.
Return Values
	VME_SUCCESS
	The VMEbus library/driver was successfully closed.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	others
	specific to the implementation


Programming Example
· For a programming example see Section Example 1: Functions for Return Codes
Notes
none
· [bookmark: RTF320037003600300036003a00]VMEbus CR/CSR Access
VME_ReadCRCSR()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_ReadCRCSR(int slot_number, u_int crcsr_field, u_int* value);
Parameters
	int slot_number
	in
	number of VMEbus slot to be addressed (0 to 31)

	u_int crcsr_field
	in
	field name in the CR/CSR space; see description

	u_int* value
	out
	value read from CR/CSR space


Description
The VME_ReadCRCSR() functions reads a value from the field at crcsr_field in the CR/CSR space of the VMEbus slave at slot slot_number. The symbolic constant VME_MYSLOT (defined in “vme_rcc.h”) allows access of the CR/CSR space of the VMEbus slave the application program runs on.
Symbolic constants for crcsr_field are provided in the “vme_rcc.h” file, see also the VME64 and VME64x standard. The VME_ReadCRCSR() function knows how many bytes, between 1 and 4, must be read for each value.
Return Values
	VME_SUCCESS
	The value was successfully read from CR/CSR space.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	VME_NOSLOT
	The slot number is invalid.

	VME_NOFIELD
	The CR/CSR field is invalid.

	VME_BUSERROR
	A VMEbus error occurred during the read from CR/CSR space.

	others
	specific to the implementation


Programming Example
For a programming example see Section Example 2: CR/CSR Space. 
Notes
The mapping of the CR/CSR space can be configured statically using the VMEbus configuration utility, see Section VMEbus Configuration Utility.
VME_WriteCRCSR()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_WriteCRCSR(int slot_number, u_int crcsr_field, u_int value);
Parameters
	int slot_number
	in
	number of VMEbus slot to be addressed (0 to 31)

	u_int crcsr_field
	in
	field name in the CR/CSR space; see description

	u_int value
	in
	value to be written to CR/CSR


Description
The VME_WriteCRCSR() functions writes a value to the field at crcsr_field in the CR/CSR space of the VMEbus slave at slot slot_number. The symbolic constant VME_MYSLOT (defined in “vme_rcc.h”) allows access of the CR/CSR space of the VMEbus slave the application program runs on.
Symbolic constants for crcsr_field are provided in the “vme_rcc.h” file, see also the VME64 and VME64x standard. The VME_WriteCRCSR() function knows how many bytes, between 1 and 4, must be written for each value.
Return Values
	VME_SUCCESS
	The value was successfully written to CR/CSR space.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	VME_NOSLOT
	The slot number is invalid.

	VME_NOFIELD
	The CR/CSR field is invalid.

	VME_BUSERROR
	A VMEbus error occurred during the write to CR/CSR space.

	others
	specific to the implementation


Programming Example
For a programming example see Section Example 2: CR/CSR Space. 
Notes
The mapping of the CR/CSR space can be configured statically using the VMEbus configuration utility, see Section VMEbus Configuration Utility.
· [bookmark: RTF370035003000330036003a00]VMEbus Master Mapping and Single Cycles
[bookmark: RTF330037003200360039003a00]VME_MasterMap_t
Synopsis
in vme_rcc.h:
typedef struct {
	u_int 					vmebus_address;
	u_int					window_size;
	u_int					address_modifier;
	u_int					options;
} VME_MasterMap_t;
Fields
	u_int vmebus_address
	base address of the VMEbus window

	u_int window_size
	size of the VMEbus window in number of bytes

	u_int address_modifier
	address modifier to be used when accessing the master mapping

	u_int options
	other options, include read prefetching and write posting


Description
The VME_MasterMap_t type is used to hold input information on a master mapping for use in a VME_MasterMap() function call. The type definition is provided in the “vme_rcc.h” file.
address_modifier is one of the following parameters (defined in “vme_rcc.h”):
	VME_AM09
	address mode 0x09

	...
	...

	VME_AM39
	address mode 0x39


options is a bit-wise combination of the following parameters and possibly some other implementation-specific ones (all defined in “vme_rcc.h”):
	VME_RP
	read prefetching

	VME_WP
	write posting


Programming Example
For a programming example see Section Master Mapping - Safe Access. 
Notes
none
VME_MasterMap()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_MasterMap(VME_MasterMap_t* master_map, int* master_mapping);
Parameters
	VME_MasterMap_t*
master_map
	in
	input information on the master mapping

	int* master_mapping
	out
	identifier of the master mapping;
to be used in subsequent function calls


Description
The VME_MasterMap() function creates a VMEbus master mapping defined by master_map and returns the identifier master_mapping which is to be used in subsequent function calls.
Return Values
	VME_SUCCESS
	The master mapping was successfully created.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	others
	specific to the implementation


Programming Example
For a programming example see Section Master Mapping - Safe Access. 
Notes
Some parameters for the master mapping, e.g. for static mapping or for byte swapping, can be configured statically using the VMEbus configuration utility, see Section VMEbus Configuration Utility.
VME_MasterMapVirtualAddress(), VME_MasterMapVirtualLongAddress()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_MasterMapVirtualAddress(int master_mapping, u_int* virtual_address);
VME_ErrorCode_t VME_MasterMapVirtualLongAddress(int master_mapping, u_long* virtual_address);
Parameters
	int master_mapping
	in
	identifier of master mapping
obtained in call to VME_MasterMap()

	u_int* virtual_address
u_long* virtual_address
	out
	virtual address associated to the master mapping


Description
The VME_MasterMapVirtualAddress() and VME_MasterMapVirtualLongAddress() functions return the virtual address associated to a master_mapping obtained by a function call to VME_MasterMap(). This address can be used for fast read and write methods ignoring VMEbus errors, e.g.
value = *(u_int *)(virtual_address + address_offset);
*(u_int *)(virtual_address + address_offset) = data;
Return Values
	VME_SUCCESS
	The virtual address was successfully returned.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	VME_NOTKNOWN
	The master mapping is not known.


Programming Example
For a programming example see Section Master Mapping - Fast Access. 
Notes
The function VME_MasterMapVirtualAddress() which was defined originally does not work for 64bit operating systems. Therefore VME_MasterMapVirtualLongAddress() was added to the API later on. User programs should only use VME_MasterMapVirtualLongAddress() because this function works for both 32bit and 64bit OS kernels. 
VME_ReadSafe()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_ReadSafeUInt(int master_mapping, u_int address_offset, u_int* value);
VME_ErrorCode_t VME_ReadSafeUShort(int master_mapping, u_int address_offset, u_short* value);
VME_ErrorCode_t VME_ReadSafeUChar(int master_mapping, u_int address_offset, u_char* value);
Parameters
	int master_mapping
	in
	identifier of master mapping;
obtained in call to VME_MasterMap()

	u_int address_offset
	in
	address offset to be read from;
must be aligned according to type

	u_int, u_short, u_char *value
	out
	value read from the VMEbus slave


Description
The VME_ReadSafeXXX() functions reads safely an “unsigned int”, “unsigned short”, or “unsigned char” value from master_mapping (i.e. from the VMEbus slave) at address_offset. The functions check if a VMEbus error occurred during the read cycle.
Return Values
	VME_SUCCESS
	The value was read successfully from the master mapping.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	VME_NOTKNOWN
	The master mapping is not known.

	VME_RANGE
	The address offset is outside the window for the master mapping.

	VME_ALIGN
	The address offset is not correctly aligned with respect to the type.

	VME_BUSERROR
	A VMEbus error occurred during the read cycle.

	others
	specific to the implementation


Programming Example
For a programming example see Section Master Mapping - Safe Access. 
Notes
none
VME_WriteSafe()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_WriteSafeUInt(int master_mapping, u_int address_offset, u_int value);
VME_ErrorCode_t VME_WriteSafeUShort(int master_mapping, u_int address_offset, u_short value);
VME_ErrorCode_t VME_WriteSafeUChar(int master_mapping, u_int address_offset, u_char value);
Parameters
	int master_mapping
	in
	identifier of master mapping;
obtained in call to VME_MasterMap()

	u_int address_offset
	in
	address offset to be written to;
must be aligned according to type

	u_int, u_short, u_char value
	in
	value to be written to the VMEbus slave


Description
The VME_WriteSafeXXX() functions write safely an “unsigned int”, “unsigned short”, or “unsigned char” value to master_mapping (i.e. to a VMEbus slae) at address_offset. The functions check if a VMEbus error occurred during the write cycle.
Return Values
	VME_SUCCESS
	The value was written successfully to the master mapping.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	VME_NOTKNOWN
	The master mapping is not known.

	VME_RANGE
	The address offset is outside the window for the master mapping.

	VME_ALIGN
	The address offset is not correctly aligned with respect to the type.

	VME_BUSERROR
	A VMEbus error occurred during the write cycle.

	others
	specific to the implementation


Programming Example
For a programming example see Section Master Mapping - Safe Access. 
Notes
none
VME_ReadFast()
Synopsis
#include “vme_rcc.h”
void VME_ReadFastUInt(int master_mapping, u_int address_offset,
u_int* value);
void VME_ReadFastUShort(int master_mapping, u_int address_offset, u_short* value);
void VME_ReadFastUChar(int master_mapping, u_int address_offset, u_char* value);
Parameters
	int master_mapping
	in
	identifier of master mapping;
obtained in call to VME_MasterMap()

	u_int address_offset
	in
	address offset to be read from;
must be aligned according to type

	u_int, u_short, u_char *value
	out
	value read from the master mapping


Description
The VME_ReadFastXXX() functions reads an “unsigned int”, “unsigned short”, or “unsigned char” value from master_mapping at address_offset. The functions ignore possible VMEbus errors and return immediately. The application program can still receive a signal related to the VMEbus error, see Section VMEbus Error Handler.
The VME_ReadFastXXX() functions are identical to the following statements:
value_u_int		=	 	*(u_int *)(virtual_address + address_offset);
value_u_short		=		*(u_short *)(virtual_address + address_offset);
value_u_char		=		*(u_char *)(virtual_address + address_offset);
The virtual address can be obtained using the VME_MasterMapVirtualAddress() function.
Return Values
none
Programming Example
For a programming example see Section Master Mapping - Fast Access.
Notes
The value read by the VME_ReadFastXXX() functions can be invalid, if a VMEbus error occurred.
VME_WriteFast()
Synopsis
#include “vme_rcc.h”
void VME_WriteFastUInt(int master_mapping, u_int address_offset, u_int value);
void VME_WriteFastUShort(int master_mapping, u_int address_offset, u_short value);
void VME_WriteFastUChar(int master_mapping, u_int address_offset, u_char value);
Parameters
	int master_mapping
	in
	identifier of master mapping;
obtained in call to VME_MasterMap()

	u_int address_offset
	in
	address offset to be written to;
must be aligned according to type

	u_int, u_short, u_char value
	out
	value to be written to the master mapping


Description
The VME_WriteFastXXX() functions write an “unsigned int”, “unsigned short”, or “unsigned char” value to master_mapping at address_offset. The functions ignore possible VMEbus errors and return immediately. The application program can still receive a signal related to the VMEbus error, see Section VMEbus Error Handler.
The VME_Write FastXXX() functions are identical to the following statements:
*(u_int *)(virtual_address + address_offset)		= value_u_int;
*(u_short *)(virtual_address + address_offset)		= value_u_short;
*(u_char *)(virtual_address + address_offset)		= value_u_char;
The virtual address can be obtained using the VME_MasterMapVirtualAddress() function.
Return Values
none
Programming Example
For a programming example see Section Master Mapping - Fast Access. 
Notes
The value might not be written by the VME_WriteFastXXX() functions, if a VMEbus error occurred.
VME_MasterUnmap()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_MasterUnmap(int master_mapping);
Parameter
	int master_mapping
	in
	identifier of master mapping;
obtained in call to VME_MasterMap()


Description
The VME_MasterUnmap() function deletes the VMEbus master mapping associated to master_mapping. The identifier master_mapping shall not be used after this function call.
Return Values
	VME_SUCCESS
	The master mapping was successfully deleted.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	VME_NOTKNOWN
	The master mapping is not known.

	others
	specific to the implementation


Programming Example
For a programming example see Section Master Mapping - Safe Access. 
Notes
none
VME_MasterMapDump()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_MasterMapDump(void);
Parameters
none
Description
The VME_MasterMapDump() function dumps system parameters for all VMEbus master mappings to “stdout”.
Return Values
	VME_SUCCESS
	The master mappings were successfully dumped.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.


Programming Example
For a programming example see Section Master Mapping - Safe Access. 
Notes
none
· [bookmark: RTF310032003100310039003a00]VMEbus Error Handler
VME_BusErrorRegisterSignal()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_BusErrorRegisterSignal(int signal_number);
Parameters
	int signal_number
	in
	signal number to be sent in case of VMEbus error


Description
The VME_BusErrorRegisterSignal() function registers signal signal_number with the VMEbus library/driver. In case the VMEbus library/driver detects a VMEbus error and the VMEbus error did not occur during one of the following functions:
· VME_ReadCRCSR() or VME_WriteCRCSR(),
· VME_ReadSafeXXX() or VME_WriteSafeXXX(),
· VME_BlockTransferXXX(),
a signal with number signal_number will be sent to the process calling this function. If the process wants to handle the signal it must install a signal handler. Installing a signal handler is not part of this API. The value 0 for signal_number is used to “unregister” a signal from the VMEbus library/driver.
Return Values
	VME_SUCCESS
	The signal was successfully registered.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	others
	specific to the implementation


Programming Example
For a programming example see Section Master Mapping - Bus Error Handler. 
Notes
none
[bookmark: RTF340030003300320038003a00]VME_BusErrorInfo_t
Synopsis
in vme_rcc.h:

typedef struct {
	u_int 					vmebus_address;
	u_int					address_modifier;
	u_int					multiple;
} VME_BusErrorInfo_t;
Fields
	u_int vmebus_address
	address at which the VMEbus error occurred

	u_int address_modifier
	address modifier at which the VMEbus error occurred

	u_int multiple
	flag indicating if multiple VMEbus errors occurred


Description
The VME_BusErrorInfo_t type is used to retrieve information on a VMEbus error. The type definition is provided in the “vme_rcc.h” file.
Programming Example
For a programming example see Section Master Mapping - Bus Error Handler. 
Notes
none
VME_BusErrorInfoGet()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_BusErrorInfoGet(VME_BusErrorInfo_t* bus_error_info);
Parameters
	VME_BusErrorInfo_t* bus_error_info
	out
	information on VMEbus error


Description
The VME_BusErrorInfoGet() function returns information on the VMEbus error received. This function can be used in a bus error handler in order to determine where the bus error occurred.
Return Values
	VME_SUCCESS
	The bus error information was successfully returned.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	VME_NOBUSERROR
	There has not been a bus error; bus_error_info is empty.

	others
	specific to the implementation


Programming Example
For a programming example see Section Master Mapping - Bus Error Handler. 
Notes
This function is intended for use in the bus error signal handling function, see VME_BusErrorRegisterSignal().
· [bookmark: RTF310032003300330038003a00]VMEbus Slave Mapping
[bookmark: RTF350034003500330038003a00]VME_SlaveMap_t
Synopsis
in vme_rcc.h:
typedef struct {
	u_int 					system_iobus_address;
	u_int					window_size;
	u_int					address_width;
	u_int					options;
} VME_SlaveMap_t;
Fields
	u_int system_iobus_address
	(physical) base address of the user space to be mapped

	u_int window_size
	size of the user space in number of bytes

	u_int address_width
	address width to be used by the slave mapping

	u_int options
	other options, include read prefetching and write posting


Description
The VME_SlaveMap_t type is used to input information on a slave mapping for use in a VME_SlaveMap() function call. The type definition is provided in the “vme_rcc.h” file.
system_iobus_address must point at contiguous, locked and properly aligned user space. The user space can also be a physical resource, e.g. FIFO of the VMEbus master. Obtaining system_iobus_address for user space is not part of this API.
address_width is one of the following parameters (defined in “vme_rcc.h”):
	VME_A32
	32-bit addressing

	VME_A24
	24-bit addressing


options is a bit-wise combination of the following parameters and possibly some other implementation-specific ones (all defined in “vme_rcc.h”):
	VME_RP
	read prefetching

	VME_WP
	write posting


Programming Example
For a programming example see Section Slave Mapping. 
Notes
none
VME_SlaveMap()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_SlaveMap(VME_SlaveMap_t* slave_map, int* slave_mapping);
Parameters
	VME_SlaveMap_t* slave_map
	in
	information on the slave mapping

	int* slave_mapping
	out
	identifier of the slave mapping;
to be used in subsequent function calls


Description
The VME_SlaveMap() function creates a slave mapping defined by slave_map and returns the identifier slave_mapping which is to be used in subsequent function calls.
Return Values
	VME_SUCCESS
	The slave mapping was successfully created.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	others
	specific to the implementation


Programming Example
For a programming example see Section Slave Mapping. 
Notes
Some parameters for the slave mapping, e.g. for static mapping or for byte swapping, can be configured statically using the VMEbus configuration utility, see Section VMEbus Configuration Utility.
The window size of the created slave mapping will be at least as large as the size requested; it might be larger.
VME_SlaveMapVmebusAddress()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_SlaveMapVmebusAddress(int slave_mapping, u_int* vmebus_address);
Parameters
	int slave_mapping
	in
	identifier of the slave mapping
obtained in call to VME_SlaveMap()

	u_int* vmebus_address
	out
	VMEbus address associated to the slave mapping


Description
The VME_SlaveMapVmebusAddress() function returns the VMEbus address associated to slave_mapping. This address can be used by other VMEbus masters.
Return Values
	VME_SUCCESS
	The VMEbus address was successfully returned.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	VME_NOTKNOWN
	The slave mapping is not known.


Programming Example
For a programming example see Section Slave Mapping. 
Notes
none
VME_SlaveUnmap()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_SlaveUnmap(int slave_mapping);
Parameters
	int slave_mapping
	in
	identifier of the slave mapping
obtained in call to VME_SlaveMap()


Description
The VME_SlaveUnmap() function deletes the VMEbus slave mapping associated to slave_mapping. The identifier slave_mapping shall not be used after this function call.
Return Values
	VME_SUCCESS
	The slave mapping was successfully deleted.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	VME_NOTKNOWN
	The slave mapping is not known.

	others
	specific to the implementation


Programming Example
For a programming example see Section Slave Mapping. 
Notes
none
VME_SlaveMapDump()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_SlaveMapDump(void);
Parameters
none
Description
The VME_SlaveMapDump() function dumps system parameters for all VMEbus slave mappings to “stdout”.
Return Values
	VME_SUCCESS
	The slave mappings were successfully dumped.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.


Programming Example
For a programming example see Section Slave Mapping. 
Notes
none
· [bookmark: RTF330030003500370039003a00]VMEbus Block Transfers
[bookmark: RTF310036003600370037003a00]VME_BlockTransferItem_t
Synopsis
in vme_rcc.h:

typedef struct {		
	u_int			vmebus_address;
	u_int			system_iobus_address;
	u_int			size_requested;
	u_int			control_word;
	u_int			size_remaining;
	u_int			status_word;
} VME_BlockTransferItem_t;
Fields
	u_int vmebus_address
	VMEbus address

	u_int system_iobus_address
	system I/O bus address

	u_int size_requested
	size of requested transfer in number of bytes

	u_int control_word
	direction and type of block transfer; the type includes address mode and specifies possibly enhanced transfer protocols

	u_int size_remaining
	size of remaining transfer in number of bytes

	u_int status_word
	status of the block transfer


Description
The VME_BlockTransferItem_t type is used to describe a single block transfer in a block transfer list. This is a requested block transfer which might be split by the subsequent function calls into one or more actual VMEbus block transfers, e.g. for alignment and size reasons.
system_iobus_address must point to contiguous, locked and properly aligned memory. The memory management is not part of this API.
control_word specifies the direction and type of block transfer. The type includes the address mode and specifies possibly enhanced transfer protocols. control_word contains one of the following parameters (defined in “vme_rcc.h”):
	VME_DMA_D32W
	transfer data from system I/O bus to VMEbus using 32-bit words

	VME_DMA_D32R
	transfer data from VMEbus to system I/O bus using 32-bit words

	VME_DMA_D64W
	transfer data from system I/O bus to VMEbus using 64-bit words

	VME_DMA_D64R
	transfer data from VMEbus to system I/O bus using 64bit words

	VME_DMA_2EVMER
	transfer data from system I/O bus to VMEbus using 2eVME mode

	VME_DMA_2EVMEW
	transfer data from VMEbus to system I/O bus using 2eVME mode

	VME_DMA_2ESSTR
	transfer data from system I/O bus to VMEbus using 2eSST mode

	VME_DMA_2ESSTW
	transfer data from VMEbus to system I/O bus using 2eSST mode



control_word must be ORed bit-wise with one of the following address modes:
	VME_A32
	transfer data using 32-bit addressing

	VME_A24
	transfer data using 64-bit addressing



status_word and size_remaining are filled by the function VME_BlockTransferWait(). They indicate the status of each block in the block transfer list. The fields can be interpreted with the help of the VME_BlockTransferStatus() and VME_BlockTransferRemaining()functions.
Programming Example
For a programming example see Section Block Transfer - Detailed Functions. 
Notes
The block transfer list used by the application program can be independent of another block transfer list used by the VMEbus library/driver internally. This is because the actual block transfers carried out by the VMEbus library/driver might differ from the requested ones due to boundary and alignment restrictions.
On the Tundra Universe II VMEbus bridge chip, the PCI and VMEbus addresses must be aligned on a 4-byte boundary. In addition, the difference between the PCI and the VMEbus addresses must be a multiple of 8 byte.
[bookmark: RTF340031003100310035003a00]VME_BlockTransferList_t
Synopsis
in vme_rcc.h:

typedef struct {
	int 							number_of_items;
	VME_BlockTransferItem_t	list_of_items [VME_MAXBLOCK];
} VME_BlockTransferList_t;
Fields
	int number_of_items
	number of items used in the block transfer list

	VME_BlockTransferItem_t
list_of_items [VME_MAXBLOCK]
	list of block transfer items


Description
The VME_BlockTransferList_t type is used to define VMEbus block transfers. The type definition and the maximum number of blocks VME_MAXBLOCK are provided in the “vme_rcc.h” file.
Programming Example
For a programming example see Section Block Transfer - Detailed Functions. 
Notes
A single block transfer must use a block transfer list with only one VME_Block-TransferItem_t at list_of_items[0] and number_of_items = 1.

VME_BlockTransferInit()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_BlockTransferInit(VME_BlockTransferList_t* block_transfer_list, int* block_transfer);
Parameters
	VME_BlockTransferList_t* block_transfer_list
	in
	list of block transfers

	int* block_transfer
	out
	identifier of the block transfer;
to be used in subsequent function calls


Description
The VME_BlockTransferInit() function allocates resources for the VME_BlockTransferList_t block_transfer_list and returns the identifier block_transfer which is to be used in subsequent function calls. It might actually break up the block transfers into an internal list of actual VMEbus block transfers, e.g. for alignment and size reasons.
Return Values
	VME_SUCCESS
	The block transfer was successfully initialised.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	VME_NOMEM
	There is not enough memory to allocate the resources for the required block transfer list.

	VME_TOOLONG
	The internally generated block transfer list is too long.

	VME_NOSIZE
	The requested size is invalid.

	VME_ALIGN
	The addresses are not correctly aligned.

	others
	specific to the implementation


Programming Example
For a programming example see Section Block Transfer - Detailed Functions. 
Notes
none
VME_BlockTransferStart()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_BlockTransferStart(int block_transfer);
Parameters
	int block_transfer
	in
	identifier of the block transfer
obtained in call to VME_BlockTransferInit()


Description
The VME_BlockTransferStart() function starts the block transfer associated to block_transfer obtained by a call to VME_BlockTransferInit().
Return Values
	VME_SUCCESS
	The block transfer was successfully started.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	VME_NOTKNOWN
	The block transfer is not known.

	VME_DMABUSY
	The DMA engine(s) are busy.

	others
	specific to the implementation


Programming Example
For a programming example see Section Block Transfer - Detailed Functions. 
Notes
This function shall not be blocking. The implementation of this function shall return immediately, either indicating that the resources of the DMA engine(s) are not available at the moment (VME_DMABUSY), or by using internal queuing of tasks.
VME_BlockTransferWait()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_BlockTransferWait(int block_transfer, int time_out, VME_BlockTransferList_t* block_transfer_list);
Parameters
	int block_transfer
	in
	identifier of the block transfer
obtained in call to VME_BlockTransferInit()

	int time_out
	in
	time-out parameter, see description

	VME_BlockTransferList_t* block_transfer_list
	out
	list of block transfers


Description
The VME_BlockTransferWait() function waits until the block transfer associated to block_transfer is finished or until the time-out has elapsed, whichever occurs first.
time_out is an estimate for the time-out period in milliseconds. The value 0 is used to bypass the time-out mechanism and to return immediately, indicating the status of the block transfer. The value -1 is used to bypass the time-out mechanism and to wait until the end of the block transfer.
The return code contains general status information of the whole block transfer; the individual status of a single block transfer can be checked using block_transfer_list and the VME_BlockTransferStatus() and the VME_Block-TransferRemaining() functions.
Return Values
	VME_SUCCESS
	The block transfer was successfully started

	VME_NOTOPEN
	The VMEbus library/driver was not opened

	VME_NOTKNOWN
	The block transfer is not known

	VME_INVALIDTO
	The time-out is invalid

	VME_TIMEOUT
	A time-out occurred (if time_out > 0)

	VME_DMABUSY
	The block transfer is busy (if time_out = 0)

	others
	specific to the implementation


Programming Example
For a programming example see Section Block Transfer - Detailed Functions. 
Notes
This function is generally blocking, except for time_out  0.
VME_BlockTransferEnd()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_BlockTransferEnd(int block_transfer);
Parameters
	int block_transfer
	in
	identifier of the block transfer
obtained in call to VME_BlockTransferInit()


Description
The VME_BlockTransferEnd() function releases the resources allocated for the block transfer associated to block_transfer. It must be called at the end of a block transfer. The identifier block_transfer shall not be used after this function call.
Return Values
	VME_SUCCESS
	The block transfer was successfully ended.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	VME_NOTKNOWN
	The block transfer is not known.

	others
	specific to the implementation


Programming Example
For a programming example see Section Block Transfer - Detailed Functions. 
Notes
none
VME_BlockTransfer()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_BlockTransfer(VME_BlockTransferList_t* block_transfer_list, int time_out);
Parameters
	VME_BlockTransferList_t* block_transfer_list
	in/out
	list of block transfers

	int time_out
	in
	time-out parameter, see description


Description
The VME_BlockTransfer() function uses the VME_BlockTransferList_t block_transfer_list and calls the following functions in the order shown:
· VME_BlockTransferInit(),
· VME_Block-TransferStart(),
· VME_BlockTransferWait() and
· VME_BlockTransferEnd().
time_out is the parameter for the VME_BlockTransferWait() function call.
Return Values
	VME_SUCCESS
	The block transfer was successfully started.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	VME_INVALIDTO
	The time-out is invalid.

	VME_TIMEOUT
	A time-out occurred (if time_out > 0).

	others
	specific to the implementation


Programming Example
For a programming example see Section Block Transfer - Integrated Function. 
Notes
This function is generally blocking. The value 0 for time_out in this function shall not be used because the VME_BlockTransferWait() function will return immediately and the VME_Block-TransferEnd() function will be called regardless of the state of the transfer.
VME_BlockTransferStatus()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_BlockTransferStatus(VME_BlockTransferList_t* block_transfer_list, int position_of_block, VME_ErrorCode_t* status);
Parameters
	VME_BlockTransferList_t* block_transfer_list
	in
	list of block transfers

	int position_of_block
	in
	position of block in block transfer list

	VME_ErrorCode_t* status
	out
	status of block transfer at position position_of_block


Description
The VME_BlockTransferStatus() function returns the status code for the block transfer at position_of_block in block_transfer_list. This function is added for convenience, the function is equivalent to the following statement:
status = block_transfer_list.list_of_items[position_of_block].status_word;
Return Values
	VME_SUCCESS
	The status was successfully returned.

	VME_RANGE
	The position is outside the range of the block transfer list.


Programming Example
For a programming example see Section Block Transfer - Detailed Functions. 
Notes
none

VME_BlockTransferRemaining()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_BlockTransferRemaining(VME_BlockTransferList_t block_transfer_list, int position_of_block, u_int* remaining);
Parameters
	VME_BlockTransferList_t* block_transfer_list
	in
	list of block transfers

	int position_of_block
	in
	position of block in block transfer list

	u_int* remaining
	out
	number of bytes remaining to be transferred at position position_of_block


Description
The VME_BlockTransferRemaining () function returns the number of bytes remaining to be transferred for the block transfer at position_of_block in block_transfer_list. After successful transfer this value shall be equal to 0. This function is added for convenience, it is equivalent to the following statement:
remaining = block_transfer_list.list_of_items[position_of_block].size_remaining;
Return Values
	VME_SUCCESS
	The byte number remaining was successfully returned.

	VME_RANGE
	The position is outside the range of the block transfer list.


Programming Example
For a programming example see Section Block Transfer - Detailed Functions. 
Notes
none
VME_BlockTransferDump()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_BlockTransferDump(void);
Parameters
none
Description
The VME_BlockTransferDump() function dumps the status of the DMA engine(s) to “stdout”.
Return Values
	VME_SUCCESS
	The status of the DMA engine(s) was successfully dumped.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.


Programming Example
For a programming example see Section Block Transfer - Detailed Functions. 
Notes
none
· [bookmark: RTF390038003100320037003a00]VMEbus Interrupts
[bookmark: RTF380034003800340034003a00]VME_InterruptItem_t
Synopsis
in vme_rcc.h:
typedef struct {		
	u_char			vector;
	u_int			level;
	u_int			type;
} VME_InterruptItem_t;
Fields
	u_char vector
	VMEbus interrupt vector

	u_int level
	VMEbus interrupt level

	u_int type
	flag indicating the type of interrupt handling to be used
(see description)


Description
The VME_InterruptItem_t type is used to describe a single interrupt in a list of interrupts. Each interrupt is defined by the vector, the level and the type of the VMEbus interrupt that the application program requests to be linked to.
type specifies the interrupt handling to be used for the interrupt. The following types are defined (in “vme_rcc.h”):
	VME_INT_ROAK
	“Release-On-Acknowledge”

	VME_INT_RORA
	“Release-On-Register-Access”


Programming Example
For a programming example see Section Interrupts - Synchronous Method. 
Notes
The interrupt handling type is required in order to distinguish VMEbus interrupters of RORA and ROAK type. The interrupt handling type can be configured statically using the VMEbus configuration utility, see Section VMEbus Configuration Utility. Usually, the type will be allowed to be configured individually for each VMEbus interrupt level. A given level must therefore only be used by VMEbus interrupts of the associated type.
[bookmark: RTF310032003300390034003a00]VME_InterruptList_t
Synopsis
in vme_rcc.h:
typedef struct {
	int 							number_of_items;
	VME_InterruptItem_t			list_of_items [VME_MAXINTERRUPT];
} VME_InterruptList_t;
Fields
	int number_of_items
	number of items used in the interrupt list

	VME_InterruptItem_t list_of_items[VME_MAXINTERRUPT]
	list of interrupt items


Description
The VME_InterruptList_t type is used to define a list of interrupts. The type definition and the maximum number of interrupts VME_MAXINTERRUPT are provided in the “vme_rcc.h” file.
Programming Example
For a programming example see Section Interrupts - Synchronous Method. 
Notes
A single interrupt must use an interrupt list with only one VME_InterruptItem_t at list_of_items[0] with number_of_items = 1.
VME_InterruptLink()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_InterruptLink(VME_InterruptList* vmebus_interrupt_list, int* interrupt);
Parameters
	VME_InterruptList* vmebus_interrupt_list
	in
	list of VMEbus interrupts

	int* interrupt 
	out
	identifier of the interrupt;
to be used in subsequent function calls


Description
The VME_InterruptLink() function creates a link between a list of VMEbus interrupts and the application program. It returns the identifier interrupt which is to be used in subsequent function calls. 
By default, after creation of the interrupt link, the application program applies a synchronous method waiting for interrupts using the VME_InterruptWait() function. If the application program wants to apply an asynchronous method, the VME_InterruptRegisterSignal() function must be used.
Return Values
	VME_SUCCESS
	The link to the VMEbus interrupt was successfully created.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	VME_TOOMANYINT
	The list of interrupts requested is too long.

	VME_ILLINTLEVEL
	The interrupt level is illegal.

	VME_ILLINTTYPE
	The interrupt type is illegal.

	VME_INTCONF
	The list of interrupts was not linked to the application program
because an interrupt is in conflict with the static configuration.

	VME_INTUSED
	The list of interrupts cannot be linked to the application program
because an interrupt is already being used.

	others
	specific to the implementation


Programming Example
For a programming example see Section Interrupts - Synchronous Method. 
Notes
A ROAK (“Release-On-AcKnowledge”) type of VMEbus interrupter releases the interrupt after the VMEbus Acknowledge cycle; the VMEbus driver therefore does not disable reception of subsequent interrupts. A RORA (“Release-On-Register-Access”) type of VMEbus interrupter releases the interrupt only after access to a register of the VMEbus module; the VMEbus driver therefore disables reception of subsequent interrupts on the same VMEbus interrupt level.
Some parameters for the VMEbus interrupts, e.g. for interrupt levels and the interrupt handling types, can be configured statically using the VMEbus configuration utility, see Section 4.1. The VME_InterruptLink() function checks if the requested VMEbus interrupt level has been enabled and configured for the requested type. A given VMEbus vector can only be used by one process.
[bookmark: RTF370036003600350037003a00]VME_InterruptInfo_t
Synopsis
in vme_rcc.h:

typedef struct {
	u_char					vector;
	u_int					level;
	u_int					type;
	u_int					multiple;
} VME_InterruptInfo_t;
Fields
	u_char vector
	VMEbus interrupt vector

	u_int level
	VMEbus interrupt level

	u_int type
	type of VMEbus interrupter (ROAK or RORA)

	u_int multiple
	flag indicating if the VMEbus interrupt occurred multiple times


Description
The VME_InterruptInfo_t type is used to retrieve information on a VMEbus interrupt. The type definition is provided in the “vme_rcc.h” file.
Programming Example
For a programming example see Section Interrupts - Asynchronous Method. 
Notes
none
VME_InterruptWait()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_InterruptWait(int interrupt, int time_out, VME_InterruptInfo_t* interrupt_info);
Parameters
	int interrupt 
	in
	identifier of the interrupt
obtained in call to VME_InterruptLink()

	int time_out
	in 
	time-out parameter, see description

	VME_InterruptInfo_t* interrupt_info
	out
	information on VMEbus interrupts


Description
The VME_InterruptWait() function waits until an interrupt associated to interrupt is received or until the time-out has elapsed, whichever occurs first.
time_out is an estimate for the time-out period in milliseconds. The value 0 is used to bypass the time-out mechanism and to return immediately, indicating the status of the interrupt. The value -1 is used to bypass the time-out mechanism and to wait until an interrupt is received.
After a VMEbus interrupt has been received interrupt_info contains the information on the VMEbus interrupt actually received. Depending on time_out and on the return code, interrupt_info might be empty.
Return Values
	VME_SUCCESS
	A VMEbus interrupt was successfully received.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	VME_NOTKNOWN
	The interrupt is not known.

	VME_TIMEOUT
	A time-out occurred (if time_out > 0).

	VME_NOINTERRUPT
	No interrupt has been received (if time_out = 0).

	VME_INTBYSIGNAL
	The function returned because a signal was received.

	others
	specific to the implementation


Programming Example
For a programming example see Section Interrupts - Synchronous Method. 
Notes
This function is generally blocking, except for time_out  0.
VME_InterruptRegisterSignal()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_InterruptRegisterSignal(int interrupt, int signal_number);
Parameters
	int interrupt 
	in
	identifier of the interrupt
obtained in call to VME_InterruptLink()

	int signal_number
	in
	signal number to be sent in case of VMEbus interrupt


Description
The VME_InterruptRegisterSignal() function registers signal signal_number with the VMEbus library/driver. In case the VMEbus library/driver receives a VMEbus interrupt of type interrupt, a signal with number signal_number will be sent to the process calling this function. If the process wants to handle the signal it must install a signal handler. Installing a signal handler is not part of this API. The value 0 for signal_number is used to “unregister” a signal from the VMEbus library/driver.
Return Values
	VME_SUCCESS
	A signal was successfully registered.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	VME_NOTKNOWN
	The interrupt is not known.

	others
	specific to the implementation


Programming Example
For a programming example see Section Interrupts - Asynchronous Method. 
Notes
none
VME_InterruptInfoGet()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_InterruptInfoGet(int interrupt, VME_InterruptInfo_t* interrupt_info);
Parameters
	int interrupt
	in
	identifier of the interrupt
obtained in call to VME_InterruptLink()

	VME_InterruptInfo_t* interrupt_info
	out
	information on VMEbus interrupts


Description
The VME_InterrupInfotGet() function returns information on the VMEbus interrupt received. The function can be called at any time. It returns VME_NOINTERRUPT if no interrupt has been received.
The VME_InterruptInfoGet() function must be called for each interrupt, either after a VME_InterruptWait() function or in a signal handler associated to that interrupt using the VME_InterruptRegisterSignal() function.
Return Values
	VME_SUCCESS
	The interrupt information was successfully returned.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	VME_NOTKNOWN
	The interrupt is not known.

	VME_NOINTERRUPT
	There has not been an interrupt; interrupt_info is empty.

	others
	specific to the implementation


Programming Example
For a programming example see Section Interrupts - Asynchronous Method. 
Notes
none
VME_InterruptReenable()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_InterruptReenable(int interrupt);
Parameters
	int interrupt 
	in
	identifier of the interrupt
obtained in call to VME_InterruptLink()


Description
The VME_InterruptRenable() function re-enables the interrupt associated to interrupt, if the interrupt received came from a “Release-On-Register-Access” (RORA) interrupter.
The VME_InterruptReenable() function must be called in case the interrupt received came from a RORA interrupter. If it came from a ROAK interrupter the interrupt will be automatically be re-enabled by the VMEbus library/driver.
Return Values
	VME_SUCCESS
	The VMEbus interrupt was successfully enabled.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	VME_NOTKNOWN
	The interrupt is not known.

	others
	specific to the implementation


Programming Example
For a programming example see Section Block Transfer - Detailed Functions. 
Notes
The VMEbus configuration utility is used to associate VMEbus interrupt levels to either of the two different types of VMEbus interrupters. When the VMEbus library/driver receives an interrupt from a level which has been associated to RORA interrupters it disables that level. The application program will receive the interrupt after a call to the VME_InterruptWait() function or using a signal handler previously installed with the VME_Interrupt-Signal-Register() function. After handling the interrupt, the application program must call the VME_InterruptReenable() function in order to re-enable the associated VMEbus level. 
Enabling VMEbus interrupts generated by a VMEbus interrupter is independent of this function and not part of this API.
VME_InterruptUnlink()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_InterruptUnlink(int interrupt);
Parameters
	int interrupt 
	in
	identifier of the interrupt
obtained in call to VME_InterruptLink()


Description
The VME_InterruptUnlink() function deletes the link between the VMEbus interrupts associated to interrupt and the application program. The identifier interrupt shall not be used after this function call.
Return Values
	VME_SUCCESS
	The link to the interrupt was successfully deleted.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	VME_NOTKNOWN
	The interrupt is not known.

	others
	specific to the implementation


Programming Example
For a programming example see Section Interrupts - Synchronous Method. 
Notes
none
VME_InterruptGenerate()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_InterruptGenerate(u_char vector, u_int level);
Parameters
	u_char vector
	in
	VMEbus interrupt vector

	u_int level
	in
	VMEbus interrupt level


Description
The VME_InterruptGenerate() function generates a VMEbus interrupt at level level with vector vector. This function can be used in order to send an interrupt to another VMEbus interrupt handler.
Return Values
	VME_SUCCESS
	The interrupt was successfully generated.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.

	VME_IRGBUSY
	The VMEbus interrupter is busy.

	others
	specific to the implementation


Programming Example
For a programming example see Section Example 11: Interrupts - Generate Interrupts.
Notes
Some parameters for VMEbus interrupt generation, e.g. for the interrupt level, can be configured statically using the VMEbus configuration utility, see Section VMEbus Configuration Utility.
VME_InterruptDump()
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_InterruptDump(void);
Parameters
none
Description
The VME_InterruptDump() function dumps system parameters associated to interrupt handling and generation to “stdout”.
Return Values
	VME_SUCCESS
	The status of the interrupt handling was successfully dumped.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.


Programming Example
For a programming example see Section Interrupts - Synchronous Method. 
Notes
none

· Miscellaneous functions
VME_SendSysreset
Synopsis
#include “vme_rcc.h”
VME_ErrorCode_t VME_SendSysreset(void);
Parameters
none
Description
The VME_SendSysreset() function asserts the SYSRESET* line on the VMEbus backplane for 200ms. Keep in mind that SYSRESET is seen by all VMEbus modules in the crate (including the module that sends it). It may therefore be necessary to mask SYSRESET on certain modules to avoid loss of configuration data or a reboot of a SBC.
Return Values
	VME_SUCCESS
	The status of the interrupt handling was successfully dumped.

	VME_NOTOPEN
	The VMEbus library/driver was not opened.


Programming Example
none
Notes
none
· [bookmark: RTF350034003800390030003a00]Programming Examples
· [bookmark: RTF380034003300330038003a00]Example 1: Functions for Return Codes
#include “vme_rcc.h”
...

VME_ErrorCode_t		error_code;
char					error_string[VME_MAXSTRING];
u_int				error_number;
...

error_code = VME_Open();
if(error_code != VME_SUCCESS) {
		/* compare error code to VME_SUCCESS */

	VME_ErrorPrint(error_code);
		/* print error code to stdout */

	return(error_code);
}
...

error_code = VME_Close();
if(error_code != VME_SUCCESS) {
		/* compare error code to VME_SUCCESS */

	VME_ErrorString(error_code,error_string);
		/* print error code to char string */

	printf(“ERROR in example program: %s\n”,error_string);
	return(error_code);
}
...

error_code = VME_Close();
VME_ErrorNumber(error_code,error_number);
		/* convert error code to error number */

if(error_number == VME_NOTOPEN) {
		/* compare error number to return value */

	printf(“ERROR in example program: already closed\n”);
	return(error_code);
}
· [bookmark: RTF380032003700390030003a00]Example 2: CR/CSR Space
#include “vme_rcc.h”
...

int					slot_number					= 5;
u_int				module_identifier;
u_int				vmebus_address				= 0x22000000;

VME_ErrorCode_t		error_code;
...

if(error_code = VME_ReadCRCSR(slot_number, VME_CR_MODULEID, &module_identifier)) {
		/* read from the CR/CSR space: e.g. module identifier */

	VME_ErrorPrint(error_code);
	return(error_code);
}
...

if(error_code = VME_WriteCRCSR(slot_number, VME_CSR_ADER0, vmebus_address)) {
		/* write to CR/CSR space:
			e.g. base address to address decode comparator */

	VME_ErrorPrint(error_code);
	return(error_code);
}
· [bookmark: RTF350034003200330032003a00]Example 3: Master Mapping - Safe Access
#include “vme_rcc.h”
...

VME_MasterMap_t		master_map;
int					master_mapping;
u_int				value_u_int;
u_int 				address_offset		= 0x200;

VME_ErrorCode_t		error_code;
u_int				error_number;
...


master_map.vmebus_address					= 0x22000000;
master_map.window_size						= 0x00800000;
master_map.address_modifier				= VME_AM09;
master_map.options							= 0;
		/* fill master mapping input information */

if(error_code = VME_MasterMap(&master_map, &master_mapping)) {
		/* create a new master mapping */

	VME_ErrorPrint(error_code);
	return(error_code);
}
...


if(error_code = VME_ReadSafeUInt(master_mapping, address_offest, &value_u_int)) {
		/* read safely from the master mapping */

	VME_ErrorNumber(error_code, &erorr_number);
	if(error_number != VME_BUSERROR) {
		printf(“ERROR in example program: bus error\n”);
	}
	return(error_code);
}
...

		/* continued on next page */







value_u_int = 0xFFFFFFFF;
if(error_code = VME_WriteSafeUInt(master_mapping, address_offset, value_u_int)) {
		/* write safely to the master mapping */

	VME_ErrorNumber(error_code, &erorr_number);
	if(error_number != VME_BUSERROR) {
		printf(“ERROR in example program: bus error\n”);
	}
	return(error_code);
}
...


VME_MasterMapDump();
		/* dump system parameters for all master mappings */
...


if(error_code = VME_MasterUnmap(master_mapping)) {
		/* delete the master mapping */

	VME_ErrorPrint(error_code);
	return(error_code);
}
· [bookmark: RTF390033003200350033003a00]Example 4: Master Mapping - Fast Access
#include “vme_rcc.h”
...

VME_MasterMap_t		master_map;
int					master_mapping;
u_int				virtual_address;
u_int				value_u_int;
u_int 				address_offset		= 0x200;

VME_ErrorCode_t		error_code;
...

master_map.vmebus_address					= 0x22000000;
master_map.window_size						= 0x00800000;
master_map.address_modifier				= VME_AM09;
master_map.options							= 0;
		/* fill master mapping input information */

if(error_code = VME_MasterMap(&master_map, &master_mapping)) {
		/* create a new master mapping */

	VME_ErrorPrint(error_code);
	return(error_code);
}

VME_MasterMapVirtualAddress(master_mapping, &virtual_address);
		/* get virtual address for the master mapping */
...


VME_ReadFastUInt(master_mapping, address_offset, &value_u_int);												
		/* read fast from the master mapping, ignore bus error */
		/* alternatively use */
value_u_int = *(u_int *)(virtual_address + address_offset);
...


value_u_int = 0xFFFFFFFF;
VME_WriteSafeUInt(master_mapping, address_offset, value_u_int);											
		/* write fast to the master mapping, ignore bus error */
		/*	alternatively use */
*(u_int *)(virtual_address + address_offset) = 0xFFFFFFFF;
...

		/* continued on next page */



if(error_code = VME_MasterUnmap(master_mapping)) {
		/* delete the master mapping */

	VME_ErrorPrint(error_code);
	return(error_code);
}
· [bookmark: RTF310033003000370038003a00]Example 5: Master Mapping - Bus Error Handler
#include “vme_rcc.h”
#include <signal.h>
...

void my_bus_error_handler(int sig) {
			/* bus error handler function */

	static VME_BusErrorInfo_t			bus_error_info;
	static u_int							error_code;

	if(error_code = VME_BusErrorInfoGet(&bus_error_info) {
			/* get information on bus error */

		VME_ErrorPrint(error_code);
		return(error_code);
	}

	printf(“ERROR in example program: bus error at address = %08x,
			am = %02x\n”,bus_error_info.vmebus_address,
							bus_error_info.address_modifier);
}
...

VME_MasterMap_t		master_map;
int					master_mapping;
u_int				value_u_int;
u_int 				address_offset		= 0x200;

VME_ErrorCode_t		error_code;
...


master_map.vmebus_address					= 0x22000000;
master_map.window_size						= 0x00800000;
master_map.address_offset					= VME_AM09;
master_map.options							= 0;
		/* fill master mapping input information */

if(error_code = VME_MasterMap(&master_map, &master_mapping)) {
		/* create a new master mapping */

	VME_ErrorPrint(error_code);
	return(error_code);
}
...

		/* continued on next page */

		/* install bus error handler for signal,
			not part of this API, see function sigaction() */
...


if(error_code = VME_BusErrorRegisterSignal(SIGBUS)) {
		/* register signal for bus error handling */

	VME_ErrorPrint(error_code);
	return(error_code);
}
...


VME_ReadFastUInt(master_mapping, address_offset, &value_u_int);
		/* read fast from the master mapping,
			bus error will be caught by example bus error handler */
...


if(error_code = VME_BusErrorRegisterSignal(0)) {
		/* un-register signal for bus error handling */

	VME_ErrorPrint(error_code);
	return(error_code);
}
...


if(error_code = VME_MasterUnmap(master_mapping)) {
		/* delete the master mapping */

	VME_ErrorPrint(error_code);
	return(error_code);
}
· [bookmark: RTF360031003200380039003a00]Example 6: Slave Mapping
#include “vme_rcc.h”
...

VME_SlaveMap_t		slave_map;
int					slave_mapping;
u_int				vmebus_address;

VME_ErrorCode_t		error_code;
...

slave_map.window_size						= 0x00800000;
slave_map.address_modifier				= VME_AM09;
slave_map.options							= 0;
		/* fill master mapping input information */

		/* obtain contiguous, memory-locked and aligned user_space,
			not part of this API */
slave_map.system_iobus_address = my_pci_allocate();

if(error_code = VME_SlaveMap(&slave_map, &slave_mapping)) {
		/* create a new slave mapping */

	VME_ErrorPrint(error_code);
	return(error_code);
}
...


VME_SlaveMapVmebusAddress(slave_mapping, &vmebus_address);
		/* get VMEbus address for the slave mapping,
			to be used by a VMEbus master */
...
		/* read from and write to user space,
			not part of this API */
...


VME_SlaveMapDump();
		/* dump system parameters for all slave mappings */
...

if(error_code = VME_SlaveUnmap(slave_mapping)) {
		/* delete the slave mapping */

	VME_ErrorPrint(error_code);
	return(error_code);
}
· [bookmark: RTF380034003800320036003a00]Example 7: Block Transfer - Detailed Functions
#include “vme_rcc.h”
...

u_int						pci_address;
VME_BlockTransferList_t		block_transfer_list;
int							block_transfer;
VME_ErrorCode_t				status;
int							remaining;
int							time_out				= 10;
		/* time-out about 10 msec */

VME_ErrorCode_t				error_code;
char							error_string[VME_MAXSTRING];
...

		/* get contiguous, memory-locked and aligned user space,
			not part of this API */
sys_address = my_pci_allocate();
...


block_transfer_list.list_of_items[0].vmebus_address		= 0x22000200;
block_transfer_list.list_of_items[0].system_iobus_address		= pci_address;
block_transfer_list.list_of_items[0].size_requested		= 0x100;
block_transfer_list.list_of_items[0].control_word			= VME_DMA_D32R;
		/* fill parameters for first block transfer */

block_transfer_list.list_of_items[1].vmebus_address		= 0x23000200;
block_transfer_list.list_of_items[1].system_iobus_address	= pci_address + 0x100;
block_transfer_list.list_of_items[1].size_requested		= 0x100;
block_transfer_list.list_of_items[1].control_word			= VME_DMA_D32R;
		/* fill parameters for second block transfer */

block_transfer_list.number_of_items = 2;
		/* total number of block transfers */

if(error_code = VME_BlockTransferInit(&block_transfer_list, &block_transfer) {
		/* initialise block transfer */

	VME_ErrorPrint(error_code);
	return(error_code);
}
...

		/* continued on next page */


if(error_code = VME_BlockTransferStart(block_transfer) {
		/* start block transfer */

	VME_ErrorPrint(error_code);
	return(error_code);
}
...


if(error_code = VME_BlockTransferWait(block_transfer, time_out, &block_transfer_list) {
		/* wait for block transfer */

	for(i=0; i< block_transfer_list.number_of_items; i++) { 

		if(!VME_BlockTransferStatus(block_transfer_list,i,&status)) {
		/* check status of each block transfer */

			VME_ErrorString(status,error_string);
			printf(“ERROR in example program: block = %d, status = %s\n”,
				i,error_string);
		}
		if(!VME_BlockTransferRemaining(block_transfer_list,i,&remaining)) {
		/* check remaining words of each block transfer */

			printf(“ERROR in example program: block = %d, remaining = %d\n”,
				i,remaining);
		}	
	}	
	return(error_code);
}
...


VME_BlockTransferDump();
		/* dump system parameters for all DMA engines */
...


if(error_code = VME_BlockTransferEnd(block_transfer) {
		/* end block transfer */

	VME_ErrorPrint(error_code);
	return(error_code);
}
· [bookmark: RTF310031003200310035003a00]Example 8: Block Transfer - Integrated Function
#include “vme_rcc.h”
...

u_int						pci_address;
VME_BlockTransferList_t		block_transfer_list;
int							block_transfer;
VME_ErrorCode_t				status;
int							remaining;
int							time_out				= 10;
		/* time-out about 10 msec */

VME_ErrorCode_t				error_code;
char							error_string[VME_MAXSTRING];
...

		/* get contiguous, memory-locked and aligned user space,
			not part of this API */
sys_address = my_pci_allocate();
...


block_transfer_list.list_of_items[0].vmebus_address		= 0x22000200;
block_transfer_list.list_of_items[0].system_iobus_address		= pci_address;
block_transfer_list.list_of_items[0].size_requested		= 0x100;
block_transfer_list.list_of_items[0].control_word			= VME_DMA_D32R;
		/* fill parameters for first block transfer */

block_transfer_list.list_of_items[1].vmebus_address		= 0x23000200;
block_transfer_list.list_of_items[1].system_iobus_address		= pci_address + 0x100;
block_transfer_list.list_of_items[1].size_requested		= 0x100;
block_transfer_list.list_of_items[1].control_word			= VME_DMA_D32R;
		/* fill parameters for second block transfer */

block_transfer_list.number_of_items = 2;
		/* total number of block transfers */

		/* continued on next page */











if(error_code = VME_BlockTransfer(&block_transfer_list, time_out) {
		/* integrated function for block transfer */

	for(i=0; i< block_transfer_list.number_of_items; i++) { 

		if(!VME_BlockTransferStatus(block_transfer_list,i,&status)) {
		/* check status of each block transfer */

			VME_ErrorString(status,error_string);
			printf(“ERROR in example program: block = %d, status = %s\n”,
				i,error_string);
		}

		if(!VME_BlockTransferRemaining(block_transfer_list,i,&remaining)) {
		/* check remaining words of each block transfer */

			printf(“ERROR in example program: block = %d, remaining = %d\n”,
				i,remaining);
		}	
	}	
	return(error_code);
}
· [bookmark: RTF370039003600300036003a00]Example 9: Interrupts - Synchronous Method
#include “vme_rcc.h”
...

VME_InterruptList_t			interrupt_list;
int							interrupt;
VME_InterruptInfo_t			interrupt_info;
int							time_out				= 100000;
		/* time-out about 100 sec */

VME_ErrorCode_t				error_code;
u_int						error_number;
...


interrupt_list.list_of_items[0].vector					= 0x11;
interrupt_list.list_of_items[0].level						= 1;
interrupt_list.list_of_items[0].type						= VME_INT_RORA;
		/* fill parameters for first interrupt */


interrupt_list.list_of_items[1].vector					= 0x22;
interrupt_list.list_of_items[1].level					= 2;
interrupt_list.list_of_items[1].type						= VME_INT_ROAK;
		/* fill parameters for second interrupt */

interrupt_list.number_of_items = 2;
		/* total number of interrupts */


if(error_code = VME_InterruptLink(&interrupt_list, &interrupt) {
		/* link VMEbus interrupt list to application program */

	VME_ErrorPrint(error_code);
	return(error_code);
}
...

		/* continued on next page */










if(error_code = VME_InterruptWait(interrupt, time_out, &interrupt_info){
		/* wait for interrupt */

	VME_ErrorNumber(error_code,error_number);
		/* convert error code to error number */

	if(error_number == VME_TIMEOUT) {
		/* compare error number to return value */

		printf(“ERROR in example program: no interrupt in 100 sec\n”);
	}
	else {
		VME_ErrorPrint(error_code);
	}
	return(error_code);
}

if(error_code = VME_InterruptInfoGet(&interrupt_info) {
		/* get information on interrupt */

	VME_ErrorPrint(error_code);
	return(error_code);
}

if(interrupt_info.level == 1) {
		/* interrupt from a level assigned to RORA interrupters? */

	if(error_code = VME_InterruptRenable(interrupt) {
		/* re-enable interrupt => can wait again on interrupt */

		VME_ErrorPrint(error_code);
		return(error_code);
	}
}
...


VME_InterruptDump();
		/* dump system parameters for all VMEbus interrupts */
...


if(error_code = VME_InterruptUnlink(interrupt) {
		/* unlink VMEbus interrupt list from application program */

	VME_ErrorPrint(error_code);
	return(error_code);
}
· [bookmark: RTF390030003100340037003a00]Example 10: Interrupts - Asynchronous Method
#include “vme_rcc.h”
#include <signal.h>
...

int global_interrupt;
...

void my_interrupt_handler(int sig) {
			/* interrupt handler function */

	static VME_InterruptInfo_t		interrupt_info;
	static VME_ErrorCode_t		errod_code;

	if(error_code = VME_InterruptInfoGet(global_interrupt, &interrupt_info) {
			/* get information on interrupt */

		VME_ErrorPrint(error_code);
		return;
	}

	printf(“INTERRUPT in example program: vector =%02x, multiple =
				%d\n”,		interrupt_info.vector,
							interrupt.multiple);

	if(interrupt_info.level == 1) {
			/* interrupt from a level assigned to RORA interrupters? */

		if(error_code = VME_InterruptRenable(global_interrupt) {
			/* re-enable interrupt => can wait again on interrupt */

			VME_ErrorPrint(error_code);
			return(error_code);
		}
	}
...

}
...

VME_InterruptList_t			interrupt_list;
VME_InterruptInfo_t			interrupt_info;
int							time_out				= 100000;
		/* time-out about 100 sec */

VME_ErrorCode_t				error_code;
u_int						error_number;
...
		/* continued on next page */
interrupt_list.list_of_items[0].vector					= 0x11;
interrupt_list.list_of_items[0].level						= 1;
interrupt_list.list_of_items[0].type						= VME_INT_RORA;
		/* fill parameters for first interrupt */

interrupt_list.list_of_items[1].vector					= 0x22;
interrupt_list.list_of_items[1].level					= 2;
interrupt_list.list_of_items[1].type						= VME_INT_ROAK;
		/* fill parameters for second interrupt */

interrupt_list.number_of_items = 2;
		/* total number of interrupts */

if(error_code = VME_InterruptLink(&interrupt_list, &global_interrupt) {
		/* link VMEbus interrupt list to application program */

	VME_ErrorPrint(error_code);
	return(error_code);
}
...


if(error_code = VME_InterruptRegisterSignal(global_interrupt,SIGBUS) {
		/* register SIGBUS signal for VMEbus interrupt list */

	VME_ErrorPrint(error_code);
	return(error_code);
}
...
		/* install example interrupt handler for SIGBUS signal,
			not part of this API, see function sigaction() */

		/* VMEbus interrupts will be caught asynchronously by
			example interrupt handler */
...


if(error_code = VME_InterruptRegisterSignal(global_interrupt,0) {
		/* (un-)register signal for VMEbus interrupt list */

	VME_ErrorPrint(error_code);
	return(error_code);
}

if(error_code = VME_InterruptUnlink(global_interrupt) {
		/* unlink VMEbus interrupt list from application program */

	VME_ErrorPrint(error_code);
	return(error_code);
}
· [bookmark: RTF390032003000330037003a00]Example 11: Interrupts - Generate Interrupts
#include “vme_rcc.h”
#include <signal.h>
...

u_int							level = 1;
u_int							vector = 0x11;

VME_ErrorCode_t					error_code;
...


if(error_code = VME_InterruptGenerate(vector, level) {
		/* generate VMEbus interrupt */

	VME_ErrorPrint(error_code);
	return(error_code);
}
· [bookmark: RTF340032003800350031003a00]VMEbus Utility Programs
Two utility programs can accompany the API implementation: a utility program to configure the VMEbus statically must accompany the VMEbus API, if the implementation requires this. A utility program to test and debug the VMEbus (and the API implementation) and a facility to scan the VMEbus address space shall always accompany the VMEbus API.
· [bookmark: RTF380036003300350034003a00]VMEbus Configuration Utility
The VMEbus configuration utility (e.g. named “vmeconfig”), if required by the API implementation, is used to configure some static parameters necessary to use the VMEbus. It is used, in particular, to configure the following parameters:
· static mapping parameters for VMEbus CR/CSR space;
· static mapping parameters for VMEbus master and slave mappings;
· byte swapping capabilities of the VMEbus bridge;
· enabling and disabling of VMEbus interrupt levels, specifying of the associated VMEbus interrupter types (ROAK or RORA), required for handling of VMEbus interrupts.
The VMEbus configuration utility is intended to be run at boot time when the ROD Crate Processor is started.
· VMEbus Test and Debug Utility
The VMEbus test and debug facility (e.g. called “vmescope”) must allow to test and debug the VMEbus (and the API implementation). It has, in particular, to provide means to perform the following functions:
· dump system parameters of the VMEbus bridge;
· create VMEbus master and slave mapping and read and write single values;
· perform VMEbus block transfers;
· receive VMEbus interrupts.
· VMEbus Scanning Facility
The VMEbus scanning facility (e.g. called “vmescan”) must allow to scan the VMEbus and to report any found VMEbus modules. It has, in particular, to perform the following functions:
· scan the whole VMEbus address space;
· scan the whole VMEbus CR/CSR space.

· [bookmark: RTF390036003400300037003a00]Ideas for a C++ Binding
This section presents some first ideas on a possible C++ binding or wrapping of the VMEbus API. It shows the public members of the classes along with some of the private members.
There are two levels of VMEbus related classes:
· VME class:
The VME class is a singleton which is generated and deleted using static methods. It contains some members for return codes, CR/CSR access, bus error handling and printing of general information. The VME class is used to generate and delete all other VMEbus related classes; in that sense it is a factory of the other VMebus related classes.
· VMEMasterMap, VMESlaveMap, VMEBlockTransfer and VMEInterrupt classes: 
Those classes are used for master mappings and single cycles, slave mappings, block transfers and interrupts, respectively. They correspond to the identifiers used in the C binding, i.e. master_mapping, slave_mapping, block_transfer and interrupt. Their constructors correspond to the functions returning an identifier, their destructors to those invalidating the identifier.
· Types
// bus error information
typedef VME_BusErrorInfo_t VMEBusErrorInfo;

// VMEbus interrupt information
typedef VME_InterruptList_t VMEInterruptList;
typedef VME_InterruptInfo_t VMEInterruptInfo;

// block transfer
typedef VME_BlockTransferItem_t VMEBlockTransferItem;
typedef VME_BlockTransferList_t VMEBlockTransferList;
typedef VME_BlockTransferInfo_t VMEBlockTransferInfo;
· VMEbus library/driver
class VME {

	public:
		// singleton members
		static VME* Open();
		static u_int Close();

		// members for return codes
		static int ErrorPrint(u_int error_code);
		static int ErrorString(u_int error_code, string* error_string);
		static int ErrorNumber(u_int erro_code, u_int* error_number);

		// members for CR/CSR access
		u_int ReadCRCSR(int slot, u_int crcsr_field, u_int* value);
		u_int WriteCRCSR(int slot, u_int crcsr_field, u_int data);

		// members for bus error handling
		u_int BusErrorRegisterSignal(int signal_number);
		u_int BusErrorInfoGet(VME_BusErrorInfo& bus_error_info);

		// factory members
		VMEMasterMap* MasterMap(u_int vmebus_address, u_int window_size 
			u_int address_modifier, u_int options);
		u_int MasterUnmap(VME_MasterMap* master_map);

		VMESlaveMap* SlaveMap(u_int system_iobus_address, u_int window_size,
			address_width, u_int options);
		u_int SlaveUnmap(VME_SlaveMap*slave_map);

		VMEBlockTransfer* BlockTransfer(const VMEBlockTransferList&
			block_transfer_list);
		u_int BlockTransferDelete(VME_BlockTransfer* block_transfer);

		VMEInterrupt* Interrupt(const VMEInterruptList&
			interrupt_list);
		u_int InterruptDelete(VMEInterrupt* interrupt);

		u_int InterruptGenerate(u_char vector, u_int level);

		// status dumps
		u_int MasterMapDump() const;
		u_int SlaveMapDump() const;
		u_int BlockTransferDump() const;
		u_int InterruptDump() const;

		
		// continued on next page

	private:
		VME();
		~VME();

		static VME*			my_instance;
		static int			my_users;

	// internals
	...
};
· VMEbus Master Mapping
class VMEMasterMap {

	public:
		// members for safe access
		u_int ReadSafe(u_int address_offset, u_int* value);
		u_int WriteSafe(u_int address_offset, u_int data);

		u_int ReadSafe(u_int address_offset, u_short* value);
		u_int WriteSafe(u_int address_offset, u_short data);

		u_int ReadSafe(u_int address_offset, u_char* value);
		u_int WriteSafe(u_int address_offset, u_char data);

		// members for fast access
		inline void ReadFast(u_int address_offset, u_int* value);
		inline void WriteFast(u_int address_offset, u_int data);

		inline void ReadFast(u_int address_offset, u_short* value);
		inline void WriteFast(u_int address_offset, u_short data);

		inline void ReadFast(u_int address_offset, u_char* value);
		inline void WriteFast(u_int address_offset, u_char data);

		// helpers
		u_int VirtualAddress(u_int* virtual_address) const;
		u_int Dump() const;

		// operator to return status of object
		u_int operator()();

		// friends
		friend class VME;


	private:
		VME_MasterMap(u_int vmebus_address, u_int window_size,
			u_int address_modifier, u_int options);
		~VME_MasterMap();

		int					my_identifier;			
		VME_MasterMap_t		my_master_map;
		int					my_status;

		// internals
		...
};
· VMEbus Slave Mapping
class VMESlaveMap {

	public:
		// helpers
		u_int VmebusAddress(u_int* vmebus_address) const	;
		u_int Dump() const;

		// operator to return status of object
		u_int operator()();

		// friend
		friend class VME;


	private:
		VME_SlaveMap(u_int system_iobus_address, u_int window_size,
			u_int address_width, u_int options);
		~VME_SlaveMap();

		int						my_identifier;
		VME_SlaveMap_t			my_slave_map;
		u_int					my_status;

		// internals
		...
};
· VMEbus Block Transfer
class VMEBlockTransfer {

	public:
		// main members
		u_int Start();
		u_int Wait(int time_out);

		// helpers
		u_int Status(int position_of_block, u_int* status);
		u_int Remaining(int position_of_block, int* remaining);
		u_int Dump() const;

		// operator to return status of object
		u_int operator()();

		// friend
		friend class VME;


	private:
		VME_BlockTransfer(const VMEBlockTransferList&
			block_transfer_list);
		~VME_BlockTransfer();

		int								my_identifier;
		VMEBlockTransferList			my_block_transfer_list;
		u_int							my_status;

		// internals
		...
};
· VMEbus Interrupts
class VMEInterrupt {

	public:
		// main members
		u_int Wait(int time_out, VMEInterruptInfo& interrupt_info);
		u_int SignalRegister(int signal_number);
		u_int InfoGet(VMEInterruptInfo& interrupt_info);
		u_int Reenable();

		// helper
		u_int Dump() const;

		// operator to return status of object
		u_int operator()();

		// friend
		friend class VME;


	private:
		VME_Interrupt(const VMEinterruptList& interrupt_list);
		~VME_Interrupt();

		int							my_identifier;
		VMEInterruptListt			my_interrupt_list;
		u_int						my_status;

		// internals
		...
};

- 21 -
