Student instruction sheet for Exercise 1 – VMEbus programming

Introduction 

For the moment forget what you (hopefully) have learnt about the VMEbus protocol and the details of the H/W. For this exercise you have to look at a VMEbus slave as if it was a piece of memory in your PC. The purpose of this exercise is to demonstrate that in some respects there is little difference between internal and external memory; as far as the programming is concerned. The exercise also shows the differences between the two types of memory.

What is important to understand is that the VMEbus memory has to be mapped into the (virtual) address space of a user process before it can be accessed. This ties 3 busses together: CPU, PCI and VMEbus as shown in the picture below.
[image: image1.png]CPU addresses VME addresses

0x0"p0 space . 0x0
Universe ASIC
Examples: memory
Ox1ffHf1t OxOffFHEE
0x80000000
Ox8Efift A32(4 GB)
PCI

0xa0000000
OxaOffH1ft
0xb0000000 A24 (16 MB)
0xb000 £ £

4GB

AL6 (64 kB)





The first part of the exercise is to figure out how to create the appropriate mappings for the type of VMEbus access that you have to do. Then you actually transfer the data. This is done in single cycle mode which means that the CPU controls the data transfer. 
In the second part of the exercise you will perform block transfers (DMA). This requires a different programming technique since it is not the CPU that moves the data but an external device (a DMA controller). Such DMA controllers are not VMEbus specific. You find them everywhere (e.g. in Network interfaces, disk controllers, USB devices, etc.)

Before you start you should be able to answer these questions:

1) What does the acronym A24D32 mean?

2) What is endianness and how do you deal with it?

3) What are the advantages of block transfers?
1. On the VMEbus single board computer log on with the DAQ school account (daqschool / g0ldenhorn).

2. Run “source setup” and then change directory to exercise1/groupX 
3. Open the file solution.cpp with an editor of your choice (vi, nedit).
4. Add the missing code to “solution.cpp” to execute the VMEbus cycles listed below: 

1. Write 0x12345678 to address 0x08000000 in A32 / D32 mode. Use the "safe" cycles 

2. Read the data back from address 0x08000000 and compare it 

3. Write 0x87654321 to address 0x08000004 in A32 / D32 mode. Use the "fast" cycles 

4. Read the data back from address 0x08000004 and compare it 

5. Write a block of 1 KB to address 0x08001000 in A32 / D32 / BLT mode. You have to prepare the data in a cmem_rcc buffer. 

6. Read the data back from 0x08001000 in A32 / D64 / MBLT mode and compare it 

5. Run “make” to compile the application

6. Run “solution” and catch the VMEbus transfers with the VMEtro VBT325 analyser 
Good practice: 

· Check all error codes

· Do not forget to undo all initialization steps (return memory, close libraries) before you exit from an application
