Chapter 3

Particle Detection and Detector Layout

iThemba School 2023 - Calorimeters Chapter 3

Need to convert the presence of a particle into a measurable signal!

Historically: Angular distributions in scattering experiments measured by detecting light flashes with the human eye

1919 Evidence for hard nucleus in atom Rutherford et al.

Visible light:

 $E_{vis.light} \approx eV \Rightarrow Light \ creation \ by \\ low \ energy \ parts \ of \ particle \ cascade$

How is the light produced?

iThemba School 2023 - Calorimeters Chapter 3

Scintillators

Convert dE/dx \rightarrow Photons (light)

Anorganic:

High Z High absorption for γ

Simple crystal structure

Radiation hard

EM-calorimetry

Compact (X_0 , R_M)

Organic:

Low Z Low absorption for γ

Complex organic molecules

Less radiation hard

Trigger, hodoscope

Charged particles, neutrons

Scintillators

Convert dE/dx \rightarrow Photons (light)

Anorganic:

High Z High absorption for γ

Simple crystal Structure

Radiation hard

EM-calorimetry

Compact(X_0, R_M)

Organic:

Low Z Low absorption for γ

Complex organic molecules

Less radiation hard

Trigger, hodoscope

Charged particles, neutrons

Combine different materials to optimise light yield of scintillator Avoid identical absorption and emission levels

Requirements to additional component(s):

- Good solvability in ground material
- large fluorescence yield
- Absorption edge of component = Emission edge of ground material

Employed in: High precision gamma spectroscopy Measurement of charged particles with E < 1 MeV

Vertex finding, I.e. determining the interaction of a high energy reaction ...

... but also in modern calorimeters

Takes relatively small energy deposition to create a signal

Comparison: O(100 eV) to create a γ -quant in a scintillator 3.6 eV to create a electron-hole pair in silicon

Principle of particle detection

p+ doted region

Extension of depletion zone 300 μ m Specific resistance of depletion zone $10k\Omega m$

iThemba School 2023 - Calorimeters

Ionization of the detector material - Bethe Bloch

Charge collection in an electrical field

(E-Field extends over depletion zone, capacitance)

Electronic amplification and measurement of the signal

Number of charges is proportional to deposited energy

Segmentation of electrodes allows for high spatial resolution 7

pn-transition in reverse biasing mode

- Semiconducting detectors based in pn-transition which is connected in reverse-biasing
- E-Field is given by Poissonian Equation

$$\frac{d^2\phi}{dx^2} = \frac{e}{\varepsilon\varepsilon_0} (N_A - N_D + x_p - x_n)$$

 N_A = Acceptor Concentr. N_D = Donator Concentr. x_p = Thickness of depletion region p+-side x_n = Thickness of depletion region n-side Linear in region of depletion zone

- For a highly doted p type layer on a n-type substrate the total thickness of the depletion zone is given by

 $x_n + x_p \approx \sqrt{\frac{2\varepsilon\varepsilon_0}{eN_D}}V$ V = Bias Voltage

- Dark current by thermal fluctuations

Silicon photomultipliers

- A pixelated solid state Geiger counter (semi-conducting)
 - 1000 pixels on 1mm²
 - Gain 10**6, efficiency 10..15%
 - At 50 V typical bias voltage

Silicon photomultipliers cnt'd

Huge step in quality of SiPM in last decade

- ~Since 2003 MePHI/Pulsar (RU)
- ~Since 2006 Hamamatsu
- Recently Chinese producers

Silicon photomultipliers have many applications Inside and outside of particle physics

- Calorimeters for future e+e- colliders Tile Hcal, Dual readout, Scintillator Ecal

- HL-LHC Calorimeters
- Medical applications e.g. Endoscopy

Gaseous materials - RPC

RPC = Resistive Plate Chamber

D. Boumediene

- Primary Ionization in gas volume
- Acceleration in strong electric field (typically 5-10 kV between cathode and anode)
- \Rightarrow Lots of secondary ionisation
- \Rightarrow Measurable charge

Why Resistive Plate Chambers

Requires

 -Careful choice of resistive material (typically glass with resistive coating
-Control of the gas -> maintain avalanche mode, avoid saturation

Basic Principle: Charged particle ionizes liquid gas

embedded in an electrical field

Collection of Electrons at Anode: $v_{D,e-} = 4.5 \text{ mm/}\mu \text{s in LAr}$ $v_{D,lon} = 10^{4*}v_{De-}$

Liquie Noble gases have relatively small X_0 , I int => compact detectors Liquid Noble Gases have small electrongativity

i.e. no desire to capture drifting electrons since all atomic shells are filled

Ionizing particle (electron) creates line charge in Noble Gas

Current induced at Anode: $I_{lin}(t) = N_e \cdot e \frac{1}{t_D^2}(t_D - t)$ $t_D = d_{gap}/v_D$

Charge collected after t_D:
$$Q_0^{lin} = \int_0^{t_D} I_{lin}(t) dt = \int_0^{t_D} N_e e \frac{1}{t_D^2} (t_D - t) dt = \frac{1}{2} N_e e$$

Strongly ionizing particle with low energy creates point charge

Current induced at Anode:

$$I_p = \frac{N_e e v_D}{d_p} = const.$$

d_p = Point of creation of point charge

Charge collected after t_D : $Q_0^p(t) = N_e e$

A Calorimeter is a block of Matter

Typically it is subdivided into smaller Units called calorimeter cells

• The subdivision is not necessary for the energy measurement

... and even not really desired to keep highest Precision

→ Homogeneous calorimeters

But subdivision usually provides important spatial information on impact points

 \rightarrow Homogeneous calorimeters typcially come in a

« set of blocks »

Longitudinal Segmentation of a Calorimeter

Typically Calorimeters are subdivided longitudinally by alternating active and passive layers

'Sandwich Calorimeter'

A suited twofold segmentation allows already for distinction between e,g and hadrons sinc $\lambda_{int} >> X_0$

Typical for calorimeters with organic scintillators

longitudinal segmentation technically diffcult for Crystal Calorimeters Future calorimeters try to introduce Longitudinal segmentation

SpaCal – "Spaghetti Calorimeter"

Example H1 Experiment (1992-2007 @ HERA) Lead/Scintillating Fibre Matrix

Scintillating Files embedded in lead Ratio Lead/Fibre 2.27:1 Scintillation Light from fibres guided to PMT by lightmixers

 \Rightarrow Quasi homogenous Structure

Calorimeters Chapter 8 - 17VIII Heidelberger Graduiertentage