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Trigger
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Wikipedia: “A trigger is a system that uses simple criteria 
to rapidly decide which events in a particle detector to 
keep when only a small fraction of the total can be 
recorded. “ 
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trigger: features

 fast 
 simple
 selective 

– purity
– efficiency

 needed when only a small fraction can be recorded 
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 first particle physics 
experiments needed no trigger

 were looking for most frequent 
events

 physicists observed all events
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 later physicists started 
to look for rare events
– “frequent” events were 

known already

 searching “good”
events among 
thousands of 
“background” events 
was partly done by 
auxiliary staff
– “scanning girls” for 

bubble chamber 
photographs 
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 digitize at constant intervals
– at each “clock cycle”
– you might also say: “no trigger”, or “untriggered readout”

 select data afterwards
– from digital information 

 all you need ... or not? 

periodic trigger - look all the time
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 digitize at constant intervals
– at each “clock cycle”
– you might also say: “no trigger”, or “untriggered readout”

 may be not very efficient
– needs fast “flash” ADC   (FADC)

» ADC = Analog-to-Digital Converter

– big data volume to handle 
– mostly zeroes à have to remove using “zero suppression mechanism”

 e.g. digitization interval τ = 1 ms à readout rate = 1 kHz

periodic trigger - look all the time
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trigger: “tell me when to read out”!
 events often arrive in asynchronous 

and unpredictable way
– e.g. radioactive decay

 “trigger” needed to know when to 
digitize
– discriminator generates an output signal 

only if amplitude of input pulse is greater 
than a certain threshold

– delay to compensate for trigger latency
– ADC: analog-to-digital converter 
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using a trigger - what may happen?

 events arriving in 
random way

 waiting time: 
exponential

 e.g. mean rate: 1 kHz
– 1 event per millisecond on 

average
– à average time between 

events:  1 ms
– à we have to process one 

event per ms, on average

 but waiting time can be 
much longer or shorter!

à can this be a problem?
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using a trigger - what may happen?

 events arriving in 
random way:

 waiting time: 
exponential

 e.g. mean rate: 1 kHz
– 1 event per millisecond on 

average
– à average time between 

events:  1 ms
– à we have to process one 

event per ms, on average

 but waiting time can be 
much longer or shorter!

lose the preceding event?
crash the system?
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leave me alone – I’m BUSY !

 BUSY  logic avoids triggers 
while the system is busy in 
processing 
– e.g.,  AND port and latch 

 latch (flip-flop):
– a bi-stable circuit that changes 

state (Q) by signals applied to 
the control inputs (SET, 
CLEAR) 

– at first flip-flop state is “low” 
(zero) and so its negated input 
to the AND is “high” (one) 
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leave me alone – I’m BUSY !

 BUSY  logic avoids triggers 
while the system is busy in 
processing 
– e.g.,  AND port and latch 

 latch (flip-flop):
– a bi-stable circuit that changes 

state (Q) by signals applied to 
the control inputs (SET, 
CLEAR) 

– when a trigger arrives, it can 
pass the “AND”
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leave me alone – I’m BUSY !

 BUSY  logic avoids triggers 
while the system is busy in 
processing 
– e.g.,  AND port and latch 

 latch (flip-flop):
– a bi-stable circuit that changes 

state (Q) by signals applied to 
the control inputs (SET, 
CLEAR) 

– when a trigger arrives, it can 
pass the “AND”

– à ADC and processing start, 
flip-flop is switched



15

leave me alone – I’m BUSY !

 BUSY  logic avoids triggers 
while the system is busy in 
processing 
– e.g.,  AND port and latch 

 latch (flip-flop):
– a bi-stable circuit that changes 

state (Q) by signals applied to 
the control inputs (SET, 
CLEAR) 

– negated flip-flop signal at 
AND is “low”, no new 
triggers can pass
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leave me alone – I’m BUSY !

 BUSY  logic avoids triggers 
while the system is busy in 
processing 
– e.g.,  AND port and latch 

 latch (flip-flop):
– a bi-stable circuit that changes 

state (Q) by signals applied to 
the control inputs (SET, 
CLEAR) 

– negated flip-flop signal at 
AND is “low”, no new 
triggers can pass: in other 
words, the system asserts 
“BUSY”
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leave me alone – I’m BUSY !

 BUSY  logic avoids triggers 
while the system is busy in 
processing 
– e.g.,  AND port and latch 

 latch (flip-flop):
– a bi-stable circuit that changes 

state (Q) by signals applied to 
the control inputs (SET, 
CLEAR) 

– when processing is done, the 
flip-flop is reset
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leave me alone – I’m BUSY !

 BUSY  logic avoids triggers 
while the system is busy in 
processing 
– e.g.,  AND port and latch 

 latch (flip-flop):
– a bi-stable circuit that changes 

state (Q) by signals applied to 
the control inputs (SET, 
CLEAR) 

– when processing is done, the 
flip-flop is reset to zero, and 
its negated output (“1”) opens 
the AND-gate again for the 
next trigger
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deadtime and trigger efficiency

 with “clock trigger” (= untriggered readout):
 e.g. digitization interval τ = 1 ms à readout rate = 1 kHz

– readout rate = sampling rate

 using a “real” trigger:
definitions:
– f: average input rate (physics events)
– ν: average output rate (DAQ = data acquisition system)
– τ: deadtime (time needed to process an event)
– probability for “BUSY”:   P(busy) = ντ
– probability for “not BUSY”:   P(ready) = 1 – ντ

 ν = f P(ready)
 à ν = f (1 – ντ)
 à ν = f  / (1+fτ)
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deadtime and trigger efficiency

 events come at irregular intervals (stochastic fluctuations) 
à DAQ rate < event rate :  ν = f  / (1+fτ)  <  f  
à efficiency due to DAQ : ε = ν/f = 1 / (1+fτ)  <  100%
– e.g. f = 1 kHz, τ = 1 ms à ν = 0.5 kHz, ε = 50%

definitions:
– f: average input rate (physics events)
– ν: average output rate (DAQ)
– τ: deadtime (time needed to process an event)
– probability for “BUSY”:   P(busy) = ντ
– probability for “not BUSY”:   P(ready) = 1 – ντ

 ν = f P(ready)
 à ν = f (1 – ντ)
 à ν = f  / (1+fτ)
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deadtime and trigger efficiency

 in order to obtain ε ~ 100% (ν ~ f ) à f τ << 1 à τ << 1/f 
– ε ~ 99% for f = 1 kHz à τ < 0.01 ms à 1/τ > 100 kHz 

 to cope with the input signal fluctuations, we have to over-
design our DAQ system by a factor of 100 !      L

 any clever ideas?

f à f à

ν 
à

ε
= 
ν/

fà

ν
f =
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“de-randomization”

 fluctuations in arrival time 
absorbed by queue

 FIFO 
– first in, first out
– “de-randomized” output rate

 additional latency
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de-randomized DAQ with FIFO

 can achieve high efficiency
– small deadtime
– ADC much faster than input rate
– data processing at input rate 

 ... and what if the ADC is 
challenged by the data rate?
– could we put a buffer somewhat 

like a FIFO before the ADC?
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analog pipeline

 analog pipeline before ADC
– de-randomizing also the 

digitization step



25

queuing theory

 λ ... event interval
– at input

 τ ... processing 
interval
– at output

 ρ = τ / λ

 which value of ρ is best?
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queuing theory

 λ ... event interval
– at input

 τ ... processing 
interval
– at output

 ρ = τ / λ

 ρ > 1:   system is overloaded (cannot cope with input rate)
 ρ << 1: system faster than needed (over-design, waste of money)
 ρ ~ 1:   optimum design
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time walk: constant-fraction discriminator
(CFD)

 fixed threshold: 
dependence of the 
trigger time on the 
signal's peak height

 constant fraction of 
total height à
independent of signal 
size

 achieved in electronics 
by dividing, inverting, 
delaying the signal

 measure time at zero-
crossing
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multi-level trigger

 first triggering criteria may be very 
simple
– e.g., just wait for ADC (digitizer) to be ready
– or simple selection criteria (such as minimum 

signal strength) 

 additional triggering criteria may involve 
complicated calculations

 à benefit from multi-level trigger
– first levels easy and quick
– later levels complicated and more time-consuming

 first levels already remove many events 
à later, more complex levels face a 
smaller event frequency to cope with
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Level-1 Trigger
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Second-Level Trigger
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la

Data analysis

latency:  make up your mind quickly –
or she will be gone!
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triggering at a particle collider

 particle colliders are usually “synchrotrons”:  particles can 
only arrive at certain times
– and then, there is usually a lot of them 
– “bunched” structure

 so, maybe we do not need all this queuing business?
– just record whatever happens when two bunches meet (“bunch crossing”)

 any argument against this?
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LHC bunch filling scheme

LHC orbit with 3564 “bunch crossings”
(colliding bunches in CMS: blue;    single bunches in CMS: red/white):

LHC bunch crossing frequency: ~ 40 MHz   (collisions every ~25 ns)
25 ns ~ 7.5 meters   à LHC circumference:  3564 * 7.5 m ~ 27 km
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bunch crossing frequency

 is it constant? 
– why yes, why no?
– what would it be for different kinds of particles (protons, electrons, heavy 

ions)

 if it is not constant – is this a problem?
– why?
– how can it be overcome?

 what do we mean by “accelerator”?
– does it make particles faster?  
– by how much? 
– what else does it achieve?
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LHC bunch crossing frequency

 proton energy at injection:   450 GeV
 proton energy at collision: 6800 GeV
 speed is slightly different

– homework: calculate the speed of the protons!  

 tunnel length is fixed à have to vary frequency
– homework: by how much? 

 electronics (in front-ends, trigger, DAQ) must be able to 
cope with this
– then we can take the collider frequency as unit – although it is not quite 

constant
– just plot and calculate everything in terms of “bunch crossings” – “BX”



ESA, Sep. 2012

pile-up of events
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triggering at a particle collider

 particle colliders are usually “synchrotrons”:  particles can 
only arrive at certain times
– and then, there is usually a lot of them 
– “bunched” structure

 so, maybe we do not need all this queuing business?
– just record whatever happens when two bunches meet (“bunch crossing”)

 any argument against this?
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triggering at a particle collider

 particle colliders are “synchrotrons”:  particles can only 
arrive at certain times
– and then, there is usually a lot of them 
– “bunched” structure

 so, maybe we do not need all this queuing business?
– just record whatever happens when to bunches meet (“bunch crossing”)

 a system recording each bunch crossing may be too 
complicated
– cannot even retrieve data fast enough from detector – even if I could 

afford enough computers for the processing! 
» too many cables, too much power, too many cooling lines ... 

– and on the other hand, in most bunch crossings nothing interesting may be 
happening
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When do we trigger ?

 „bunch” structure of the LHC collider
– „bunches” of particles
– 40 MHz

» a bunch arrives every 25 ns 
» bunches are spaced at 7.5 meters from each other
» bunch spacing of 125 ns for heavy-ion operation

 at present luminosity of the LHC collider (> 2 *1034 cm-2 s-1) 
we have about 60 proton-proton interactions for each collision 
of two bunches
– only a small fraction of these “bunch crossings” contains at least one collision 

event which is potentially interesting for searching for “new physics”
– in this case all information for this bunch crossing is recorded for subsequent 

data analysis and background suppression
– luminosity quoted for ATLAS and CMS

» reduced luminosity for LHCb (b-physics experiment)
» heavy-ion luminosity much smaller
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Cross sections
(relative probabilities) 

of processes at LHC

 due to the extremely small 
cross sections of processes now 
under investigation it is 
impossible to check all events 
“by hand”

– ~ 1012 background events to one 
signal event

 it would not even be possible to 
read out and record all data in 
computer memories

 we need a fast, automated 
decision (“trigger”) for an 
event to be recorded or not
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H à γγ   candidate 
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Higgs -> 4µ +30 MinBias
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heavy-ion 
collision
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The good ones go into the pot, 
The bad ones go into your crop.

General triggering requirements

 efficiency:  retain all (most) good 
events
– don’t eat the good ones!

 purity:  reject all (as many as 
possible) bad events
– don’t put bad ones into the pot!

 no bias:  do not distort the result!
– even if you lose some good events, take 

care not to affect the measured values
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efficiency vs. purity (rejection power)

The risk of throwing the baby out with the bath water!
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TRIGGER:  HOW?
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The good ones go into the pot, 
The bad ones go into your crop.

The CMS trigger system

 two-layer trigger setup:
 Level-1 Trigger (“L1”)

– reduce LHC’s   40-MHz  
bunch-crossing rate to 100 kHz

– hardware based (custom electronics)
– pipe-lined architecture
– L1-accept: read out full CMS detector

 High-Level Trigger (“HLT”)
– reduce 100 kHz to a few hundred Hz 

(1 kHz maximum)
– computer farm running CMS analysis 

software
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trigger with digital pipeline
 use as much information about the event as possible 

– allows for the best separation of signal and background
– ideal case: “complete analysis” using all the data supplied by the detector

 often impossible to read out all detector data 
 preliminary decision based on part of the event data only 
 be quick!

– in case of positive trigger decision all detector data must still be 
available

– data are stored temporarily in a “pipeline” in the detector 
electronics
» “short term memory” in detector front-ends
» “ring buffer”
» in hardware, can only afford short 

pipeline (e.g. in CMS at present: 4 µs)

 how to reconcile these contradictory requirements ?

write

read
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trigger logic

 decision logic can be 
described with a 
sequence of simple 
logic (mathematical) 
operators 

 straightforward to 
implement in 
electronics 
– or, of course, on a computer
– AND  ...  &&
– OR     ...   | |
– NOT   ...  !
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lookup tables

 binary logic operators 
can be described with 
“truth table”

 more complex 
assignments can be 
stored in a “lookup 
table”



51

option: special trigger detectors

 in some cases, it may be better to use special, fast but low-
resolution trigger detectors
– e.g., high-resolution detectors may be too slow
– trigger detector resolution not competitive with other, “precision” 

detectors à do not use them in final data analysis
– example: “Resistive Plate Chambers” as muon detectors in ATLAS and 

CMS

 the other option is to split signals from precision detectors 
and use the split signals for fast triggering
– often using analog and/or digital summing over channels
– speed up processing at cost of accuracy
– example: “Drift Tubes” and “Cathode Strip Chambers” in CMS
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turn-on curves

transverse momentum  (pT) à

ef
fic

ie
nc

y 
à

ideal: reality:
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 detectors yielding 
electrical output 
signals allow to 
select events to be 
recorded by 
electronic devices
– thresholds 

(discriminators)
– logical combinations 

(AND, OR, NOT)
– delays
– available in 

commercial 
“modules”

– connections by cables 
(“LEMO” cables) “NIM” crate 
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 because of the enormous amounts of data at major modern experiments 
electronic processing by such individual modules is impractical

– too big
– too expensive
– too error-prone
– too long signal propagation times

 Þ use custom-made highly integrated electronic components (“chips”)
 stay flexible by using Field-Programmable Gate Arrays (FPGAs)

400 x Þ 1x 

~ 10  logical operations / module Þ ~ 40000 logical operations in one chip

LHC Run 1
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Progress in FPGAs
( “Field-Programmable Gate Arrays”)
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Progress in FPGAs
( “Field-Programmable Gate Arrays”)
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synchronous vs asynchronous
trigger processing

 some calculations are harder, others easier
– example: there may be many or just a few tracks

 if you put data onto a computer: some events take longer to 
calculate than others 
– overall computing resources will be optimally used 
– so, is this fine? 
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synchronous vs asynchronous
trigger processing

 some calculations are harder, others easier
– example: there may be many or just a few tracks

 if you put data onto a computer: some events take longer to 
calculate than others 
– overall computing resources will be optimally used 
– so, is this fine?    - NO!

 danger!   what if an event takes too long  to process and is 
outside latency? 
– “watchdog” events:  the watchdog will bark if you take too long! 
– just take all such events?    - But there may be far too many of            

them! 
– just drop them?    - But these may be the most interesting events!                

You might be killing all the “New Physics” events!
– just take the percentage of them that you can afford?    - Compromise, 

but may be a nightmare to analyze!
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the beauty of 
synchronous trigger processing

 guaranteed latency – even the most complicated 
calculations fit into the available processing time
– you are just “wasting resources” in case of  “simple” events
– like an assembly line: if a worker is fast, he will be idle part of the time 

and you lose salary money; if he is too slow, the whole production process 
will crash!

 enormous resources of present-day integrated circuits 
(ASICs and FPGAs) make this possible 

 take care to choose correct programming style!
– no loops
– no conditional jumps 
– make everything parallel as much as possible 
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latency

I’m late!  I’m late! 

 latency is an important 
constraint on trigger 
architecture

 pipeline memory is expensive
– in terms of money, space, 

energy consumption 

 à need fast algorithms
 no iterative loops
 small propagation times à

put trigger electronics close 
to detector
– but not on detector (radiation 

protection!)
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CMS Global Trigger in µTCA crate
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BACKUP



63

funnel structure of trigger logic

 trigger schemes look a 
bit like a funnel:

 a lot of input information 
is used and compressed 
to yield eventually just 
one bit:

 YES or NO
– take the event, or leave it? 



64

64

luminosity

 (instant) luminosity is rate per cross section
 usual units:   cm-2 s-1

– e.g., 1030 cm-2 s-1 corresponds, for a reaction cross section of 10-30 

cm-2 ( = 1 µbarn), to a rate of 1 event per second 

 for a collider, the luminosity can be calculated as follows: 



65

65

integrated luminosity
 number of events collected divided by the cross section
 usual units:   fb-1 (“inverse femtobarn”),

ab-1      (“inverse attobarn”)

§ an integrated luminosity of  1 fb-1 means that for a process 
with a cross section of 1 fb,  1 event (on average) should 
have been collected 
§ or 1000 events for a cross section of 1 nb, etc.
§ so, 1 inverse attobarn = 1000 inverse femtobarns :

§ 1 ab-1  = 1000 fb-1 

§ physicists are now looking for very rare events, so it is 
vital to reach not only high energies (so that heavy 
particles can be produced) but also high luminosities
§ handling the resulting data rates is a challenge also for the 

detectors, trigger systems, and readout electronics
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event rates as 
function of 
transverse 
momentum of jets, 
or of particle 
mass
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MET: missing transverse energy
 MET = “missing ET”
 more precisely: “missing transverse momentum (pT)”
 but at LHC energies momentum and energy is almost the 

same



68

trigger and DAQ at a collider
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How does the trigger actually select events ?

 the first trigger stage has to process a limited amount of data within a 
very short time

– relatively simple algorithms
– special electronic components

» ASICs  (Application Specific Integrated Circuits)
» FPGAs (Field Programmable Gate Arrays)

– something in between “hardware” and “software”:  “firmware”
» written in programming language  (“VHDL”) and compiled 
» fast (uses always same number of clock cycles)
» can be modified at any time when using FPGAs

 the second stage (“High-Level Trigger”) has to use complex 
algorithms

– not time-critical any more (all detector data have already been retrieved)
– uses a “computer farm” (large number of PCs)
– programmed in high-level language (C++)
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How does the trigger actually select events ?

 the first trigger stage has to process a limited amount of data within a 
very short time

– relatively simple algorithms
– special electronic components

» ASICs  (Application Specific Integrated Circuits)
» FPGAs (Field Programmable Gate Arrays)

– something in between “hardware” and “software”:  “firmware”
» written in programming language  (“VHDL”) and compiled 
» fast (uses always same number of clock cycles)
» can be modified at any time when using FPGAs

 the second stage (“High-Level Trigger”) has to use complex 
algorithms

– not time-critical any more (all detector data have already been retrieved)
– uses a “computer farm” (large number of PCs)
– programmed in high-level language (C++)
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Rates and efficiencies of current and upgraded calorimeter trigger
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LHC Run 1 (<=2012): 
many parallel galvanic connections

Example:

Drift Tube 
Track Finder
(part of 
muon trigger) 
of the CMS 
experiment at 
CERN’s LHC

the nightmare of interconnections!
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Example:

Global Trigger (left)
and

Global Muon Trigger (right)
of the CMS experiment at 

CERN’s LHC

LHC Run 1 (<=2012): 
many different custom-built electronics modules 
(VME)

the nightmare of having enough spares!
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Level-1 muon trigger
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Optical fibers replace 
galvanic connections
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optical fibers

J :
 “faster” in terms of more data volume per second over one 

line 
 “cleaner”:  no electronic “cross-talk”

L :
 “slower” because serialization / deserialization needs time 
 conversion into galvanic signal needed for processing
 no easy way to check signals on oscilloscope
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ASICs and FPGAs

 ASIC:   Application Specific Integrated Circuit
– cheaper when using large quantities

 FPGA:  Field Programmable Gate Array
– cheaper when only few chips are needed
– flexible: can be re-programmed in case of bugs or changes in 

requirements
– the best of all worlds:  fast as ASICs, flexible as computers  (for a bit of 

extra money)

– few vendors world-wide:  Xilinx,  Altera and just a few others
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further reading

 W. R. Leo, “Techniques For Nuclear And Particle Physics 
Experiments”, Springer, 1994 

 CERN Summer Student Lectures
– every year
– 2023:   https://indico.cern.ch/event/1254879/timetable/

 ISOTDAQ  lectures
– “International School of Trigger and Data AcQuisition”, various years
– 2023:   https://indico.cern.ch/event/1182415/ 

 Technical Design Reports (TDR)
– of big experiments such as ATLAS, CMS, BaBar, LHCb, D0 
– baselines, upgrades 
– different publication dates

https://indico.cern.ch/event/1254879/timetable/

