Contribution ID: 139

High-resolution 50Cr(p,t)48Cr coincidence measurements using the K600 and CAKE setup at iThemba LABS

Monday, 15 April 2024 12:15 (20 minutes)

The observation of γ -ray decays from the radioactive isotope ⁴⁴Ti makes it one of the significant isotopes in the diagnosis of core-collapse supernovae (CCSNe) explosions. The abundance of 44Ti from CCSNe explosions has been shown to be strongly dependent on the ⁴⁴Ti(α , p)⁴⁷V reaction rate, which destroys ⁴⁴Ti. Direct measurements of the ⁴⁴Ti(α , p) 47V reaction within the Gamow window (E_{c.m.} = 2 - 6 MeV) have been challenging due to the low cross sections and insufficient radioactive ion beam intensities. As a result, the reaction rate is still based on statistical models, which may not be reliable for α -induced reactions on N=Z nuclei due to the lower effective level density in the compound nucleus. To get the necessary experimental constraints of the ⁴⁴Ti(α , p)⁴⁷V reaction such as the level density and branching ratios of the compound nucleus, ⁴⁸Cr, a high-resolution 0° ⁵⁰Cr(p, t)⁴⁸Cr coincidence measurement was performed using the K600 magnetic spectrometer and an array of five double-sided silicon detectors called CAKE. Preliminary results from the coincidence measurements will be presented.

Primary author: BINDA, Sifundo (University of the Witwatersrand and iThemba LABS)

Co-authors: ADSLEY, Philip (Department of Physics and Astronomy, and Cyclotron Institute, Texas A&M University,); DONALDSON, Lindsay (iThemba Laboratory for Accelerator Based Sciences); PELLEGRI, Luna (University of the Witwatersrand and iThemba LABS); COLLABORATORS., and

Presenter: BINDA, Sifundo (University of the Witwatersrand and iThemba LABS)

Session Classification: Physics at iThemba LABS