The 2nd International African Symposium on Exotic Nuclei IASEN2024

Contribution ID: 33 Type: Oral

Characterization of ternary and quaternary particle emission in spontaneous fission of ²⁵²Cf

In this study, the energy spectra and yields of various ternary and quaternary particles produced during the spontaneous fission of 252 Cf were measured and analyzed. Particles with atomic numbers Z = 1 to 6 were clearly identified, including hydrogen and helium isotopes such as 1 H, 2 H, 3 H, 4 He, 6 He, and 8 He. Distinct energy distributions were observed for each particle type, and Gaussian fitting was applied to estimate their yields and energies. The analysis successfully quantified the yields of ternary particles, including 1 H, 2 H, 3 He, 6 He, 8 He, as well as heavier fragments like lithium (Li), beryllium (Be), boron (B), and carbon (C). In addition to ternary particle emissions, this study investigated quaternary fission (QF) processes in 252 Cf. Two main pathways were identified: pseudo-quaternary fission, resulting from the decay of unstable light charged particles (LCPs) such as 7 Li, 8 Be, and 9 Be*, and true quaternary fission, characterized by the independent emission of two LCPs. Angular distributions of α -particle coincidences from 8 Be decays were analyzed, and the results aligned with the predicted decay kinematics of 8 Be from both its ground and first excited states. Although the statistics were limited, the energy spectrum of (α , t) pairs from the second excited state of 7 Li was successfully analyzed and compared to the ternary Li particle data. The study reported yields and energy spectra of particles from these processes.

Notes

Primary authors: AHMADOV, Gadir (Joint Institute for Nuclear Research); BERIKOV, Daniyar (Joint Institute for Nuclear Research); Dr HOLIK, Michael (Institute of Experimental and Applied Physics); Dr KOPATCH, Yury (Joint Institute for Nuclear Research); Dr AHMADOV, Farid (Institute of Radiation Problems under Ministry of Science and Education); Mr NURUYEV, Sebuhi (Joint Institute for Nuclear Research); Dr SADIGOV, Azer (Innovation and Digital Development Agency Nuclear Research Department); Mrs MADADZADA, Afag (Innovation and Digital Development Agency Nuclear Research); Prof. NASRABADI, Mehdi Nasri (Joint Institute for Nuclear Research); Mr AKBAROV, Ramil (Innovation and Digital Development Agency Nuclear Research Department)

Presenters: AHMADOV, Gadir (Joint Institute for Nuclear Research); BERIKOV, Daniyar (Joint Institute for Nuclear Research)