The 2nd International African Symposium on Exotic Nuclei IASEN2024

Contribution ID: 33

Type: Oral

Characterization of ternary and quaternary particle emission in spontaneous fission of ²⁵²Cf

In this study, the energy spectra and yields of various ternary and quaternary particles produced during the spontaneous fission of ²⁵²Cf were measured and analyzed. Particles with atomic numbers Z = 1 to 6 were clearly identified, including hydrogen and helium isotopes such as ¹H, ²H, ³H, ⁴He, ⁶He, and ⁸He. Distinct energy distributions were observed for each particle type, and Gaussian fitting was applied to estimate their yields and energies. The analysis successfully quantified the yields of ternary particles, including ¹H, ²H, ³H, ⁴He, ⁶He, ⁸He, as well as heavier fragments like lithium (Li), beryllium (Be), boron (B), and carbon (C). In addition to ternary particle emissions, this study investigated quaternary fission (QF) processes in ²⁵²Cf. Two main pathways were identified: pseudo-quaternary fission, resulting from the decay of unstable light charged particles (LCPs) such as ⁷Li, ⁸Be, and ⁹Be^{*}, and true quaternary fission, characterized by the independent emission of two LCPs. Angular distributions of α -particle coincidences from ⁸Be decays were analyzed, and the results aligned with the predicted decay kinematics of ⁸Be from both its ground and first excited states. Although the statistics were limited, the energy spectrum of (α , t) pairs from the second excited state of ⁷Li was successfully analyzed and compared to the ternary Li particle data. The study reported yields and energy spectra of particles from these processes.

Notes

Primary authors: AHMADOV, Gadir (Joint Institute for Nuclear Research); BERIKOV, Daniyar (Joint Institute for Nuclear Research); Dr HOLIK, Michael (Institute of Experimental and Applied Physics); Dr KOPATCH, Yury (Joint Institute for Nuclear Research); Dr AHMADOV, Farid (Institute of Radiation Problems under Ministry of Science and Education); Mr NURUYEV, Sebuhi (Joint Institute for Nuclear Research); Dr SADIGOV, Azer (Innovation and Digital Development Agency Nuclear Research Department); Mrs MADADZADA, Afag (Innovation and Digital Development Agency Nuclear Research); Prof. NASRABADI, Mehdi Nasri (Joint Institute for Nuclear Research); Mr AKBAROV, Ramil (Innovation and Digital Development Agency Nuclear Research); Mr AKBAROV, Ramil (Innovation and Digital Development Agency Nuclear Research); Mr AKBAROV, Ramil (Innovation and Digital Development Agency Nuclear Research); Mr AKBAROV, Ramil (Innovation and Digital Development Agency Nuclear Research); Mr AKBAROV, Ramil (Innovation and Digital Development Agency Nuclear Research); Mr AKBAROV, Ramil (Innovation and Digital Development Agency Nuclear Research); Mr AKBAROV, Ramil (Innovation and Digital Development Agency Nuclear Research); Mr AKBAROV, Ramil (Innovation and Digital Development Agency Nuclear Research Department)

Presenters: AHMADOV, Gadir (Joint Institute for Nuclear Research); BERIKOV, Daniyar (Joint Institute for Nuclear Research)