Contribution ID: 65 Type: Oral

Excitation of 93m Mo secondary beam ions in HIRFL

Nuclear Excitation by Electron Capture (NEEC) was predicted by Goldanskii and Namiot as the inverse process of internal conversion in 1976[1]. It was expected to play an important role in the isomer depletion, which is a potential path for releasing nuclei energy stored in isomer[2].

The first experimental observation on NEEC was reported in the slowing down process of 93 Mo[3]. The observed isomer depletion probability was too large to be reproduced by Coulomb excitation, and thus attributed to NEEC. However, it also failed to be reproduced by following theoretical works[4,5]. On the experimental side, a comment was addressed on the influence of complex γ background which may cause the overestimation of isomer depletion probability[6]. Later, an independent experiment was performed using a 93m Mo secondary beam, but no isomer depletion was observed with an accuracy of 2×10^{-5} , which was reported as the upper limit of the excitation probability[7]. However, this measurement was performed with lower recoiling energies than the previous experimental work.

A refined experiment has been performed with higher recoiling energy and purity of the 93m Mo isomer beam. Both lead and carbon foils were used to stop the 93m Mo ions. Isomer depletion is observed, and the excitation probability is about 210^{-5} for lead, and 310^{-6} for carbon. These results agree well with the calculated probabilities for inelastic reactions, which are suggested to the main mechanisms exciting the 93m Mo isomer during its stopping process.

- [1] V. Goldanskii and V. Namiot, Phys. Lett. B 62 (1976) 393.
- [2] P. Walker and G. Dracoulis, Nature 399 (1999) 35.
- [3] C. J. Chiara et al., Nature 554 (2018) 216.
- [4] Y. Wu et al., Phys. Rev. Lett. 122 (2019) 212501.
- [5] J. Rzadkiewicz et al., Phys. Rev. Lett. 127 (2021) 042501.
- [6] S. Guo et al, Nature 594 (2021) E1.
- [7] S. Guo et al, Phys. Rev. Lett. 128 (2022) 242502.

Notes

Primary author: GUO, SONG (Institute of Modern Physics, Chinese Academy of Science)

Presenter: GUO, SONG (Institute of Modern Physics, Chinese Academy of Science)