The African Nuclear Physics Conference 2025 (ANPC 2025)

Contribution ID: 30

Type: Contributed Talk

Role of a weakly bound core nucleus in the breakup of a weakly bound halo nucleus

Thursday, 27 November 2025 16:45 (15 minutes)

A study of breakup reactions involving the $^9\mathrm{C}$ and $^{30}\mathrm{F}$ weakly bound nuclei is presented. The $^9\mathrm{C}$ is modelled as $^9\mathrm{C} \to ^8\mathrm{B} + p$, where $^8\mathrm{B} \to ^7\mathrm{Be} + p$, with a proton ground state separation energy of $S_p = -0.137$ \MeV. The $^{30}\mathrm{F}$ is modelled as $^{30}\mathrm{F} \to ^{29}\mathrm{F} + n$, where $^{29}\mathrm{F} \to ^{27}\mathrm{F} + n + n$, with a two neutrons ground state separation energy of $S_p = -1.443$ \MeV. In order to analyze the role of these weakly bound core nuclei on the breakup observables, instead of taking on more complicated four-body and five-body systems, we limit the study to the role of static effect which is associated with the ground state wave function. To this end, the core-target nuclear potentials are constructed as follows. For the $^9\mathrm{C}$ nucleus, the $^8\mathrm{B}$ -target nuclear potential is constructed by first obtaining the density of the halo proton within the $^8\mathrm{B} + p$ system. Then, this density together with the density of the $^7\mathrm{Be}$ nucleus are used to obtain the density of the core nucleus $^8\mathrm{B}$. This density is then used to construct the $^8\mathrm{B}$ -target nuclear potential by means of a double folding procedure. For the $^{29}\mathrm{F}$ -target nuclear potential, the $^{29}\mathrm{F}$ is treated as $^{29}\mathrm{F} \to ^{27}\mathrm{F} + ^2n$. The potential parameters are tuned such that the obtained wave function matches the asymptotic behavior of the $^{29}\mathrm{F}$ three-body wave function. Then, the $^{29}\mathrm{F}$ -target nuclear potential is constructed using the same approach. In both cases, the three-body breakup observables are obtained by means of the continuum discretized coupled-channels (CDCC) formalism.

Primary author: MUKERU, Bahati

Presenter: MUKERU, Bahati

Session Classification: Session 12

Track Classification: Nuclear Structure, Reactions and Dynamics