Evidence for Shape coexistence and configuration mixing in ¹⁵⁸Er via β-decay of Tm isotope

A.A. Avaa¹, A.B. Garnsworthy¹, J. Smallcombe², G. Hackman^{1,3}, J. Williams³, J.M. Allmond⁴, G.C. Ball¹, C.J. Barton⁵, C. Burbadge⁷, I. Dillmann^{1,6}, P.E. Garrett⁷, J. Henderson¹, W. Korten⁸, R. Kruecken¹, K.G. Leach⁹, S.R. Lesher¹⁰, B. Olaizola¹, J.K. Smith¹¹, C.E. Svensson⁷ P. Šiuryt^{1,12}, L. Atar⁷, A. Babu¹, Nikita Bernier^{1,13}, S. S. Bhattacharjee¹, V. Bildstein⁷, M. Bowry¹, R. Caballero-Folch¹, A. Chester¹, F.H. Garcia³, A. MacLean⁷, A.N. Murphy¹, A. Radich⁷, Y. Saito^{1,13}, R. Umashankar^{1,13}, D. Yates^{1,13}
S. Valbuena⁷, K. Whitmore³, M. Winokan^{1,12}

¹TRIUMF, 4004 Wesbrook Mall, Vancouver, V6T 2A3, British Columbia, Canada

Nuclei around the rare earth transitional region (N \sim 90) present a variety of interesting nuclear structure features ranging from triaxiality, octupoles and shape coexistence. The neutron deficient-nucleus ¹⁵⁸Er (N = 90) lies at the boundary of the phase-transitional region, hence, it is likely to display of both transitional and deformed characteristics [1]. Properties of the low-lying states play a vital role in probing the structure of nuclei. However, the interpretation of the structure of the low-lying states in the rare earth, N \sim 90 region from previous studies was predominantly based on level spacing [1-5]. Although, it has been shown that energy spacings alone can be misleading [6]. Therefore, it has become evident that a larger set of precise experimental data for a variety of model-independent observables is necessary to constrain the interpretation of these excitations.

We shall report on the nuclear properties such as internal conversion coefficients, branching, and mixing ratios deduced from $\gamma - e^-$, $\gamma - \gamma$ coincident and, $\gamma - \gamma$ angular correlation measurements following the β -decay of ¹⁵⁸Tm using the GRIFFIN set up with its arsenal of ancillary detectors.

²Japan Atomic Energy Agency, Naka-gun, 319-1184, Ibaraki, Japan

³Department of Chemistry, Simon Fraser University, Burnaby, V5A 1S6, British Columbia, Canada

⁴Oak Ridge National Laboratory, 5200, 1 Bethel Valley Rd, Oak Ridge, TN 37830, United States

⁵School of Physics, Engineering & Technology, University of York, York, YO10 5DD, North Yorkshire, UK

⁶Department of Physics & Astronomy, University of Victoria, Victoria, BC, Canada V8P 5C2

⁷Department of Physics, University of Guelph, Guelph, N1G 2W1, Ontario, Canada

⁸CEA, 19510 D36, 91190 Saclay, France

⁹Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, US

¹⁰ Physics Department, North Carolina A&T State University, Greensboro, North Carolina 27411, USA

¹¹Physics Department, Reed College 3203 SE Woodstock Blvd. Portland

¹²Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom

¹³Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z4

^[1] P. Aguer, et al., NP A 249, 239-252 (1975) and references therein

^[2] W.D Kulp, et al., arXiv:0706.4129 (2007)

^[3] C.R. Hirning and D.G. Burke, Can. J. Phys. 55 (1977)

^[4] D.E. Nelson, et al., Can. J. Phys. 51 (1973)

^[5] S.N.T. Majola, et al., Phy Rev. C 100, 044324 (2019)

^[6] P.E. Garrett, M. Zelinska, and E. Clement, Prog. in Part. and Nucl. Phy. 124, 103931 (2022)