Indirect experimental technique for constraining the 193,194 Ir(n, γ) cross sections

S. P. E. Magagula^{1,2}, M. Wiedeking^{1,2,3}, L. Pellegri^{1,2}, B. V. Kheswa⁴, A. C. Larsen⁵, K. S. Beckmann⁵, F. L. Bello Garrote⁵, L. Crespo Campo⁵, M. Guttormsen⁵, K. L. Malatji¹, V. Modamio⁵, T. Renstrøm⁵, E. Sahin⁵, S. Siem³, G. M. Tveten⁵, and F. Zeiser⁵

¹SSC laboratory, iThemba LABS, P.O. Box 722, Somerset West 7129, South Africa,
²School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa,
³Lawrence Berkeley National Laboratory, Berkeley, California, USA,
⁴Department of Applied Physics and Engineering Mathematics, University of Johannesburg,
Doornfontein 2028, South Africa.
⁵Department of Physics, University of Oslo, N-0316 Oslo, Norway,

epartment of 1 hysics, Chiversity of Osio, 14-0510 Osio, 14014

June 24, 2025

Abstract

The formation of elements, particularly those heavier than iron, predominantly occurs through two neutron capture processes: slow neutron capture process and rapid neutron capture process, each contributing approximately 50%. These are known as the s- and r-processes, respectively [1].

The neutron capture reactions $^{192}\text{Ir}(n,\gamma)^{193}\text{Ir}$ and $^{193}\text{Ir}(n,\gamma)^{194}\text{Ir}$ were indirectly studied by analyzing data obtained from the Oslo Cyclotron Laboratory (OCL). These data enabled the study of the $^{193,194}\text{Ir}$ isotopes, originating from the $^{192}\text{Os}(\alpha,\text{t}\gamma)$ and $^{192}\text{Os}(\alpha,\text{d}\gamma)$ reactions, respectively. The $^{193}\text{Ir}(n,\gamma)^{194}\text{Ir}$ cross sections constrained by our measurements provided a comparison to existing (n,γ) measurement data [2]. Additionally, the $^{192}\text{Ir}(n,\gamma)^{193}\text{Ir}$ reaction maps a branching point in the s-process, making it highly significant. However, directly measuring the (n,γ) cross section is challenging due to the instability of ^{192}Ir . Therefore, the OCL data provided valuable information on the $^{192}\text{Ir}(n,\gamma)^{193}\text{Ir}$ cross section by indirectly constraining it using the experimental nuclear level density (NLD) and γ -strength function (γSF) .

An array of Sodium Iodine (NaI)Tl detectors, called CACTUS, detected γ -rays, while the silicon particle telescope array, called SiRi, was used to detect charged particles in coincidence. The NLDs and γ SFs were extracted below the neutron separation energy, S_n, using the Oslo Method [3]. Furthermore, the NLDs and γ SFs were used as

inputs in the open-source code TALYS to calculate the neutron capture cross-sections and Maxwellian averaged neutron capture cross sections (MACS) for ^{193,194}Ir. Final results of this study will be presented in comparison to existing data.

- Arnould, M., Goriely, S., and Takahashi, K. (2007). Physics Reports, 450(4-6), 97-213.
- [2] Zerkin, V. V., and Pritychenko, B. (2018). The experimental nuclear reaction data (EXFOR) 888, 31-43.
- [3] Schiller, A., Bergholt, L., Guttormsen, M., Melby, E., Rekstad, J., and Siem, S. (2000). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 447(3), 498-511.

This work is based on research supported in part by the National Research Foundation of South Africa (Grant Number:PMDS22070734847), SAINTS Prestigious Doctoral Scholarship, U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-05CH11231 and the SARChI under grant No REP-SARC180529336567.