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The Bragg peak

The Bragg peak: from applications. . . to detectors. . .
to quantum foundations

Bragg-peak phenomenon: ionizing
particles in matter ⇒ energy-
dependent energy loss (stopping
power) ⇒ finite range

Important for p, C. . . radiotherapy

Important for low-energy gaseous
time projection chambers (TPCs)

Mott problem: α decay in a cloud
chamber [Mott PRSA 1929]

▶ spherical wave function
▶ but linear tracks detected
▶ decoherence: where?
▶ measurement (w.f. reduction):

deterministic?
[JMS et al. EPJwoc 2013]

[Paul, Wikipedia, 2022]

[Wilson PRS 1912]
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Two-parameter analytical formula

Stopping power definition
Stopping “power” (rather stopping force!) of a medium on a beam

Smedium(Elab) = −
〈
dElab
dx

〉
, Elab =

m1v21
2

▶ beam = particles of mass m1, charge Z1, speed v1, lab. energy Elab

▶ medium: (mono)atomic density n, atomic number Z2

▶ dominated by electronic stopping power in Bragg peak

Smedium,e(Elab) = nZ2 × Se(Elab)

⇒ target = electrons of mass m2, charge z2 = −1

Mean energy transfer to individual electrons = stopping cross section

S(E) =
∫
4π

(ℏq)2
2m2

dσ
dΩdΩ, E = µv2

2 = m2
M Elab = O(Elab/2000)

▶ E = ℏ2k2/2µ = center-of-mass energy, k,k′ = initial/final momentum
▶ µ = m1m2/M = reduced mass, M = m1 +m2 = total mass
▶ dσ/dΩ = elastic-scattering differential cross section
▶ momentum transfer q = k − k′, for central potential q = 2k sin θ

2
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Two-parameter analytical formula

Born approximation on electron-ion Yukawa potential

Born approximation

SB(E) =
∫ 2k
0

(ℏq)2
2m2

2π
k2
|FB(q)|2qdq

FB(q) = − 2µ
ℏ2q

∫∞
0 sin qrV (r)rdr

Yukawa potential: electrons in
target atoms are screened

⇒ V (r) = −Z1αℏc
e−r/a

r Example: p+ on Si

Exact analytical expression for peak [Yang Chen et al. JCE 2002]

SB(E) = (Z1αℏc)2 π
E

[
ln
(
1 + 4E

EI

)
− 4E/EI

1+4E/EI

]
, EI ≡ ℏ2

2µa2

▶ factor 2 difference with Bethe formula [Bethe AP 1930]

S(E) ∼
E→∞

(Z1αℏc)2 2π
E ln 4E

I , I = mean excitation energy

▶ wrong behaviour at low energy
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Two-parameter analytical formula

Above Bragg peak: energy-dependent screening
Phenomenological screening

a(k, kI , kF) =
√

4k2

k4I
+ πa0

4kF

≡
√

v2

ω2 +
v2F
3ω2

p

Inspired by [Lifschitz and Arista, PRA

1998; Sigmund, 2006]

High-energy: Bohr adiabatic radius

a →
k→∞

aB = v
ω

▶ related to Bethe EI ≡ ℏ2k2
I

me
= I√

e
▶ tabulated, hard to calculate
▶ example: p on Si: EI = 105.3 eV

Good fit on whole Bragg peak with

Fermi energy EF ≡ ℏ2k2F
me

= 28.7 eV
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Two-parameter analytical formula

Below Bragg peak: Free Electron Gas [Yang Chen et al. JCE 2002]

Electronic cloud ≈ Fermi gas
⇒ analytical expression for SB(E)

Fermi speed vF = ℏkF/me

related to electron gas density
ne = k3F/3π

2

▶ predictive for solids: ne = nZ2

▶ ≈ predictive for gases, using
condensed-matter density

gas H2 He N2 Ar
EI (eV) 11.6 25.4 49.7 113.4
EF(eV) 4.43 4.09 14.2 19.1

Low-energy limit

a →
k→0

√
πa0
4kF

≡
√

1
3
vF
ωp

▶ ωp = plasma frequency
▶ SB(E) reduces to Ritchie formula,

linear in k [Ritchie PR 1959]

[Yang Chen et al. JCE 2002]
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Two-parameter analytical formula

Below Bragg peak: Free Electron Gas [Yang Chen et al. JCE 2002]

Electronic cloud ≈ Fermi gas
⇒ analytical expression for SB(E)

Fermi speed vF = ℏkF/me

related to electron gas density
ne = k3F/3π

2

▶ predictive for solids: ne = nZ2

▶ ≈ good fit for gases
⇒ good phenomenological model

gas H2 He N2 Ar
EI (eV) 11.6 25.4 60.7 113.4
EF(eV) 11.6 25.4 16.7 26

Low-energy limit

a →
k→0

√
πa0
4kF

≡
√

1
3
vF
ωp

▶ ωp = plasma frequency
▶ SB(E) reduces to Ritchie formula,

linear in k [Ritchie PR 1959]

[Yang Chen et al. JCE 2002]
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A call to experimentalists!

When does decoherence/measurement happen in a TPC?

1 Imagine any matter-wave interferometry
(Young-type) experiment in an empty
time projection chamber and measure
interference pattern

2 Increase pressure continuously. . .
check pattern

3 Switch on voltage. . .
check pattern

4 Switch on electronics readout. . .
check pattern

5 Become aware of tracks. . .
check pattern

electron biprism, Ee = 50 keV
[Tonomura et al. 1989]

incoming
beam

segmented
plane

gas volume

range

E field

ACTAR TPC principle
[CDR 2012]
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A call to experimentalists!

A similar experiment for (heavy!) molecules

Matter-wave interferences for fullerene
molecules [Hornberger et al. PRL 2003]

Collisional decoherence due to
background gas

▶ fringe visibility V (p) = V0e
−p/p0

▶ decoherence pressure
p0 = kBT/2Lσeff

▶ effective total cross section σeff

Gas dependence well understood

But no track measurement!
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A call to experimentalists!

Link between decoherence and stopping power

Quantum master equation for fast
particle (a) in a gas of slow
particles (b) ⇒ Focker-Planck eq.

∂fa
∂t + va · ∇rfa = η∇ka · (kafa)

+γ∇2
⊥ka

fa + ξ∇2
ka
fa

▶ η = friction parameter ∝ S
▶ γ = transverse diffusivity ∝ η
▶ ξ = momentum diffusivity ∝ η

⇒ momentum distribution ka

Longitudinal and transverse
coherence lengths Λ∥, Λ⊥

Thermal wavelength ΛT ≈ 10 pm
for 5 MeV α particle (T = 300 K)
⇒ to be adapted for electrons

[DG, PRA 2022; DG & JMS, PRA 2023]
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Conclusions and perspectives

Conclusions and perspectives
Promising (phenomenological) two-parameter formula for stopping
power below and above Bragg peak

▶ electron-ion energy-dependent Yukawa potential, Born approximated
▶ low-energy: reproduces Ritchie formula, free-electron gas model,

predictive, based on (condensed-matter) electron density
▶ high-energy: reproduces Bethe formula, based on phenomenological

mean excitation energy
▶ works both for condensed matter and gases

Call to experimentalists
▶ matter-wave interferometry experiment
▶ under varying gas pressure ⇒ decoherence pressure
▶ test of stopping-power/cross section
▶ step-by-step check of measurement process in time-projection-chambers

Longer-term research project (coll. B. Lorent): deterministic quantum
statistical model for quantum particle in gaseous environment

▶ new approach to decoherence, localisation and measurement
▶ also applies to molecular collisions
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Conclusions and perspectives
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