Branching ratio measurements of low-lying p- and α -unbound states in ^{30}S

E.C. Vyfers,¹ S. Triambak,¹ L.M. Donaldson,² J.W. Brümmer,² V. Pesudo,³ R. Neveling,² T.C. Khumalo,² P. Adsley,⁴ H.O.U. Fynbo,⁵ P. Jones,² M. Kamil,¹ E. Lawrie,² K.C.W. Li,⁶ Z. Mabika,¹ D.J. Marin-Lambarri,^{1,2,7} G.G. O'Neill,⁸ N. Orce,¹ P. Papka,⁹ A. Parikh,¹⁰ L. Pellegri,^{2,11} K. Raju,^{12,13} B. Rebeiro,^{14,15} B. Singh,¹ F.D. Smit,² G.F. Steyn,² J.J. van Zyl,⁹ M. Wiedeking^{2,16} ¹University of the Western Cape, South Africa ²iThemba LABS, South Africa ³CIEMAT, Spain ⁴Texas A&M University, USA ⁵University of Aarhus, Denmark ⁶University of Oslo, Norway ⁷Universidad Nacional Autónoma de México, Mexico ⁸University of Bergen, Norway ⁹Stellenbosch University, South Africa ¹⁰Universitat Politècnica de Catalunya, Spain ¹¹University of the Witwatersrand, South Africa ¹²Department of Physics (BS&H), India ¹³Andhra University, India ¹⁴Institute de Physique des 2 Infinis de Lyon, France ¹⁵McGill University, Canada ¹⁶Lawrence Berkeley National Laboratory

This project aims to measure proton and α branching ratios of astrophysicallyrelevant states in $^{30}{\rm S}$ to determine $^{26}{\rm Si}(\alpha,p)^{29}{\rm P}$ and $^{29}{\rm P}(p,\gamma)^{30}{\rm S}$ reaction rates in novae and Type I X-ray bursts (XRBs). These phenomena occur in binary star systems that include a hydrogen-rich, main-sequence star and a dense companion star (white dwarf in novae and neutron star in XRBs). The gravitational field of the companion star leads to an accretion of material from the main-sequence star, which builds up on its surface and eventually triggers rapid thermonuclear runaways. Such explosive astrophysical events are characterized by a rapid increase in the X-ray luminosity of the companion star over short time scales ($\sim 10-100$ s), with the synthesized material violently ejected into the interstellar medium. Therefore, reliable estimates of such critical nuclear reactions are important to understand the elemental abundances of several heavier elements synthesized in novae and Type I XRBs, and r-process sites in neutron star mergers. In this work, we study relevant excited states in ³⁰S produced using the ${}^{32}S(p,t){}^{30}S$ reaction and the K600 magnetic spectrometer at iThemba LABS, together with a segmented silicon detector array (called the CAKE) and 6 LaBr₃ detectors. The CAKE and LaBr₃ detector arrays provide a powerful tool to obtain accurate angular-distribution information on competing decays from states in ³⁰S. The data obtained from this experiment are anticipated to robustly test nova models and Type I XRBs.