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Big questions in small systems

 Does a quark-gluon plasma form in small systems?
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Big questions in small systems

 Does a quark-gluon plasma form in small systems?

Soft observables say... YES
... as long as you're at high enough multiplicity
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Big questions in small systems

How does this QGP in small systems, if it is
formed, differ from that in large systems?
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Energy loss in small systems

From large systems, we expect that QGP => partonic energy loss

< ALICE CMS
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Energy loss in small systems

From large systems, we expect that QGP => partonic energy loss; however, ...

There are mixed signals for
energy lossinp/d+A

ATLAS JHEP 07, 074 (2023)
frdcol002@myuct.ac.za Coleridge Faraday PHENIX Nature Phys. 15, 214-220 (2018) 7



Energy loss in small systems

From large systems, we expect that QGP => partonic energy loss; however, ...

There are mixed signals for
energy lossinp/d+A
(?/(9
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Energy loss in small systems

From large systems, we expect that QGP => partonic ~nergy loss; however, ...

There are mixed signals for Ea C{}/
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Energy loss in small systems

From large systems, we expect that QGP => partonic ~nergy loss; however, ...

There are mixed signals for Ea Cr
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Physics model

IP-Glasma Bjorken
initial state Expansion

CF, W. A. Horowitz, JHEP 11, 019 (2025)
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Physics model

/ Radiative

IP-Glasma Bjorken
initial state Expansion

N

Collisional

Energy loss
CF, W. A. Horowitz, JHEP 11, 019 (2025)
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Physics model

High-pr data
from
large systems

Radiative X2 (as)
/ minimization
IP-Glasma Bjorken R /
. e —P (8%
initial state Expansion AA § )
\ Collisional / Constrained
Raa

Energy loss
CF, W. A. Horowitz, JHEP 11, 019 (2025)
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Physics model

High-pr data
from
large systems
Theoretical

uncertainties
, Radiative X2 (as)
/ minimization
IP-Glasma Bjorken R /
. e —P (8%
initial state Expansion AA § )
\ Collisional / Constrained
Small-system R

corrections | |
Energy loss

CF, W. A. Horowitz, JHEP 11, 019 (2025)
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Work In progress

soft / hard
correlations, binary
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Strategy

5; p + Pb 0-5% d+ Au 0-5% v 3He + Au 0-5% |
T (GeV)
0- o6
5 - Fit the model on
S S S 0.4 large-system data
> 5 O + 0 0-5% Pb + Pb 50-60% Pb + Pb 0-5% * Then make
| ; : I predictions for small
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_5} 0
-5 0 5 -5 0 5 -5 0 5
x (fm)

frdcol002@myuct.ac.za Coleridge Faraday 16



All results post-fitting, 295 data points

PHENIX 2008, 1t°, Au + Au

ALICE 2018, h*, Pb + Pb
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Predictions for light ions

i 1 ARSI » Overall, good agreement
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CF, W. A. Horowitz, JHEP 11, 019 (2025)
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Towards understanding pA

3 B 1 1 1 | 1 1 1 | 1 1 1 1 1 1 | 1 1 1
preliminary e ALICE

« Use IP-Glasma to generate both

the soft and intermediate spectra * IP-Glasma

* Ability to capture hard-soft
correlations and selection bias
effects

« Uncertainties are from Bayesian
posterior of HERA data (could be

lof o]

reduced in the future by adding in : 5
. 9.5GeV < pr<10.5GeV
pA/pp data) 0- 1 1 1 | ] ] 1 | 1 1 1 | | T: L
: 0 20 40 60 80 100
» Future: add energy loss, see if a | o e
consistent picture of hard + soft can centrality from midrapidity multiplicity (%)
COeXiSt CF, W. A. Horowitz, B. Schenke ongoing work

ALICE, Phys. Rev. C 91, 064905 (2015).
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Can we go smaller?

1.21— 9.6 GeV < pr < 12 GeV —

s . minimum bias -

» 3-He and 6-Li offer the most 1o SE I3 1
“bang-for-buck” in terms of - \6\ .
discovering energy loss in 0.8 | | Yt En —
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nPDF effects and T 06 IR ]
uncertainties) i e ]

»  Would also be interesting to 0.4~°He *He Li B O Ne Xe Au Pb \8~ - -
test onset of hydro, non- I %o X % A data & -8 ]
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Horowitz, arXiv:2512.17832 [hep-ph] (2025).
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Concluding remarks

« Understanding QGP in small systems is one of the most interesting open
qguestions in high energy nuclear physics

5 p + Pb 0-5% d + Au 0-5% %He + Au 0-5% |
I T (GeV)
ol 0.6
-5+
E 0.4
= 5 O +00-5% Pb + Pb 50-60% Pb + Pb 0-5%
0.2
O L
-5 0.
5 0 5 0 5 0 5
X (fm)
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What is the smallest droplet of QGP?
How many patrticles are needed for
collectivity?

How does the “standard model” of
heavy-ions extrapolate to smaller
systems?

Thank you!
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Abstract

@ We reproduced LO pQCD differential cross-sections for
light parton (u, U, d,d,s,§,g) and charged meson
(m*, K%, p, p) production

@ Used contemporary parton distribution functions (PDFs)
and fragmentation functions.

@ Compared with experimental data of p+p at /s = 630 GeV.

Jack Brand Modelling parton and hadron production spectra



Introduction

In pQCD, processes with final-state hadrons are described in

terms of’
AB—-f—h

dX
@ Non-perturbative universal functions f/(x, Q?), D;_,(z, uf)

@ Perturbative hard-scattering cross-sections

1Col|ins, Soper, & Sterman (1989), arXiv:hep-ph/0409313
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Strong Coupling Constant

45
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Parton Interaction Spectra

LO interaction cross-section of a hard 2-to-2 QCD vertex':

dé:ij—)kl

2
AT A o - ~ N A 2
o Gho == (M=, 8, 0))| (2)
o 0.17 N e ]
| o
- N
& 107 gg o gg
- = — gd - gd
U 107"~ du - du
2 B B
~S _10__ pPr
10 - @, (no units) ‘ ‘ ‘
1 5 10 50 100
pr (GeV)

1Combridge, Kripfganz, & Ranft (1977)
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Parton Distribution Functions

@ We used the CT18LO global fit'.

p
2.0 2.0
Q=1.6 GeVic 4 QkE 10 GeV/c

15¢ 15 — g
— -/ u
0 -_—
5 10F 1.0t u
N~
x - s

05¢ 1 05f c

— g=+5
0.0 : : W g g : ‘ : AN
10 10° 10* 0.001 0.010 0.100 1 10° 10° 10* 0.001 0.010 0.100 1

1Yan, Hou, Nadolsky, & Yuan (2023), arXiv:2205.00137 [hep-ph]
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Parton Production Spectra

@ Parton pairs (k,I) produced back-to-back in the transverse
plane have the LO cross-section’

GAB—kI+X Z f fB( 0 dgii—k! )
—_— = X, FA (%1, Q%) XofB (x5, —
de dy, dy, ] dt

@ So the inclusive cross-section to produce parton f is

dO.AB—>f+X /’ Z do.AB—)kI+X
y, dy,
dp? dy; {kp dp7 dyy dy,
1
X [5kf5()’f —y1) + 8;6(ys — ¥o)] 1+6, (4)

TEskola & Honkanen (2003), arXiv:hep-ph/0205048
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Parton Production Spectra
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Fragmentation Functions

@ We used the DSS dataset’, containing %, K* and p,p
fragmentation functions from NLO combined analyses.

e =2.5GeV/c
T K p h
__ o8} Jos8f Josf —d{o8
w
< 06 106f 106f = uJos6f
N —_
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Q ., 1,50 1.t g .t
S 02 0.2/\ 0.2 0.2
_ ———y
0.0 =1 0.0 40,0 ===l 0.0
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z
ue =10 GeVic
15} T 415} K {15 p _d—1.5— h
% _
= 1.0 110} 410} Udiof
N —
= s
q 05f Josf 105} g {05}
N /_\
f— -
0.0 0.0 0.0 e 0.0 -
0.05 0.10 050 1 0.05 0.10 050 1 0.05 0.10 050 1 0.5 0.10 0.50
z

Tde Florian, Sassot, & Stratmann (2007), arXiv:hep-ph/0703242
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Hadron Production Spectra

The inclusive cross-section to produce hadron h is’

d d AB-f+X
= K(/5) J(my,y) [ &y oz u) %
dp? dy,

dO.AB—>h+X
dg? dy

pEy
(5)
@ K(y/s) is the NLO factor

@ The parton cross-section is evaluated at

m
pr = ﬂj(mT, y), Y;=arcsinh (q—Tsinh y)
T

@ The integral bounds are

2my )
—coshy Z < min (1,

Nz

TEskola & Honkanen (2003), arXiv:hep-ph/0205048
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Hadron Production Spectra
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Thank you!

Questions
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QUARK GLUON PLASMA AND HEAVY ION COLLISIONS

L Quarks and gluons interact We observe particles that are
Relativistic ih each oth ithin th P
with each other within the created and modified via the
pancake GP : :
Q quark-gluon interaction

Smash two Pb
atoms together




DIHADRON CORRELATIONS

J A hard parton scattering produces two partons that
are separated by A¢ = min the transverse plane
(back-to-back).

1 The partons are modified by in-medium interactions:
one might lose more energy than the other, and one
can “bend” relative to the other.

 Partons fragment and hadronize into hadrons

A high-p; hadron = trigger hadron

The lower p; hadrons = associate hadrons

Trigger
particle

" Interaction point

Associated
particle

Connors et al, Rev. Mod. Phys.
90 (2018), 025005

L4




DIHADRON CORRELATIONS

Count the number of trigger particles

and associate particles for different
momenta, pseudorapidity and

azimuthal angle, and compare pp to
AA.

Build correlation functions with the
yields.

AD
‘F\ v
Associated .
particle

Interaction
point

—-

Connors et al, Rev. Mod. Trigger
Phys. 90 (2018), 025005 particle

(1/ Ntrigger) dN/d(A0)

0.2

0.1

STAR Collaboration, Phys.
Rev. Lett. 91 (2003) 072304

T I 1 1 L] I T

* d+Au FTPC-Au 0-20% -
— p+p min. bias (b) _

*  Au+Au central

Correlation peaks at m,
corresponding to back-to-back
parton pairs originating in hard
scatter



way

KEY OBSERVABLE: DIHADRON SUPPRESSION FACTOR 1,,

Trigger .
particle Trigger
. . . . . particle
7 Per-trigger Yield of Associate Particles in AA
AA — . . 3 5 ] =
Per-trigger Yield of Associate Particles in pp
ssociate Associated
- S IW' L R B TT T ltrlwl LI B T T T 1":“1 L T T - T Apartic|ted particlte
a 19.2 < p° < 24.0 GeVic ] 240<p]°<288GeVic }.  288<p, <352GeVic | 352 <p." < 48.0 GeVic
E 4_; PbPb 0-10% 5‘ Aways-side 10 \5,=276Tev I CMS Preliminary
o 0<lAnl<1 1= - [
a |- ] :§
g 9
z - 1 == —
22 ) @ ls s
f--g--------------1 - - -]
. 4 . .
se e o o o0 o of e, o D Suppression of associate
= O . .
\8: 19.2<p;° <24.0 Gevie ] 240<p]"<28.8Gevic | 288<p, <352GeVic | 352 <p." < 48.0 GeVic ParUCles at h| gh_PT'
8 4 PbPb 50-60% I I ]
Q [ [
o i [
~ 3t T T
&< i E
1 e i%
1.& ___________ ‘_f_j_.' _'___.____.E_'_... e _E___.___l_l___' _____ CMS Collaboration, Nuclear
e e . o e W W s * Physics A 904-905 (2013) 451c—
T T I et B e et 54c
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MONTE CARLO + ANALYTICAL APPROACH

Medium modelling
Energy loss:

* Radiative energy loss: DGLV formula

* Collisional energy loss: HTL framework

Energy loss calculated as a function of parton energy,
path length, and medium temperature

Geometry

e Simple geometry model: Optical Glauber Model
*  Will extend to hydrodynamic backgrounds

Self generated (2025)

Hard probe production

PYTHIA:

* Model associate and trigger hadrons with Pythia
* Build baseline p+p dihadron correlations

Medium modifications:
* Couple Pythia to in-medium energy loss

10"

T

dN/dp

102

trig

1/N

10°

II||| I I||I]II| T II||H|| T |I||HI| T TTTTI

104

—e— 4<p <5 GeVlc, n=5.1

T [ T T T 3
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OUTLOOK + CONCLUSIONS

(1 Energy loss is a key signal of the formation of QGP in heavy-ion collisions, with
dihadron correlations providing a sensitive and differential probe of medium effects.

[ This project aims to deliver publication-quality results within the first year of the MSc,
with a dedicated focus on interpretation and journal submission in the second year.

 Quantitative constraints on QGP properties, strong coupling constant s and the jet
transport coefficient g, will be extracted from measurements of the /,,

 Extending these studies to small collision systems offers the opportunity to address a
central open question in the field: does a QGP also form in small systems?

QUESTIONS?



R,, ® v,, FROM ENERGY LOSS
IN SMALL SYSTEMS
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NUCLEAR FIREBALL PHYSICS

COLLISION EVENT IN THE ATLAS DETECTOR
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OBSERVABLE OF INTEREST 1: Ry 4

PHENIX Au+Au (central collisions):

Direct y

7 Preliminary

n

GLV parton energy loss (dN*/dy = 1100)

900C ‘85-9G:7H8
“204d JuoDd dry
9qOS[ pyeepe].

o
p; (GeVic)

AA
_ _aN"/dpyr Rys~1—AE/E

R, =
447 Neoy ANPP /dpy
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OBSERVABLE OF INTEREST 2:

Two-particle correlation

A7 >2.0€w+*+

. 0 0
https://arxiv.org/pdf/1102.3010 z I L ALICE
4 X oA X Pb-Pb, Y5, = 5.02 TeV
U3 & VL L 40-50% VOM  ((N_) ~ 478)
3 51 37 U 5r
4 4 4 4
T s

Riyu(pr,¢) _ K ok
RZ’Z(pT) =1+ 27;11)” cos (n [(]5 wn})

https://arxiv.org/pdf/2411.09323
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IS THERE A QGP IN SMALL SYSTEMS?

p+Pb |s,, =8.16 TeV, 165 nb”

ALICE NSD p-Pb |[S,, = 5.02 TeV 0-5% central

—— pj;:( > 75 GeV
pJTe‘ > 100 GeV

https://arxiv.org/abs/1609.05665
https://arxiv.org/pdf/1910.13978
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CONSTRAINING OUR MODEL TO LARGE SYSTEM DATA

PbPb — +/snw = 5020 GeV PbPb — /sny = 5020 GeV
Large System data |* ATLAS - ALICE - CMS oL+ ATLAS - ALICE - CMS — theory

A e P :TF—T ________ —_— e

Experiment Collision system Hadron species Obseravble o5

ALICE [94] PbPb Raa
ALICE [63] PbPb Raa
ALICE [95] PbPb Raa
ATLAS [64] PbPb Raa
CMS [62] PbPb Rk
CMS [96] PbPb Raa
ALICE [97] PbPb v
ALICE [58] PbPb v2
ATLAS [78] PbPb V2
CMS [81] PbPb v
CMS [56] PbPb v2
CMS [82] PbPb v2
CMS [83] PbPb V2
PHENIX [98] AuAu Raa
PHENIX [85] AuAu Rax
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CONSTRAINING OUR MODEL TO LARGE SYSTEM DATA

Large system data

PbPb 30-40% +/Snn = 5020 GeV h* PbPb 0-10% ~/Sxn = 5020 GeV D° AuAu 30-40% ~/Snn = 200 GeV 7°

Experiment  Collision system Hadron species Obseravble -_—"h e ALICE e PHENIX
1} — theory 1 — theory
ALICE [94] PbPb Raa ]
ALICE [63] PbPb Raa
ALICE [95] PbPb Raa
ATLAS [64] PbPb Raa
CMS [62] PbPb Raa
CMS [96] PbPb Raa
ALICE [97] PbPb V2
ALICE [58] PbPb v2
ATLAS [78] PbPb V2 ‘
CMS [81] PbPb v2 e CMS o CMS e ALICE
CMS [56] PbPb v2 — theory
CMS [82] PbPb V2
CMS [83] PbPb v2
PHENIX [98] AuAu Raa
PHENIX [85] AuAu Raa

PbPb 10-30% +/Sxn =5020 GeV D®  PbPb 20-30% ~/Sxy = 5020 GeV k¥ PbPb 5-10% +/Snn = 5020 GeV ki
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TENSION IN v; DATA

e
W

et
(S

Extracted o
=)

Constrain model on

BT LHC data only
a subset of all observables

Small a; and § are needed
HTL-only 10GeV< pr <50GeV .
to describe the v; data

o
=)

N

Extracted §/T°

E =100 GeV
T =0.5GeV
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SMALL SYSTEM PREDICTIONS

Really good agreement in Rpp and Ryepne !

P

R4 <1 and ~0 v, in small systems?
— PbPb — OO

hi

snN = 5360 GeV — NeNe 0-100%

L
VSNN = 5360 GeV

30-40%

— OO0 0-100%

L L L 1
20 80 100
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CONCLUSION

. QGP formation is well established in large systems
. Our energy less model is constrained to large systems

. Some QGP signatures are present in small systems

1

2

3

4. There is a strong tension in the v3 data

5. Excellent agreement between our model and data in Rpg and Ryene
6

. We predict R4y < 1 and ~0 v, in small systems
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