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Motivation

In particle physics a clear feature of the fermion mass

spectrum is

mu ⌧ mc ⌧ mt , md ⌧ ms ⌧ mb , me ⌧ mµ ⌧ m⌧ ,

where a completely satisfactory theory of fermion masses

and the related problem of mixing angles is certainly

lacking at present.

Among the models which can be used to explain this

hierarchy (as well as EWSB, proton stability, gauge

hierarchies, dark matter etc.), are those with extra spatial

dimensions.



With the LHC now up and running, exploration of the
realm of new physics that may operate at the TeV scale
has begun

In order to explore the physics at a high energy scale we
use RGEs as a probe to study the momentum dependence
of the Yukawa couplings, gauge couplings, and the CKM
matrix elements.

Note that instead of assuming the RGE goes from the mZ

scale up to the GUT scale by using the SUC(3)⇥SUL(2)⇥
UY (1) symmetry, we know that models with extra
dimensions may bring down the unification scale to a much
lower energy.



The UED model

For this talk I shall work with the minimal UED model,
i.e. the extra dimension is compactified on a circle of radius
R with a Z2 orbifolding, which identifies the fifth
coordinate y ! �y.

Note that other UED models exist, where in
A. I. Abdalgabar’s poster, a 5D MSSM is considered.

In this case, the 5-dimensional KK expansions of the matter
fields, the Higgs field and gauge fields are:
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where the corresponding coupling constants among the KK modes are

simply equal to the SM couplings up to a normalisation factors,

e.g. YU =

Y

5
Up
⇡R

.



The zero modes in the above equations are identified with the 4-dimensional
SM fields, whilst the complex scalar field H is a Z2 even field, and there
is a left-handed and a right-handed KK mode for each SM chiral fermion.

Note that in models with UED momentum conservation in the extra
dimensions, we are led to the conservation of KK number at each vertex
in the interactions of the 4-dimensional e↵ective theory, where
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where �M = (�µ, i�5), M = 0, 1, 2, 3, 5 and similarly for the quark sector
etc.

After integrating out the compactified dimension, the 4-dimensional
e↵ective Lagrangian has interactions involving the zero mode and the
KK modes. However, these KK modes cannot a↵ect EW processes at
tree level, and only contribute to higher order EW processes.



The gauge coupling constants
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In the SM, the one-loop corrections to the gauge couplings

are given by
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That is, we have diagrams such as:

g3 and g2

g1, g2 and g3 g2 only

g3 and g2g3 and g2



For the UED model, there will
be at each excited KK level
the one-loop corrections to the
gauge couplings arising from
the diagrams exactly
mirroring those of the SM ground
states

Self-energy interactions
with the An

5 scalar fields

A5 = {G5, W5, B5}

Plus new contributions to the self-energy of the gauge boson
from the fifth component of the 5D gauge field AM

(M = 0, 1, 2, 3, 5) at each KK excited level
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Note that for the closed fermion one-loop diagrams, one

needs to count the contributions from both the left-handed

and right-handed KK modes of each chiral fermion to the

self-energy of the gauge field

Between the scale R�1
where the first KK states are excited

and the cuto↵ scale ⇤, there are finite quantum corrections

to the Yukawa and gauge couplings from the ⇤R number

of KK states.

Up to the scale R�1
, the first step KK excitation occurs,

the RG evolution is logarithmic, controlled by the SM beta

functions.



With increasing energy, that is, as each KK threshold is

crossed, new excitations come into play and govern new

sets of beta functions until the next threshold is reached,

leading to

16⇡2 dgi
dt

=

h
bSM
i + (S(t)� 1)

˜bi
i
g3i ,

where S(t) = etmZR, and

˜bi =

✓
81

10

,
7

6

, �5

2

◆
,

corresponding to each of the gauge couplings.

Note again, that in the 5D MSSM case bSM
i ! bMSSM

i and

˜bi =
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+4⌘ where ⌘ represents the number of

generations of fermions which propagate in the bulk



3 4 5 6 7 8

0.4

0.6

0.8

1.0

1.2

t

G
au
g
e
C
o
u
p
li
n
g
s

g3

g2

g1

Solid: R�1 = 1TeV
Dot-Dash: R�1 = 2TeV
Dashed: R�1 = 10TeV

We can see that the dependence of the gauge couplings on
the energy scale drastically changes the normal one-loop
running of the gauge couplings, and lowers the unification
scale considerably.

The extra dimensions naturally lead to the appearance of
GUTs at scales substantially below the usual GUT scale.



The SM Yukawa RGEs
Starting with SM, which is based on the group structure
SUC(3)⇥SUL(2)⇥UY (1) with one Higgs doublet, the mass
matrices arise from the Yukawa sector of the theory as given
by

LY = YU ✏HūQ+ YDH⇤d̄Q+ YEH
⇤ēL ,

where ✏ is the 2⇥ 2 antisymmetric tensor with
✏12 = �✏21 = �1.

It is well known that the evolution of the generic Yukawa
coupling, which describes the fermion-boson interactions, is
given by the beta function. As a result the Yukawa
coupling renormalisation depends on the corresponding beta
functions, including contributions from the anomalous
dimensions of the field operators.



where Y
R

is the renormalised Yukawa coupling constant,
and Z
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�
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coupling

is the vertex
renormalisation constant.
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So the diagrams we need to consider (in the SM for
the up-type quarks) are:

� (any fermion
with mass)
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The UED Yukawa RGEs

The UED Yukawa RGEs

As discussed earlier, we will have additional diagrams from
the KK modes in complete analogy to the SM diagrams
(where the fermion loop will have both left and right-handed
KK modes) plus the above contributions from the
An

5 = {Gn
5 , Wn

5 , Bn
5 } scalar fields.
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5 An
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In which case, if we write:
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The square of the up-type and down-type Yukawa coupling

matrices can be diagonalised by using two unitary matrices

U and V

UY †
UYUU

† = diag(f2
u , f2

c , f2
t ) , V Y †

DYDV † = diag(h2
d , h

2
s , h

2
b) .

The evolution of these eigenvalues, and similarly in the

lepton can be found in the literature, and for compactness

will not be presented here.

Note that the CKM matrix describing the quark flavour

mixing in the charged current is given by

VCKM = UV † .



Where we can now also obtain the RGE of the elements of

the CKM matrix. Note that we can see from these

equations that one needs to know the running of the Yukawas

to obtain the evolution of the CKM matrix, where beyond

the R�1
threshold:
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Properties of the RGE evolution

From this full set of one-loop coupled RGE for the Yukawa
couplings and the CKM matrix, together with those for the
gauge coupling equations, one can obtain the
renormalisation group flow of all observables related to up-
and down-quark masses and the CKM matrix elements

We assume the fundamental scale is not far from the range
of the LHC scale, and set the compactification radii to be
R�1 = 1 TeV, 2 TeV, and 10 TeV. The extra dimensions
naturally lead to gauge coupling unification at an
intermediate mass scale.
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The Yukawa couplings evolve in the usual logarithmic
fashion when the energy is below 1 TeV, 2 TeV, and 10 TeV
for the three di�erent cases
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However, once the first KK threshold is reached, the
contributions from the KK states become more and more
significant, and the running of the Yukawa couplings, or
more precisely, the one-loop KK corrected e�ective four
dimensional Yukawa couplings, begins to deviate from their
normal orbits and start to evolve faster and faster



However, once the first KK threshold is reached, the
contributions from the KK states become more and more
significant, and the running of the Yukawa couplings, or
more precisely, the one-loop KK corrected e↵ective four
dimensional Yukawa couplings, begins to deviate from their
normal orbits and start to evolve faster and faster

For the compactification radius R�1 = 1 TeV, the Yukawa
couplings evolve faster than the other two, reaching its
maximum value at the unification scale around 30 TeV,
after that point their evolution will “blow-up” due to the
faster running of the gauge couplings and new physics would
come into play



We also observe that the Yukawa couplings are quickly

evolving to zero, however, a satisfactory unification of these

seems to still be lacking in this scenario

The first generation fu and hd are driven to the order of

10

�6
, while the ft, the heaviest one, is driven to the order

of 10

�1

We next turn our attention to the quark flavour mixings,

where we choose to look at |Vub|, |Vcb|, |Vus| and J (the

Jarlskog rephasing invariant) as the four independent

parameters of VCKM
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Take the initial values |Vub| = 0.00347, |Vcb| = 0.0410,
|Vus| = 0.2253 and J = 2.91� 10�5, we observe from these
plots the following;
the CKM matrix elements Vub ⇥ �13e�i�, Vcb ⇥ �23, can be
used to observe the mixing angles �13 and �23 and that they
increase with the energy scale; the variation rate becoming
faster once the KK threshold is passed



For mixings related to the third family, the UED e↵ects
become sizable and the mixing angles ✓13 and ✓23 change
at a level of 15% between mZ and the unification scale,
in contrast with the SM, in which the angles only rise by
around 5% at similar energy scales.

By contrast, the variation of the Cabibbo angle appears to
be the least sensitive

However, for the parameter J , the characteristic parameter
for the CP non-conservation e↵ects, its variation becomes
very significant. The larger the value of the
compactification radius R, the faster J evolves to reach its
maximum



Conclusions

In this talk we investigated the consequences of the UED

model on the gauge and Yukawa couplings, as well as the

CKM matrix elements evolution

The energy dependence of the first two generations is very

weak, and qualitatively di↵erent from mixing behaviours

involving the third generation

That is, while the evoluation of the Cabibbo angle is tiny,

the elements |Vub| and |Vcb| increase sizably, relative

deviations can be up to 15% in the whole range.

As for the energy scaling of J , the variation here can be

raised to more than 30%


