

The QGP dynamics in relativistic heavy-ion collisions

Elena Bratkovskaya

Institut für Theoretische Physik & FIAS, Uni. Frankfurt

International Workshop on Discovery Physics at the LHCKruger 2012, December 3 - 7, 2012South Africa

The holy grail:

• **Study of the in-medium properties of hadrons at high baryon density and temperature**

 Study of the partonic medium beyond the phase boundary •

From hadrons to partons

In order to study the phase transition from hadronic to partonic matter – Quark-Gluon-Plasma– we need a consistent non-equilibrium (transport) model with explicit parton-parton interactions (i.e. between quarks and gluons) beyond strings!

explicit phase transition from hadronic to partonic degrees of freedomlQCD EoS for partonic phase

Transport theory: off-shell Kadanoff-Baym equations for the Green-functions S< partonic and hadronic phase h(x,p) in phase-space representation for the

Parton-Hadron-String-Dynamics (PHSD)

> **W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919;NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3**

Dynamical QuasiParticle Model (DQPM)

QGP phase described by

A. Peshier, W. Cassing, PRL 94 (2005) 172301;Cassing, NPA 791 (2007) 365: NPA 793 (2007)

The Dynamical QuasiParticle Model (DQPM)

Basic idea: Interacting quasiparticles

massive quarks and gluons (g, q, qbar) with spectral functions :

$$
\rho_i(\omega,T) = \frac{4\omega\gamma_i(T)}{\left(\omega^2 - \bar{p}^2 - M_i^2(T)\right)^2 + 4\omega^2\gamma_i^2(T)}
$$
 $(i=q,\bar{q},g)$

Fit from A. Peshier, PRD 70 (2004) 034016

mass: width: quarks **^gluons:**

$$
\begin{aligned} &\mathbf{M}^2(\mathbf{T}) = \frac{g^2}{6} \left(\left(\mathbf{N_c} + \frac{1}{2} \mathbf{N_f} \right) \mathbf{T}^2 + \frac{\mathbf{N_c}}{2} \sum_q \frac{\mu_q^2}{\pi^2} \right) \qquad &\mathbf{N_c} = 3, \mathbf{N_f} = 3 \\ &\gamma_g(\mathbf{T}) = \mathbf{N_c} \frac{g^2 \mathbf{T}}{4 \pi} \, \ln \frac{\mathbf{c}}{g^2} \end{aligned}
$$

running coupling (pure glue): $\alpha_{\text{s}}(T) = g^2(T)/(4\pi)$

$$
g^2(T/T_c)=\frac{48\pi^2}{(11N_c-2N_f)\ln(\lambda^2(T/T_c-T_s/T_c)^2}
$$

with 3 parameters:^Ts/Tc=0.46; c=28.8; λ**=2.42 (for pure glue** $N_f=0$ **)**

 fit to lattice (lQCD) results (e.g. entropy density) - **quasiparticle properties (mass, width)**

DQPM: Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

The Dynamical QuasiParticle Model (DQPM)

• DQPM matches well lattice QCD
• DOPM provides mean-fields (1PI **•DQPM** provides mean-fields (1PI) for gluons and quarks
as well as effective 2-body interactions (2PI) **as well as effective 2-body interactions (2PI)**•**DQPM ^gives transition rates for the formation of hadrons PHSD**

Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Initial A+A collisions – HSD: string formation and decay to pre-hadrons

Fragmentation of pre-hadrons into quarks: using the quark spectral functions from the Dynamical QuasiParticle Model (DQPM) - (approximation to QCD

Partonic phase: quarks and gluons (= 'dynamical quasiparticles') withoff-shell spectral functions (width, mass) defined by the DQPM

 elastic and inelastic parton-parton interactions: using the effective cross sections from the DQPM

- **q + qbar (flavor neutral) <=> gluon (colored)**
- **^gluon + gluon <=> gluon (possible due to large spectral width)**
- **q + qbar (color neutral) <=> hadron resonances**

self-generated mean-field potential for quarks and gluons !

Hadronization: based on DQPM - massive, off-shell quarks and gluons with broad spectral functions hadronize to off-shell mesons and baryons: gluons → q + **qbar**; **q** + **qbar → meson** (**or string**);
q + **q** +**q** → harvon (or string) (strings act as doorwa **q** + **q** +**q** \rightarrow **baryon** (or string) (strings act as ,doorway states' for hadrons)

Hadronic phase: hadron-string interactions – off-shell HSD

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919;NPA831 (2009) 215; EPJ ST 168 (2009) 3; NPA856 (2011) 162.

PHSD: hadronization of a partonic fireball

Hadronization: q+qbar or 3q or 3qbar fuse to

color neutral hadrons (or strings) which subsequently decay into hadrons in amicrocanonical fashion, i.e. obeying all conservation laws (i.e. 4-momentum conservation, flavor current conservation) in each event!

 Hadronization yields an increase in total entropy S (i.e. more hadrons in the final state than initial partons) and not a decrease as in the simple recombination models!

Off-shell parton transport roughly leads a hydrodynamic evolution of the partonic system

> **W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3**

7

Collective flow: anisotropy coefficients (v¹, v2, v3, v4)in A+A

Final angular distributions of hadrons

10k Au+Au collision events at b = 8 fm rotated to different event ^planes:

S. A. Voloshin, arXiv:1111.7241

Excitation function of elliptic flow

Excitation function of elliptic flow is not described by hadron-stringor purely partonic models !

Elliptic flow v2 vs. collision energy for Au+Au

48

 ν_2 in PHSD is larger than in HSD due to the repulsive scalar mean-field potential $\nu_1 \leftrightarrow \nu_2$ **Us(ρ) for partons**

*^v***2 grows with bombarding energy due to the increase of the parton fraction**

Flow coefficients versus centrality at RHIC

^v4/(v2)² , v3, ^v4 excitation functions at RHIC

 $\nabla \times v_3$, v_4 from PHSD are systematically larger **than those from HSD**

very low *^v***³ and** *^v***4 at FAIR/NICA energies**

 \Box almost constant $v_4/(v_2)^2$ for PHSD

Scaling properties

PHSD: v_2 /ε vs. centrality follows an **approximate scaling with energy in line with experimental data**

In-plane flow v_1 **at RHIC**

versus beam energy

versus centrality

PHSD: v_1 **vs. pseudo-rapidity follows an approximate scaling for high invariant** $\frac{1}{2}$ **20 60 200 6** \overline{M} \overline{M} **in an** \overline{M} **i** \overline{M} **i** \overline{M} **i** \overline{M} **i** \overline{M} **i** \overline{M} **i** $\overline{M$ **energies s1/2=39, 62, 200 GeV - in line with experimental data – whereas at low energies the scaling is violated!**

Transverse momentum dependence at RHIC

elliptic flow

 \mathbf{v}_2 **vs.** \mathbf{p}_T **invariant energies s1/2=27, 39, 62, 200 GeVfollows an approximate scaling for high**

 \mathbf{v}_3 : needs partonic degrees-of-freedom !

Elliptic flow scaling at RHIC

 The mass splitting at low p T is approximately reproduced as well as the meson-baryon splitting for $\mathbf{p_{T}}$ **> 2 GeV/c !**

The scaling of v 2 with the number of constituent quarks n q is roughly in line with the data .

> **E. Bratkovskaya, W. Cassing, V. Konchakovski, O. Linnyk, NPA856 (2011) 162**

Ratio v_4 / $(v_2)^2$ **vs.** p_T at RHIC

The ratio $v_4/(v_2)^2$ **:**

is very sensitive to the microscopic dynamics

PHSD: ratio grows at low p^T - in line with exp. data

Dileptons

mass $[GeV/c²]$

Joachim Stroth ⁵

Acceptance corrected NA60 data

O. Linnyk, E.B., V. Ozvenchuk, W. Cassing and C.-M. Ko, PRC 84 (2011) 054917

Dileptons at SPS: NA60

O. Linnyk, E.B., V. Ozvenchuk, W. Cassing and C.-M. Ko, PRC 84 (2011) 054917

NA60: m_T spectra

Conjecture:

 spectrum from sQGP is softer than from hadronic phase since quark-antiquark annihilation occurs dominantly before the collective radial flow has developed (cf. NA60)

> **O. Linnyk, E.B., V. Ozvenchuk, W. Cassing and C.-M. Ko, PRC 84 (2011) 054917**

PHENIX: dileptons from partonic channels

•**The excess over the considered mesonic sources for M=0.15-0.6 GeV is not explained by the QGP radiation as incorporated presently in PHSD**

• **The partonic channels fill up the discrepancy between the hadroniccontributions and the data for M>1 GeV**

O. Linnyk, W. Cassing, J. Manninen, E.B. and C.-M. Ko, PRC 85 (2012) 024910

PHENIX: mass spectra

Peripheral collisions (and pp) are well described, however, central fail!

O. Linnyk, W. Cassing, J. Manninen, E.B. and C.-M. Ko, PRC 85 (2012) 024910

$\mathbf{PHENIX:}\ \mathbf{p}_{\mathrm{T}}\ \mathbf{spectra}$

- **The lowest and highest mass bins are described very well**
- **Underestimation of p^T data for 100<M<750 MeV bins consistent with dN/dM**
- The 'missing source'(?) is located at low $\mathbf{p_T}$!

O. Linnyk, W. Cassing, J. Manninen, E.B. and C.-M. Ko, PRC 85 (2012) 024910

STAR: mass spectra

O. Linnyk, W. Cassing, J. Manninen, E.B. and C.-M. Ko, PRC 85 (2012) 024910

Predictions for LHC

QGP(qbar-q) dominates at M>1.2 GeV

 \mathbf{p}_T cut enhances the signal of $\mathbf{QGP}(\textbf{qbar-q})$

 \Box **D-, B-mesons energy loss from Pol-Bernard Gossiaux and Jörg Aichelin J/**^Ψ **and** Ψ**' nuclear modification from Che -Ming Ko and Taesoo Song**

> **O. Linnyk, W. Cassing, J. Manninen, E. L. B., P. B. Gossiaux, J. Aichelin, T. Song, C. M. Ko , arXiv:1208.1279**

Chiral magnetic effect and evolution of the electromagnetic field in relativistic heavy-ion collisions

PHSD - transport model with electromagnetic fields

Generalized transport equations in the presence of electromagnetic fields :

$$
\dot{\vec{r}} \rightarrow \frac{\vec{p}}{p_0} + \vec{\nabla}_p U , \qquad U \sim Re(\Sigma^{ret})/2p_0
$$

$$
\dot{\vec{p}} \rightarrow -\vec{\nabla}_r U + e\vec{E} + e\vec{v} \times \vec{B}
$$

$$
\begin{aligned}\n\oint \vec{E} &= \nabla \times \vec{A} \\
\vec{E} &= -\vec{\nabla}\Phi - \frac{\partial \vec{A}}{\partial t} \\
\vec{A}(\vec{r}, t) &= \frac{1}{4\pi} \int \frac{\vec{j}(\vec{r'}, t') \,\delta(t - t' - |\vec{r} - \vec{r'}|/c)}{|\vec{r} - \vec{r'}|} \, d^3r' dt' \\
\Phi(\vec{r}, t) &= \frac{1}{4\pi} \int \frac{\rho(\vec{r'}, t') \,\delta(t - t' - |\vec{r} - \vec{r'}|/c)}{|\vec{r} - \vec{r'}|} \, d^3r' dt'\n\end{aligned}
$$

Magnetic field evolution in HSD/PHSD :

V. Voronyuk, et al., Phys.Rev. C83 (2011) 054911

Angular correlation wrt. reaction plane

 $\langle \cos(\psi_{\alpha} + \psi_{\beta} - 2\Psi_{RP}) \rangle$

Angular correlation is of hadronic origin up to sqrt(s) = 11 GeV !

V. D. Toneev et al., PRC 85 (2012) 044922 , arXiv:1112.2595

Compensation of magnetic and electric forces

There are not only strong magnetic forces but also strong electric forces which compensate each other!V. D. Toneev et al., PRC 85 (2012) 044922 , arXiv:1112.2595

••PHSD provides a consistent description of off-shell parton dynamics **in line with the lattice QCD equation of state (from the BMW collaboration)**

• **PHSD versus experimental observables: enhancement of meson mT slopes (at top SPS and RHIC) strange antibaryon enhancement (at SPS)**

partonic emission of high mass dileptons at SPS and RHICenhancement of collective flow v2 with increasing energy quark number scaling of v2 (at RHIC)

jet suppression

…

⇒ **evidence for strong nonhadronic interactions in the early phase of relativistic heavy-ion reactions** ⇒ **formation of the sQGP**

PHSD group

Wolfgang Cassing (Giessen Univ.) Volodya Konchakovski (Giessen Univ.)Olena Linnyk (Giessen Univ.)Elena Bratkovskaya (FIAS & ITP Frankfurt Univ.) Vitalii Ozvenchuk (HGS-HIRe, FIAS & ITP Frankfurt Univ.)Rudy Marty (FIAS, Frankfurt Univ.)Hamza Berrehrah (FIAS, Frankfurt Univ.)

External Collaborations:

SUBATECH, Nantes Univ. :Jörg Aichelin Christoph Hartnack Pol-Bernard GossiauxTexas A&M Univ.:Che-Ming KoJINR, Dubna:Vadim Voronyuk Viatcheslav ToneevKiev Univ.:Mark GorensteinBarcelona Univ.Laura Tolos, Angel RamosWayne State Uni.Sergei Voloshin

