

Property Measurements of the Higgs-like boson at CMS

Jonathan Hays On behalf of the CMS collaboration Kruger 2012

Introduction

Mass

Couplings

Spin-parity

Introduction

Both ATLAS and CMS observe a new boson around 126 GeV with most sensitivity in WW, ZZ, and γγ decays

Question now is: what have we found?

Only with careful measurements of properties will the answer be found: mass, yields, distributions

Introduction

Very successful running through 2012. Over 20fb⁻¹ recorded so far at 8TeV A big thank you to everyone who made things come together so well!

Production and decay

4 production modes, 5 main decay modes

Most channels updated with 12fb⁻¹ 8 TeV data, some still with ICHEP result

γ γ and ZZ high resolution channels provide a measurement of boson mass

assume single particle of mass m_{χ}

Reduced model dependence: Individual signal strengths from each channel – profiled like other nuisances

Use this in couplings studies: some mass dependence

Mass

Fixing signal strengths to SM gives result compatible to within 0.1 GeV

Global signal strength

Simplest scaling: Fix relative rates to SM and scale with 1 parameter

Compatible with SM predictions

Decay and production

All decay modes see evidence of signal, all consistent with SM

By production mode

68% and 95% CL bounds

By channel

Fit each channel separately for signal strength

Feldman-Cousins intervals

Compatible with SM predictions

Parameterisations

Largely use parameterisations from interim framework from LHCHXSWG arXiv:1209.0040

$$(\sigma \cdot \mathrm{BR}) (ii \to \mathrm{H} \to ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{\mathrm{H}}}$$

Production modes

$$\frac{\sigma_{\text{ggH}}}{\sigma_{\text{ggH}}^{\text{SM}}} = \begin{cases} \kappa_{\text{g}}^{2}(\kappa_{\text{b}}, \kappa_{\text{t}}, m_{\text{H}}) \\ \kappa_{\text{g}}^{2} \end{cases}$$

$$\frac{\sigma_{\text{VBF}}}{\sigma_{\text{VBF}}^{\text{SM}}} = \kappa_{\text{VBF}}^{2}(\kappa_{\text{W}}, \kappa_{\text{Z}}, m_{\text{H}}) \\ \frac{\sigma_{\text{VBF}}}{\sigma_{\text{VBF}}^{\text{SM}}} = \kappa_{\text{W}}^{2} \\ \frac{\sigma_{\text{CH}}}{\sigma_{\text{CH}}^{\text{SM}}} = \kappa_{\text{Z}}^{2} \\ \frac{\sigma_{\text{tTH}}}{\sigma_{\text{tTH}}^{\text{SM}}} = \kappa_{\text{t}}^{2} \\ \frac{\sigma_{\text{tTH}}}{\sigma_{\text{tTH}}^{\text{SM}}} = \kappa_{\text{t}}^{2} \\ \end{cases}$$

Assume all signals near 126 come from a single resonance of zero width, with SM-like coupling structure

Total width = sum of all decays widths (+ invisible)

Decay modes

$$\frac{\Gamma_{WW}^{(*)}}{\Gamma_{WW}^{SM}^{WW}} = \kappa_{W}^{2}$$

$$\frac{\Gamma_{ZZ}^{(*)}}{\Gamma_{ZZ}^{SM}} = \kappa_{Z}^{2}$$

$$\frac{\Gamma_{b\overline{b}}}{\Gamma_{b\overline{b}}^{SM}} = \kappa_{b}^{2}$$

$$\frac{\Gamma_{\tau^{-\tau^{+}}}}{\Gamma_{\tau^{-\tau^{+}}}^{SM}} = \kappa_{\tau}^{2}$$

$$\frac{\Gamma_{\gamma\gamma}}{\Gamma_{\gamma\gamma}^{SM}} = \left\{ \begin{array}{l} \kappa_{\gamma}^{2}(\kappa_{b}, \kappa_{t}, \kappa_{\tau}, \kappa_{W}, m_{H}) \\ \kappa_{\gamma}^{2} \end{array} \right.$$

$$\frac{\Gamma_{Z\gamma}}{\Gamma_{Z\gamma}^{SM}} = \left\{ \begin{array}{l} \kappa_{(Z\gamma)}^{2}(\kappa_{b}, \kappa_{t}, \kappa_{\tau}, \kappa_{W}, m_{H}) \\ \kappa_{\gamma}^{2} \end{array} \right.$$

Parameterisations

COMPARE Leavest Leavest

Largely use parameterisations from interim framework from LHCHXSWG arXiv:1209.0040

 $\kappa_{\rm g}^2(\kappa_{\rm b},\kappa_{\rm t},m_{\rm H})$

KVBF (KW, KZ, MH

Production modes

 κ_W^2

 $\kappa_{\rm Z}^2$

 $= \kappa_t^2$

=

=

 $\frac{\sigma_{\rm ggH}}{\sigma_{\rm ggH}^{\rm SM}}$

 $\frac{\sigma_{\rm VBF}}{\sigma_{\rm VBF}^{\rm SM}}$

 $\frac{\sigma_{\rm WH}}{\sigma_{\rm WH}^{\rm SM}}$

 $\frac{\sigma_{\rm ZH}}{\sigma_{\rm ZH}^{\rm SM}}$

 $\frac{\sigma_{\rm t\bar{t}\,H}}{\sigma_{\rm t\bar{t}\,H}^{\rm SM}}$

$$(\sigma \cdot BR) (ii \rightarrow H \rightarrow ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{H}}$$

Assume all signals near 126 come from a single resonance of zero width, with SM-like coupling structure

Total width = sum of all decays widths (+ invisible)

Factors involving loops

e.g. can insert BSM physics here. Interference terms can also bring linear dependence on κ

Decay modes

Custodial Symmetry

Approximate symmetry of SM

 $\lambda_{WZ} = \frac{\kappa_W}{\kappa_Z} \simeq 1(\text{SM})$

Parameters: λ_{WZ} , κ_{z} , κ_{F}

Fermion and Vector Couplings

Assume common fermion and common vector boson couplings Parameters: κ_v , κ_F

Boson and fermion scaling assuming no invisible or undetectable widths						
Free pa	Free parameters: $\kappa_V (= \kappa_W = \kappa_Z)$, $\kappa_f (= \kappa_t = \kappa_b = \kappa_\tau)$.					
	$\mathrm{H} \to \gamma\gamma$	$H \to ZZ^{(*)}$ $H \to WW^{(*)}$	$H \to b\overline{b}$ $H \to \tau^- \tau^+$			
ggH ttH	$\frac{\kappa_{\rm f}^2 \cdot \kappa_{\rm \gamma}^2(\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm V})}{\kappa_{\rm H}^2(\kappa_i)}$	$rac{\kappa_{ m f}^2\cdot\kappa_{ m V}^2}{\kappa_{ m H}^2(\kappa_i)}$	$\frac{\kappa_{\rm f}^2 \cdot \kappa_{\rm f}^2}{\kappa_{\rm H}^2(\kappa_i)}$			
VBF WH ZH	$\frac{\kappa_{\rm V}^2\cdot\kappa_{\gamma}^2(\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm V})}{\kappa_{\rm H}^2(\kappa_i)}$	$\frac{\kappa_{\rm V}^2\cdot\kappa_{\rm V}^2}{\kappa_{\rm H}^2(\kappa_i)}$	$\frac{\kappa_{\rm V}^2 \cdot \kappa_{\rm f}^2}{\kappa_{\rm H}^2(\kappa_i)}$			

 $\Gamma_{\gamma\gamma} \sim |\alpha\kappa_F + \beta\kappa_V|^2$

photon loop could give access to relative sign

Compatible with SM

Fermion and Vector Couplings

Assume common fermion and common vector boson couplings Parameters: κ_v , κ_F

Boson and fermion scaling assuming no invisible or undetectable widths					
Free parameters: $\kappa_V (= \kappa_W = \kappa_Z)$, $\kappa_f (= \kappa_t = \kappa_b = \kappa_\tau)$.					
	$\mathrm{H} \to \gamma \gamma$	$H \to ZZ^{(*)}$ $H \to WW^{(*)}$	$H \to b\overline{b}$ $H \to \tau^- \tau^+$		
ggH ttH	$\frac{\kappa_{\rm f}^2 \cdot \kappa_{\gamma}^2(\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm V})}{\kappa_{\rm H}^2(\kappa_i)}$	$rac{\kappa_{ m f}^2\cdot\kappa_{ m V}^2}{\kappa_{ m H}^2(\kappa_i)}$	$\frac{\kappa_{\rm f}^2 \cdot \kappa_{\rm f}^2}{\kappa_{\rm H}^2(\kappa_i)}$		
VBF WH ZH	$\frac{\kappa_{\rm V}^2\cdot\kappa_{\gamma}^2(\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm V})}{\kappa_{\rm H}^2(\kappa_i)}$	$\frac{\kappa_{\rm V}^2 \cdot \kappa_{\rm V}^2}{\kappa_{\rm H}^2(\kappa_i)}$	$\frac{\kappa_{\rm V}^2\cdot\kappa_{\rm f}^2}{\kappa_{\rm H}^2(\kappa_i)}$		

Asymmetry in fermion couplings

Some BSM modify couplings for up-type fermions relative to down-type

$$λ_{du} = κ_d / κ_u$$
, assume $λ_{WZ} = 1$

Parameters are: λ_{du} , κ_{u} , κ_{v}

Probing up-type and down-type fermion symmetry assuming no invisible or undetectable widths						
Free parameters: $\kappa_{\rm V}(=\kappa_{\rm Z}=\kappa_{\rm W}), \lambda_{\rm du}(=\kappa_{\rm d}/\kappa_{\rm u}), \kappa_{\rm u}(=\kappa_{\rm t}).$						
	$\mathrm{H}\to\gamma\gamma$	$H \rightarrow ZZ^{(*)}$	$\mathrm{H} \rightarrow \mathrm{WW}^{(*)}$	${ m H} ightarrow { m b} { m \overline{b}}$	$\mathrm{H} \to \tau^- \tau^+$	
ggH	$\frac{\kappa_{g}^{2}(\kappa_{u}\lambda_{du},\kappa_{u})\cdot\kappa_{\gamma}^{2}(\kappa_{u}\lambda_{du},\kappa_{u},\kappa_{u}\lambda_{du},\kappa_{V})}{\kappa_{H}^{2}(\kappa_{i})}$	$\frac{\frac{\kappa_{\rm g}^2(\kappa_{\rm u}\lambda_{\rm du},\kappa_{\rm u})\cdot\kappa_{\rm V}^2}{\kappa_{\rm H}^2(\kappa_i)}$		$\frac{\kappa_{\rm g}^2(\kappa_{\rm u}\lambda_{\rm du},\kappa_{\rm u})\cdot(\kappa_{\rm u}\lambda_{\rm du})^2}{\kappa_{\rm H}^2(\kappa_i)}$		
$t\bar{t}H$	$\frac{\kappa_{\mathrm{u}}^{2} \cdot \kappa_{\gamma}^{2}(\kappa_{\mathrm{u}} \lambda_{\mathrm{du}}, \kappa_{\mathrm{u}}, \kappa_{\mathrm{u}} \lambda_{\mathrm{du}}, \kappa_{\mathrm{V}})}{\kappa_{\mathrm{H}}^{2}(\kappa_{i})}$	$\frac{\kappa_{\rm u}^2 \cdot \kappa_{\rm V}^2}{\kappa_{\rm H}^2(\kappa_i)}$		$\frac{\kappa_{\rm u}^2\cdot(\kappa_{\rm u}\lambda_{\rm du})^2}{\kappa_{\rm H}^2(\kappa_i)}$		
VBF WH ZH	$\frac{\kappa_{\rm V}^2 \cdot \kappa_{\gamma}^2(\kappa_{\rm u}\lambda_{\rm du},\kappa_{\rm u},\kappa_{\rm u}\lambda_{\rm du},\kappa_{\rm V})}{\kappa_{\rm H}^2(\kappa_i)}$	$\frac{\kappa_{\rm V}^2 \!\cdot\! \kappa_{\rm V}^2}{\kappa_{\rm H}^2(\kappa_i)}$		$\frac{\kappa_{\rm V}^2\cdot(\kappa_u\lambda_{\rm du})^2}{\kappa_{\rm H}^2(\kappa_i)}$		

Compatible with SM

Asymmetry in fermion couplings

Some BSM modify couplings for leptons relative to quarks

$$\lambda_{lq} = \kappa_l / \kappa_q$$
, assume $\lambda_{WZ} = 1$
Parameters are: $\lambda_{lq}, \kappa_q, \kappa_V$

Probi	Probing quark and lepton fermion symmetry assuming no invisible or undetectable widths					
Free pa	Free parameters: $\kappa_{\rm V}(=\kappa_{\rm Z}=\kappa_{\rm W}), \lambda_{\rm lq}(=\kappa_{\rm l}/\kappa_{\rm q}), \kappa_{\rm q}(=\kappa_{\rm t}=\kappa_{\rm b}).$					
	${ m H} ightarrow \gamma\gamma$	$H \rightarrow ZZ^{(*)}$	$\mathrm{H} \rightarrow \mathrm{WW}^{(*)}$	$\mathrm{H} \to \mathrm{b} \overline{\mathrm{b}}$	$\mathrm{H} \to \tau^- \tau^+$	
ggH ttH	$\frac{\kappa_{\rm q}^2 \cdot \kappa_{\gamma}^2(\kappa_{\rm q},\kappa_{\rm q},\kappa_{\rm q}\lambda_{\rm lq},\kappa_{\rm V})}{\kappa_{\rm H}^2(\kappa_i)}$	$\frac{\kappa_{\rm q}^2 \cdot \kappa_{\rm V}^2}{\kappa_{\rm H}^2(\kappa_i)}$		$rac{\kappa_{ m q}^2\cdot\kappa_{ m q}^2}{\kappa_{ m H}^2(\kappa_i)}$	$\frac{\kappa_{\rm q}^2 \cdot (\kappa_{\rm q} \lambda_{\rm lq})^2}{\kappa_{\rm H}^2(\kappa_i)}$	
VBF WH ZH	$\frac{\kappa_{\rm V}^2 \cdot \kappa_{\gamma}^2(\kappa_{\rm q},\kappa_{\rm q},\kappa_{\rm q}\lambda_{\rm lq},\kappa_{\rm V})}{\kappa_{\rm H}^2(\kappa_i)}$	ĸ	$\frac{2}{V} \cdot \kappa_{V}^{2}$ $\frac{2}{V} (\kappa_{i})$	$\frac{\kappa_{\rm V}^2 \cdot \kappa_{\rm q}^2}{\kappa_{\rm H}^2(\kappa_i)}$	$\frac{\kappa_{\rm V}^2 \cdot (\kappa_{\rm q} \lambda_{\rm lq})^2}{\kappa_{\rm H}^2(\kappa_i)}$	

BSM in Loops

BSM can significantly alter phenomenology even if Higgs sector largely same with new particles in loops

Don't resolve gluon and photon loops just treat as free parameters

2D scan in $(\kappa_{\gamma}, \kappa_g)$ profiling everything else with Γ_{BSM} =0

Best fit: (1.43, 0.81) κ_{γ} 95% CI [0.98,1.92] κ_{g} 95% CI [0.55,1.07]

Compatible with SM

BSM in loops

BSM can significantly alter phenomenology even if Higgs sector

largely same with new particles in loops

Investigate potential $\Gamma_{\rm BSM} \neq 0$

 κ_{γ} , κ_{g} free parameters as before But now profile and allow non-zero decay to BSM particles

Generic C6 search

Examine individual couplings assuming custodial symmetry and not resolving loops

Leaves 6 parameters: $\kappa_{\gamma,} \kappa_{V}, \kappa_{g}, \kappa_{\tau}, \kappa_{b}, \kappa_{t}$

Fit one, profile others

Looks largely SM-like

Some constraint even with 6 parameters

Couplings summary

Model parameters	Assessed scaling factors		
	(95% CL intervals)		
$\lambda_{\rm wz}, \kappa_{\rm z}$	λ_{wz}	[0.57,1.65]	
$\lambda_{\rm wz}, \kappa_z, \kappa_f$	λ_{wz}	[0.67,1.55]	
$\kappa_{ m v}$	$\kappa_{\rm v}$	[0.78,1.19]	
κ_f	κ _f	[0.40,1.12]	
$\kappa_{\gamma}, \kappa_{g}$	κ_{γ}	[0.98,1.92]	
	κ_g	[0.55,1.07]	
$\mathcal{B}(H \to BSM), \kappa_{\gamma}, \kappa_{g}$	$\mathcal{B}(H \to BSM)$	[0.00,0.62]	
$\lambda_{\rm du}, \kappa_{\rm v}, \kappa_{\rm u}$	λ_{du}	[0.45,1.66]	
$\lambda_{\ell q}, \kappa_{v}, \kappa_{q}$	$\lambda_{\ell q}$	[0.00,2.11]	
	$\kappa_{\rm v}$	[0.58,1.41]	
	κ_b	not constrained	
$\kappa_v, \kappa_b, \kappa_\tau, \kappa_t, \kappa_g, \kappa_\gamma$	κ_{τ}	[0.00,1.80]	
	κ_t	not constrained	
	κ_g	[0.43,1.92]	
	κ_{γ}	[0.81,2.27]	

Spin-parity: O⁺ versus O⁻

Angular analysis based on ZZ search Test statistic: q = log(L(B+0⁺)/L(B+O⁻))

Throw 50k toys for each hypothesis

CMS Preliminary √s = 7 TeV, L = 5.1 fb⁻¹,√s = 8 TeV, L = 12.2 fb⁻¹ 3 ц. 30 2.5 25 2 20 1.5 15 10 0.5 5 0 0.2 0.4 0.6 0.8 0 f_{a3}

Can also construct a likelihood with overall scale and parameters sensitive to each species

Conclusions

With more data and improved analyses CMS making significant tests of the new boson

> No significant deviations seen – looks SM like

Benchmark parameterisations used to probe for small deviations of couplings from SM

Assuming spin-0 angular analysis disfavours 0⁻

More data needed!

CMS Projection

Standard Model

Canonical elephant

Other Models

SUSY Elephants?

Conclusions

With more data and improved analyses CMS making significant tests of the new boson

> No significant deviations seen – looks SM like

Benchmark parameterisations used to probe for small deviations of couplings from SM

Assuming spin-0 angular analysis disfavours 0⁻

More data needed!

CMS Projection

