### KRUGER 2012: Workshop on Discovery Physics at the LHC Kruger National Park, South Africa, December 3-7, 2012



# **Strangeness in ALICE**

### Domenico Elia INFN, Bari (Italy) on behalf of the ALICE Collaboration

D. Elia (INFN Bari, Italy)

KRUGER 2012 / Kruger Gate (South Africa) December 3-7, 2012



- Measuring strangeness with ALICE:
  - Physics motivation
  - Experimental apparatus
  - Strange particle detection

### Results:

- Spectra, Model comparisons in pp
- Spectra, Ratios, Thermal model comparisons in Pb-Pb
- Strangeness enhancement
- > Collectivity: elliptic flow  $(v_2)$
- > High  $p_T$ : nuclear modification factor ( $R_{AA}$ )

Summary and prospects





- Measuring strangeness with ALICE:
  - Physics motivation
  - Experimental apparatus
  - Strange particle detection

#### More on Strangeness at KRUGER 2012:

- Charged kaons
  - Strange resonances (H. Oeschler)
- Hypertritons
- (N. A. Martin)

(R. Preghenella)

Strange hadron flow (M. Krzewicki)

- Results:
  - Spectra, Model comparisons in pp
  - Spectra, Ratios, Thermal model comparisons in Pb-Pb
  - Strangeness enhancement
  - > Collectivity: elliptic flow  $(v_2)$
  - > High  $p_T$ : nuclear modification factor ( $R_{AA}$ )
- Summary and prospects





- Measuring strangeness with ALICE:
  - Physics motivation
  - Experimental apparatus
  - Strange particle detection

### **Results:**

- Spectra, Model comparisons in pp
- Spectra, Ratios, Thermal model comparisons in Pb-Pb
- Strangeness enhancement
- > Collectivity: elliptic flow  $(v_2)$
- ▶ High  $p_T$ : nuclear modification factor ( $R_{AA}$ )

Summary and prospects





- Why measuring Strangeness:
  - no net strangeness content in the colliding system
  - strange quark relatively light and abundantly produced
    - $\rightarrow$  handle on the particle production mechanisms
    - $\rightarrow$  understanding hadrochemistry of the system





- Why measuring Strangeness:
  - no net strangeness content in the colliding system
  - strange quark relatively light and abundantly produced
    - $\rightarrow$  handle on the particle production mechanisms
    - $\rightarrow$  understanding hadrochemistry of the system
- Strangeness in pp collisions:
  - benchmark for heavy-ion physics
  - handle on particle production mechanisms
    - $\rightarrow$  low and medium p<sub>T</sub> (< 6 GeV/c): soft interactions
    - → high  $p_T$  (> 6 GeV/c): high transferred momenta (pQCD)





- Why measuring Strangeness:
  - no net strangeness content in the colliding system
  - strange quark relatively light and abundantly produced
    - $\rightarrow$  handle on the particle production mechanisms
    - $\rightarrow$  understanding hadrochemistry of the system
- Strangeness in pp collisions:
  - benchmark for heavy-ion physics
  - handle on particle production mechanisms
    - $\rightarrow$  low and medium p<sub>T</sub> (< 6 GeV/c): soft interactions
    - → high  $p_T$  (> 6 GeV/c): high transferred momenta (pQCD)
  - constrain QCD-inspired models (eg PYTHIA)
  - strangeness production vs. charged multiplicity





- Strangeness in Pb-Pb collisions:
  - strange quarks light enough to be produced thermally in QGP:
    - $\rightarrow$  compare production rates with the thermal model predictions
    - $\rightarrow$  check if strangeness production enhanced in Pb-Pb wrt pp



# **Physics motivation**



- Strangeness in Pb-Pb collisions:
  - strange quarks light enough to be produced thermally in QGP:
    - $\rightarrow$  compare production rates with the thermal model predictions
  - → check if strangeness production enhanced in Pb-Pb wrt pp
     > insights in the whole evolution of the system, eg:



D. Elia (INFN Bari, Italy)

Multi-strange baryons spectra: small hadronic cross section, early decoupling → probe early (pre-equilibrium) stages

Strange particle flow:

 $\rightarrow$  probe hydrodynamics (thermalization)

Also:

High  $p_T$  spectra ( $R_{AA}$ ), Resonances, Jet flavour content ...









Reconstruction of weak decays into charged particles:



Pb-Pb 5.5 TeV Hijing MC event, not all tracks shown; ALICE Physics Performance Report, Vol II, J Phys. G 32, 1295, (2006)



KRUGER 2012 / Kruger Gate (South Africa) December 3-7, 2012



Reconstruction of weak decays into charged particles:



Pb-Pb 5.5 TeV Hijing MC event, not all tracks shown; ALICE Physics Performance Report, Vol II, J Phys. G 32, 1295, (2006).

D. Elia (INFN Bari, Italy)

KRUGER 2012 / Kruger Gate (South Africa) December 3-7, 2012



Reconstruction of weak decays into charged particles:



D. Elia (INFN Bari, Italy)

# **Strange particle detection**



Examples of invariant mass peaks:





Examples of invariant mass peaks:



#### Signal extraction in $p_T$ bins:

- $\rightarrow$  fit gaussian peak and background shape to define peak region
- $\rightarrow$  fit background (side regions) with a smooth function
- $\rightarrow$  subtract background from the integral of the peak region

17

di Fisica Nucleare

Examples of efficiency  $p_T$  dependence:



For multi-strange baryons:

- $\rightarrow$  use Hijing enriched with multistrange particles
- $\rightarrow$  checked: no bias on the final efficiency



18





Examples of efficiency  $p_T$  dependence:



For multi-strange baryons:

- $\rightarrow$  use Hijing enriched with multistrange particles
- $\rightarrow$  checked: no bias on the final efficiency

KRUGER 2012 / Kruger Gate (South Africa) December 3-7, 2012





### **D** Measuring strangeness with ALICE:

- Physics motivation
- Experimental apparatus
- Strange particle detection

### Results:

- Spectra, Model comparisons in pp
- Spectra, Ratios, Thermal model comparisons in Pb-Pb
- Strangeness enhancement
- > Collectivity: elliptic flow  $(v_2)$
- ▶ High  $p_T$ : nuclear modification factor ( $R_{AA}$ )

Conclusions and prospects



### Results in pp @ 7 TeV Single-strange spectra



Range of  $p_T$  measurements:  $\rightarrow 0.0 < p_T < 15.0 \text{ GeV/c for } \text{K}^0_{\text{s}}$  $\rightarrow 0.4 < p_T < 10.0 \text{ GeV/c for } \Lambda$ 

ALICE

Antiparticle/particle  $\approx 1$ 



21

D. Elia (INFN Bari, Italy)

### Results in pp @ 7 TeV Single-strange spectra



Range of  $p_T$  measurements:  $\rightarrow 0.0 < p_T < 15.0 \text{ GeV/c for } \text{K}^0_{\text{s}}$  $\rightarrow 0.4 < p_T < 10.0 \text{ GeV/c for } \Lambda$ 

HLICE

Antiparticle/particle  $\approx 1$ 

Comparison with PYTHIA Perugia-2011:

- → problems in the soft region (more for  $\Lambda$ )
- $\rightarrow$  better agreement p<sub>T</sub> > 6 GeV/c
- → consistent with other observations (\u03c6, K<sup>\*0</sup>): <u>http://arxiv.org/abs/1208.5717</u>
- → See talk on resonances by Helmut Oeschler

D. Elia (INFN Bari, Italy)

KRUGER 2012 / Kruger Gate (South Africa) December 3-7, 2012

### Results in pp @ 7 TeV Multi-strange spectra





Range of  $p_T$  measurements:  $\rightarrow 0.6 < p_T < 8.5$  GeV/c for  $\Xi$   $\rightarrow 0.8 < p_T < 5.0$  GeV/c for  $\Omega$ precise cascade measurements!

Antiparticle/particle ≈ 1



D. Elia (INFN Bari, Italy)

### Results in pp @ 7 TeV Multi-strange spectra





Range of  $p_T$  measurements:  $\rightarrow 0.6 < p_T < 8.5$  GeV/c for  $\Xi$   $\rightarrow 0.8 < p_T < 5.0$  GeV/c for  $\Omega$ precise cascade measurements!

Antiparticle/particle ≈ 1

Comparison with PYTHIA Perugia-2011: tuned with measured multiplicity pop-corn OFF adjust strange di-quark probability

→ deviations in the soft region (increasing with strangeness)



D. Elia (INFN Bari, Italy)

Istituto Nazionale di Fisica Nucleare

### Results in pp @ 7 TeV Multi-strange spectra





### Results in pp @ 7 TeV

## **Multi-strange spectra**

Ratio of combined  $\Omega^{\pm}(sss)$  and  $\Xi^{\pm}(dss)$  spectra:



LICE

#### Results in pp @ 7 TeV

### **Multi-strange spectra**

Ratio of combined  $\Omega^{\pm}(sss)$  and  $\Xi^{\pm}(dss)$  spectra:



TCF



#### **D** Measuring strangeness with ALICE:

- Physics motivation
- Experimental apparatus
- Strange particle detection

#### Results:

- Spectra, Model comparisons in pp
- Spectra, Ratios, Thermal model comparisons in Pb-Pb
- Strangeness enhancement
- > Collectivity: elliptic flow  $(v_2)$
- High p<sub>T</sub>: nuclear modification factor (R<sub>AA</sub>)

#### Summary and prospects



### Results in Pb-Pb @ 2.76 TeV Single-strange spectra





Data sample: Analysis on ~ 20 M minimum bias events Pb-Pb  $\sqrt{s_{NN}}$  = 2.76 TeV taken in 2010

5 centrality bins,  $p_T$  reach of 12 GeV/c Particle and anti-particle spectra compatible



## **Baryon to meson ratio**



Baryon/meson ratio strongly enhanced:

- $\rightarrow$  increasing with centrality
- $\rightarrow$  up to x 3 wrt the pp value
- → enhancement still present at 6 GeV/c
- $\rightarrow$  reproduced by EPOS (also centrality)

li Fisica Nuclear

### Results in Pb-Pb @ 2.76 TeV Baryon to meson ratio





Baryon/meson ratio strongly enhanced:

- $\rightarrow$  increasing with centrality
- $\rightarrow$  up to x 3 wrt the pp value
- → enhancement still present at 6 GeV/c
- $\rightarrow$  reproduced by EPOS (also centrality)

Slightly larger at the LHC than at RHIC

Maximum shift very small in  $p_T$ , despite significant differences in spectra



<sup>31</sup> 



### **Multi-strange spectra**



#### Data sample: Analysis on ~ 20 M minimum bias events Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV taken in 2010

4 centrality bins,  $p_T$  reach of 9 ( $\Xi$ ) and 8 GeV/c ( $\Omega$ ) in 0-20% Particle and anti-particle spectra compatible

# **Strange to non-strange ratios**



Ratios to pions as a function of centrality:



 $\Lambda/\pi$ , no significant dependence on centrality



# **Strange to non-strange ratios**



Ratios to pions as a function of centre-of-mass energy:



 $\Xi/\pi$  independent of collision energy



# Strange to non-strange ratios



Ratios to pions as a function of centre-of-mass energy:



 $\Xi/\pi$  independent of collision energy

Ratio in pp: slightly faster increasing wrt A-A from RHIC to LHC → decreasing relative enhancement of A-A wrt pp at LHC



### Results in Pb-Pb @ 2.76 TeV Thermal model predictions





Predicted chemical freeze-out temperature at the LHC: 164 MeV  $\rightarrow$  problems with p and  $\Lambda$  yields, ratios

Lower  $T_{fo}$  from fit: 152 MeV ( $\phi$  and K<sup>\*0</sup> not included)  $\rightarrow$  correctly predicts  $\Lambda$  $\rightarrow$  misses multi-strange

A. Andronic *et al.*, PLB 673, 142 (2009) Thermal hadronization model, assuming  $\gamma_s = 1$ 



# Results in Pb-Pb @ 2.76 TeV Thermal model predictions





Predicted chemical freeze-out temperature at the LHC: 164 MeV  $\rightarrow$  problems with p and  $\Lambda$  yields, ratios

Lower  $T_{fo}$  from fit: 152 MeV ( $\phi$  and K<sup>\*0</sup> not included)

- $\rightarrow$  correctly predicts  $\Lambda$
- → misses multi-strange
- $\rightarrow$  still problems with p/ $\pi$  ratio

Difficult to fit p and hyperons with a single set of thermal parameters!



# Results in Pb-Pb @ 2.76 TeV Thermal model predictions





Predicted chemical freeze-out temperature at the LHC: 164 MeV  $\rightarrow$  problems with p and  $\Lambda$  yields, ratios

Lower  $T_{fo}$  from fit: 152 MeV ( $\phi$  and K<sup>\*0</sup> not included)  $\rightarrow$  correctly predicts  $\Lambda$ 

- → misses multi-strange
- $\rightarrow$  still problems with p/ $\pi$  ratio

Difficult to fit p and hyperons with a single set of thermal parameters!

Possible solutions to "proton anomaly":

→ detailed calculations of proton annihilations in the final hadronic phase → non-equilibrium models with  $\gamma_{q,s} > 1$  ?





### **D** Measuring strangeness with ALICE:

- Physics motivation
- Experimental apparatus
- Strange particle detection

### Results:

- Spectra, Model comparisons in pp
- Spectra, Ratios, Thermal model comparisons in Pb-Pb

#### Strangeness enhancement

- > Collectivity: elliptic flow  $(v_2)$
- High p<sub>T</sub>: nuclear modification factor (R<sub>AA</sub>)

#### Summary and prospects



## **Strangeness enhancement**



How it is defined:

 $E_i = (Yield_i^{A-A} / <Npart>) / (Yield_i^{pp} / 2)$ 

Connected to one of the earliest predictions for QGP formation\*

Found to match basic predictions at SPS and RHIC:

- $\rightarrow$  increasing with strangeness content
- $\rightarrow$  decreasing with centre-of-mass energy



P. Koch, J. Rafelski and W. Greiner, PLB 123, 151 (1983)



# **Strangeness enhancement**



How it is defined:

 $E_i = (Yield_i^{A-A} / <Npart>) / (Yield_i^{pp} / 2)$ 

Connected to one of the earliest predictions for QGP formation\*

Found to match basic predictions at SPS and RHIC:

- $\rightarrow$  increasing with strangeness content
- $\rightarrow$  decreasing with centre-of-mass energy

Reference for preliminary enhancements at LHC:

- $\rightarrow$  interpolate 0.9 and 7 TeV pp data for  $\Xi$
- $\rightarrow$  interpolate 200 GeV (STAR) and 7 TeV pp data for  $\Omega$
- $\rightarrow$  use excitation function from PYTHIA Perugia-2011

\* J. Rafelski and B. Müller, PRL 48, 1066 (1982)

P. Koch, J. Rafelski and W. Greiner, PLB 123, 151 (1983)



## **Strangeness enhancement**



How it is defined:

 $E_i = (Yield_i^{A-A} / <Npart>) / (Yield_i^{pp} / 2)$ 





## **Strangeness enhancement**



How it is defined:

 $E_i = (Yield_i^{A-A} / <Npart>) / (Yield_i^{pp} / 2)$ 



Hierarchy based on strangeness content

Decreasing trend with energy as observed at SPS energies and from SPS to RHIC

di Fisica Nucleare

43

D. Elia (INFN Bari, Italy)

## **Strangeness enhancement**



How it is defined:

 $E_i = (Yield_i^{A-A} / <Npart>) / (Yield_i^{pp} / 2)$ 



Hierarchy based on strangeness content

Decreasing trend with energy as observed at SPS energies and from SPS to RHIC

NB Antiparticle/particle < 1 at lower energy



D. Elia (INFN Bari, Italy)

KRUGER 2012 / Kruger Gate (South Africa) December 3-7, 2012



### **J** Measuring strangeness with ALICE:

- Physics motivation
- Experimental apparatus
- Strange particle detection

#### Results:

- Spectra, Model comparisons in pp
- Spectra, Ratios, Thermal model comparisons in Pb-Pb
- Strangeness enhancement
- > Collectivity: elliptic flow  $(v_2)$
- High p<sub>T</sub>: nuclear modification factor (R<sub>AA</sub>)

#### Summary and prospects





Comparison of  $v_2$  for  $K_S^0$  and  $\Lambda$ :



Evident mass ordering, changing with centrality:  $\rightarrow$  the larger the mass the more v<sub>2</sub> is pushed at higher p<sub>T</sub>

46

di Fisica Nucleare



Comparison of  $v_2$  for  $K_S^0$  and  $\Lambda$ :



Evident mass ordering, changing with centrality Similar ordering observed for charged kaons and protons

47

| N F N

di Fisica Nucleare



Comparison with viscous-hydro predictions:



Good agreement with VISH2+1\* (η/s=0.2) at low p<sub>T</sub> Mass dependence better modelled for peripheral collisions \* Shen *et al.*, PRC 84, 044903 (2011)



Elliptic flow for multi-strange compared with hydro:



Hydro calculations reproduce larger boost towards higher p<sub>T</sub>





### **J** Measuring strangeness with ALICE:

- Physics motivation
- Experimental apparatus
- Strange particle detection

### Results:

- Spectra, Model comparisons in pp
- Spectra, Ratios, Thermal model comparisons in Pb-Pb
- Strangeness enhancement
- > Collectivity: elliptic flow  $(v_2)$
- > High  $p_T$ : nuclear modification factor ( $R_{AA}$ )

#### Summary and prospects



### Results in Pb-Pb @ 2.76 TeV Nuclear modification (R<sub>AA</sub>)



Suppression of  $K_{S}^{0}$  and  $\Lambda$  in central and peripheral events:



Central collisions:  $K_{S}^{0}$  and  $\Lambda$  similar to charged at high  $p_{T}$  $\rightarrow$  no strong flavour or meson/baryon dependence

li Fisica Nucleare

### Results in Pb-Pb @ 2.76 TeV Nuclear modification (R<sub>AA</sub>)



Suppression of  $K_{S}^{0}$  and  $\Lambda$  in central and peripheral events:





Same also for heavy flavours! [D<sup>0</sup>,D<sup>+</sup>,D<sup>\*+</sup>]: JHEP 09, 112, (2012)



li Fisica Nucleare

### Results in Pb-Pb @ 2.76 TeV Nuclear modification (R<sub>AA</sub>)



Suppression of  $K_{S}^{0}$  and  $\Lambda$  in central and peripheral events:



Low  $p_T$  (< 6 GeV/c):  $\rightarrow K_S^0 R_{AA}$  still similar to charged  $\rightarrow \Lambda R_{AA}$  significantly higher (baryon enhancement at intermediate  $p_T$ )

Central collisions:  $K_{S}^{0}$  and  $\Lambda$  similar to charged at high  $p_{T}$  $\rightarrow$  no strong flavour or meson/baryon dependence



### **J** Measuring strangeness with ALICE:

- Physics motivation
- Experimental apparatus
- Strange particle detection

#### **Results:**

- Spectra, Model comparisons in pp
- Spectra, Ratios, Thermal model comparisons in Pb-Pb
- Strangeness enhancement
- > Collectivity: elliptic flow  $(v_2)$
- $\blacktriangleright$  High p<sub>T</sub>: nuclear modification factor (R<sub>AA</sub>)

### Summary and prospects



## **Summary and prospects**



### **Summary**:

- wide range of strangeness measurements both in pp and Pb-Pb
- Iatest PYTHIA tune (Perugia-2011) closer to data in pp:
  - good agreement at high p<sub>T</sub>
  - worse predictions at low  $p_T$  and for multi-strange



# **Summary and prospects**



### Summary:

- wide range of strangeness measurements both in pp and Pb-Pb
- Iatest PYTHIA tune (Perugia-2011) closer to data in pp:
  - good agreement at high p<sub>T</sub>
  - worse predictions at low  $p_T$  and for multi-strange
- Iot of physics from Pb-Pb data:
  - baryon/meson vs p<sub>T</sub> shows same trend as at RHIC and increases from pp above unity in central Pb-Pb at LHC
  - $\Lambda/\pi$  independent of centrality,  $\Xi/\pi$  independent of  $\sqrt{s_{NN}}$
  - p and hyperons do not fit to a single set of thermal params and  $\gamma_s$ =1
  - strangeness enhancements weaker at LHC than at RHIC
  - strange hadron  $v_2$  consistent with viscous hydro and small  $\eta/s$
  - $\Lambda$  and K<sup>0</sup><sub>S</sub> high p<sub>T</sub> suppression similar to non-strange



## **Summary and prospects**



### Summary:

- wide range of strangeness measurements both in pp and Pb-Pb
- Iatest PYTHIA tune (Perugia-2011) closer to data in pp
- Iot of physics from Pb-Pb data

### Prospects:

- multiplicity-binned analysis in pp
- finer centrality bins, more particles/resonances in Pb-Pb
- exploit centrality range of p-Pb





# **Thanks!**

D. Elia (INFN Bari, Italy)

KRUGER 2012 / Kruger Gate (South Africa) December 3-7, 2012

58

INFN Istituto Nazionale di Fisica Nucleare ezione di Bari

# **Backup slides**





D. Elia (INFN Bari, Italy)

KRUGER 2012 / Kruger Gate (South Africa) December 3-7, 2012

59

Quark scaling:



ALICE

NCQ = number of constituent quarks

Mesons and baryons seem to scale differently with NCQ



KRUGER 2012 / Kruger Gate (South Africa) December 3-7, 2012

Quark scaling:



Mesons and baryons seem to scale differently with NCQ Slightly better as a function of transverse energy (for  $KE_T < 1$ )



 $KE_T = m_T - m_0$ NCQ = number of constituent quarks

di Fisica Nucleare



Elliptic flow for multi-strange:







Elliptic flow for multi-strange:



D. Elia (INFN Bari, Italy)

KRUGER 2012 / Kruger Gate (South Africa) December 3-7, 2012

63